Matematikada a Karleman matritsasi konvertatsiya qilish uchun ishlatiladigan matritsa funktsiya tarkibi ichiga matritsani ko'paytirish. Tez-tez takrorlanish nazariyasida doimiylikni topish uchun foydalaniladi funktsiyalarning takrorlanishi buni takrorlash mumkin emas naqshni aniqlash yolg'iz. Carleman matritsalarining boshqa ishlatilishi nazariyasida uchraydi ehtimollik ishlab chiqarish funktsiyalari va Markov zanjirlari.
Ta'rif
The Karleman matritsasi cheksiz farqlanadigan funktsiyaning 
 quyidagicha aniqlanadi:
![M [f] _ {{jk}} = { frac {1} {k!}}  Chap [{ frac {d ^ {k}} {dx ^ {k}}} (f (x)) ^ {j}  right] _ {{x = 0}} ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/f4403f8a3cf6059a61c85b4e2467c4a85f54b92e)
qondirish uchun (Teylor seriyasi) tenglama:
![(f (x)) ^ {j} =  sum _ {{k = 0}} ^ {{ infty}} M [f] _ {{jk}} x ^ {k}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/03463b6cd637cee2f67b82f27d2090ea727f8911)
Masalan, hisoblash 
 tomonidan
![f (x) =  sum _ {{k = 0}} ^ {{ infty}} M [f] _ {{1, k}} x ^ {k}. ~](https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf258551c796e545bf7fb64d108e36a767bb4de)
shunchaki 1-qatorning nuqta-mahsulotiga teng 
 ustunli vektor bilan 
.
Yozuvlari 
 keyingi qatorda ning ikkinchi kuchini bering 
:
![f (x) ^ {2} =  sum _ {{k = 0}} ^ {{ infty}} M [f] _ {{2, k}} x ^ {k} ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/de8b11d0f8a91e4c2ced42170a60b0caf19a7384)
va shuningdek, nolinchi kuchga ega bo'lish uchun 
 yilda 
, biz nollarni o'z ichiga olgan 0 qatorini birinchi pozitsiyadan tashqari hamma joyda qabul qilamiz
![f (x) ^ {0} = 1 =  sum _ {{k = 0}} ^ {{ infty}} M [f] _ {{0, k}} x ^ {k} = 1 +  sum _ {{k = 1}} ^ {{ infty}} 0 * x ^ {k} ~.](https://wikimedia.org/api/rest_v1/media/math/render/svg/89492b7c2e86da2ea5950181e03c2401bba682e4)
Shunday qilib, ning nuqta mahsuloti 
 ustunli vektor bilan 
 ustunli vektorni beradi ![chap [1, f (x), f (x) ^ {2}, ...  o'ng] ^ { tau}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b699a7892e21b134c934bf866574b501c760e93c)
![M [f] *  chap [1, x, x ^ {2}, x ^ {3}, ...  o'ng] ^ { tau} =  chap [1, f (x), (f (x )) ^ {2}, (f (x)) ^ {3}, ...  right] ^ { tau}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/11b855ee48ed632f75da2451b603eb0aa244af0f)
Qo'ng'iroq matritsasi
The Qo'ng'iroq matritsasi funktsiya 
 sifatida belgilanadi
![B [f] _ {{jk}} = { frac {1} {j!}}  Chap [{ frac {d ^ {j}} {dx ^ {j}}} (f (x)) ^ {k}  right] _ {{x = 0}} ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/6edf4d35ab6f9257f7c0341aa0aed08fcb35e32a)
tenglamani qondirish uchun
![(f (x)) ^ {k} =  sum _ {{j = 0}} ^ {{ infty}} B [f] _ {{jk}} x ^ {j} ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/8781733a538855e58051ba92c69fe22d63c9c1d0)
shunday ko'chirish yuqoridagi Carleman matritsasi.
Jabotinskiy matritsasi
Eri Jabotinskiy 1947 yilgi matritsalar kontseptsiyasini ko'pburchaklar konvolusiyalarini aks ettirish maqsadida ishlab chiqdi. "Analitik takrorlash" (1963) maqolasida u "vakillik matritsasi" atamasini kiritdi va ushbu tushunchani ikki tomonlama cheksiz matritsalarga umumlashtirdi. Ushbu maqolada faqat turdagi funktsiyalar mavjud 
 muhokama qilinadi, ammo funktsiyaning ijobiy * va * salbiy kuchlari uchun ko'rib chiqiladi. Bir qancha mualliflar Bell matritsalarini "Jabotinskiy matritsa" deb atashadi (D. Knuth 1992, W.D. Lang 2000) va ehtimol bu yanada kanonik nomga aylanishi mumkin.
Analitik takrorlash Muallif (lar): Eri Jabotinskiy Manba: Amerika matematik jamiyati operatsiyalari, jild. 108, № 3 (1963 yil sentyabr), 457-477 betlar. Nashr qilgan: Amerika Matematik Jamiyati Barqaror URL: https://www.jstor.org/stable/1993593Kirish: 19/03/2009 15:57
Umumlashtirish
Funktsiyaning Karleman matritsasini umumlashtirish har qanday nuqta atrofida aniqlanishi mumkin, masalan:
![M [f] _ {{x_ {0}}} = M_ {x} [x-x_ {0}] M [f] M_ {x} [x + x_ {0}]](https://wikimedia.org/api/rest_v1/media/math/render/svg/60545c7d7eebc706af5c420424fc18ead0ffe7cc)
yoki 
 qayerda 
. Bu imkon beradi matritsa kuchi quyidagilar bilan bog'liq bo'lishi kerak:
![(M [f] _ {{x_ {0}}}) ^ {n} = M_ {x} [x-x_ {0}] M [f] ^ {n} M_ {x} [x + x_ {0 }]](https://wikimedia.org/api/rest_v1/media/math/render/svg/65827d744752dfa269cee519bb7d75f49f94575c)
Umumiy seriya
- Uni yanada umumlashtirishning yana bir usuli - umumiy ketma-ketlik haqida quyidagicha o'ylash:
 - Ruxsat bering 
 ning ketma-ket yaqinlashuvi bo'lishi kerak 
, qayerda 
 o'z ichiga olgan bo'shliqning asosidir 
 - Biz aniqlay olamiz 
, shuning uchun bizda bor 
, endi buni isbotlashimiz mumkin 
, agar biz buni taxmin qilsak 
 uchun ham asosdir 
 va 
. - Ruxsat bering 
 shunday bo'ling 
 qayerda 
. - Endi 
![{ displaystyle  sum _ {n} G [g  circ f] _ {mn}  psi _ {n} =  psi _ {l}  circ (g  circ f) = ( psi _ {l}  circ g)  circ f =  sum _ {m} G [g] _ {lm} ( psi _ {m}  circ f) =  sum _ {m} G [g] _ {lm}  sum _ {n} G [f] _ {mn}  psi _ {n} =  sum _ {n, m} G [g] _ {lm} G [f] _ {mn}  psi _ {n} =  sum _ {n} ( sum _ {m} G [g] _ {lm} G [f] _ {mn})  psi _ {n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4b00c95ee186e5f7edd35a3d569a44b6116a7f0c)
 - Birinchi va oxirgi muddatni taqqoslash va 
 uchun asos bo'lish 
, 
 va 
 bundan kelib chiqadiki ![{ displaystyle G [g  circ f] =  sum _ {m} G [g] _ {lm} G [f] _ {mn} = G [g]  cdot G [f]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/da354f5e5f9a1bba6f9fa933fa3a7249dd514e0d)
 
Misollar
Agar biz o'rnatgan bo'lsak 
 bizda bor Karleman matritsasi
Agar 
 ichki mahsuloti aniqlangan Hilbert Space uchun ortonormal asosdir 
, biz sozlashimiz mumkin 
 va 
 bo'ladi 
. Agar 
 bizda Fourier seriyasida o'xshash narsa bor, ya'ni 
Matritsa xususiyatlari
Ushbu matritsalar asosiy munosabatlarni qondiradi:
![M [f  circ g] = M [f] M [g] ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/8e00d6d5242cbe33b61cac226a4616334e0c3764)
![B [f  circ g] = B [g] B [f] ~,](https://wikimedia.org/api/rest_v1/media/math/render/svg/f01891f569a74b4504402346d43146891660285b)
bu Karleman matritsasini yaratadi M ning (to'g'ridan-to'g'ri) vakili 
va Bell matritsasi B an vakillikka qarshi ning 
. Mana bu atama 
 funktsiyalar tarkibini bildiradi 
.
Boshqa xususiyatlarga quyidagilar kiradi:
, qayerda 
 bu takrorlanadigan funktsiya va
, qayerda 
 bo'ladi teskari funktsiya (agar Karleman matritsasi shunday bo'lsa) teskari).
Misollar
Konstantaning Karleman matritsasi:
![M [a] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  a & 0 & 0 &  cdots  a ^ {2} & 0 & 0 &  cdots  vdots &  vdots &  vdots &  ddots  end {massiv}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/27037f56eb81c02bca3637d7fa1a64a7acf69290)
Identifikatsiya funktsiyasining Carleman matritsasi:
![M_ {x} [x] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  0 & 1 & 0 &  cdots  0 & 0 & 1 &  cdots  vdots &  vdots &  vdots &  ddots  end {qatori }}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/060db1559fd634af4732397f145102b847ee28d0)
Doimiy qo'shimchaning Karleman matritsasi:
![M_ {x} [a + x] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  a & 1 & 0 &  cdots  a ^ {2} & 2a & 1 &  cdots  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/4f3fea6f7f68d36e2bd565f790c580d6cf3638c7)
Ning Karleman matritsasi voris vazifasi ga teng Binomial koeffitsient:
![{ displaystyle M_ {x} [1 + x] =  chap ({ begin {array} {ccccc} 1 & 0 & 0 & 0 & 0 &  cdots  1 & 1 & 0 & 0 &  cdots  1 & 2 & 1 & 0 &  cdots  1 & 3 & 3 & 1 &  cdots  vdots &  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfd6f916a9d60728ea980fae6cac9e59c61c578a)
![{ displaystyle M_ {x} [1 + x] _ {jk} = { binom {j} {k}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a24191e059d1693cc283f0e99fb9de0c8f473b0b)
Ning Karleman matritsasi logaritma bilan bog'liq (imzolangan) Birinchi turdagi raqamlar miqyosi faktoriallar:
![{ displaystyle M_ {x} [ log (1 + x)] =  chap ({ begin {array} {cccccc} 1 & 0 & 0 & 0 & 0 & 0 &  cdots  0 & 1 & - { frac {1} {2}} & { frac {1} {3}} & - { frac {1} {4}} &  cdots  0 & 0 & 1 & -1 & { frac {11} {12}} &  cdots  0 & 0 & 0 & 1 & - { frac {3} {2}} &  cdots  0 & 0 & 0 & 0 & 1 &  cdots  vdots &  vdots &  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/61170871a71104a2460fbca6ffedd2a2d18d37a5)
![{ displaystyle M_ {x} [ log (1 + x)] _ {jk} = s (k, j) { frac {j!} {k!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/08aa68c6365aea61ce9dfca0b36f57ce265f7aed)
Ning Karleman matritsasi logaritma bilan bog'liq (imzosiz) Birinchi turdagi raqamlar miqyosi faktoriallar:
![{ displaystyle M_ {x} [-  log (1-x)] =  chap ({ begin {array} {cccccc} 1 & 0 & 0 & 0 & 0 & 0 &  cdots  0 & 1 & { frac {1} {2}} & { frac {1} {3}} & { frac {1} {4}} &  cdots  0 & 0 & 1 & 1 & { frac {11} {12}} &  cdots  0 & 0 & 0 & 1 & { frac {3} {2}} &  cdots  0 & 0 & 0 & 0 & 0 & 1 &  cdots  vdots &  vdots &  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46a8b609d493fb9b990b72713526cb0e214639db)
![{ displaystyle M_ {x} [-  log (1-x)] _ {jk} = | s (k, j) | { frac {j!} {k!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cc7dc6e5117d3f9472837983f4c5cf3fb0ac7f0d)
Ning Karleman matritsasi eksponent funktsiya bilan bog'liq Ikkinchi turdagi raqamlar miqyosi faktoriallar:
![{ displaystyle M_ {x} [ exp (x) -1] =  chap ({ begin {array} {cccccc} 1 & 0 & 0 & 0 & 0 & 0 &  cdots  0 & 1 & { frac {1} {2}} & { frac { 1} {6}} & { frac {1} {24}} &  cdots  0 & 0 & 1 & 1 & { frac {7} {12}} &  cdots  0 & 0 & 0 & 1 & { frac {3} {2}} &  cdots  0 & 0 & 0 & 0 & 1 &  cdots  vdots &  vdots &  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/60dcc5bc8118a4d12edab88fe4d1b55bdf45750b)
![{ displaystyle M_ {x} [ exp (x) -1] _ {jk} = S (k, j) { frac {j!} {k!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/88f9a96182d5979c945be545163e45b0ce248e6d)
Ning Carleman matritsasi eksponent funktsiyalar bu:
![{ displaystyle M_ {x} [ exp (ax)] =  chap ({ begin {array} {ccccc} 1 & 0 & 0 & 0 & 0 &  cdots  1 & a & { frac {a ^ {2}} {2}} & { frac {a ^ {3}} {6}} &  cdots  1 & 2a & 2a ^ {2} & { frac {4a ^ {3}} {3}} &  cdots  1 & 3a & { frac {9a ^ { 2}} {2}} & { frac {9a ^ {3}} {2}} &  cdots  vdots &  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng) }](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba38bbc8a6ed091fce516b7d31e2fcf28d0cf561)
![{ displaystyle M_ {x} [ exp (ax)] _ {jk} = { frac {(ja) ^ {k}} {k!}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b2ee0d7ea2fd8ded162198b085659a006b84cbfc)
Doimiy ko'paytmaning Karleman matritsasi:
![M_ {x} [cx] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  0 & c & 0 &  cdots  0 & 0 & c ^ {2} &  cdots  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/d29dc047a6112f5ff455b1dffd13a54b90102b18)
Lineer funktsiyaning Carleman matritsasi:
![M_ {x} [a + cx] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  a & c & 0 &  cdots  a ^ {2} & 2ac & c ^ {2} &  cdots  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/9a3518b703f7d0701200e12ef02d74528bb03450)
Funksiyaning Karleman matritsasi 
 bu:
![M [f] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  0 & f_ {1} & f_ {2} &  cdots  0 & 0 & f_ {1} ^ {2} &  cdots  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa0961a60884bc09a9405dea90f500a8747aea25)
Funksiyaning Karleman matritsasi 
 bu:
![M [f] =  chap ({ begin {array} {cccc} 1 & 0 & 0 &  cdots  f_ {0} & f_ {1} & f_ {2} &  cdots  f_ {0} ^ {2} & 2f_ {0) } f_ {1} & f_ {1} ^ {2} + 2f_ {0} f_ {2} &  cdots  vdots &  vdots &  vdots &  ddots  end {array}}  o'ng)](https://wikimedia.org/api/rest_v1/media/math/render/svg/f14d52bc552668f19232bd0c31b6d90279d1bfb5)
Carleman Approximation
Quyidagi avtonom chiziqli bo'lmagan tizimni ko'rib chiqing:

qayerda 
 tizim holati vektorini bildiradi. Shuningdek, 
 va 
analitik vektor funktsiyalari ma'lum va 
 bo'ladi 
 tizim uchun noma'lum buzilish elementi.
Kerakli nominal nuqtada yuqoridagi tizimdagi chiziqli bo'lmagan funktsiyalarni Teylor kengayishi bilan taxmin qilish mumkin
![{ displaystyle f (x)  simeq f (x_ {0}) +  sum _ {k = 1} ^ { eta} { frac {1} {k!}}  qisman f _ {[k]}  o'rtada _ {x = x_ {0}} (x-x_ {0}) ^ {[k]}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e84b18169cca116cea6b7cab49bd085358d2edf6)
qayerda 
 bo'ladi 
 ning qisman hosilasi 
 munosabat bilan 
 da 
 va 
 belgisini bildiradi 
 Kronecker mahsuloti.
Umumiylikni yo'qotmasdan, biz buni taxmin qilamiz 
 kelib chiqishi.
Teylorning taxminiy tizimini tizimga qo'llagan holda biz olamiz
![{ displaystyle { dot {x}}  simeq  sum _ {k = 0} ^ { eta} A_ {k} x ^ {[k]} +  sum _ {j = 1} ^ {m}  sum _ {k = 0} ^ { eta} B_ {jk} x ^ {[k]} dj}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24d25912c1223a9c1513f4235d2fdbcb42f77fed)
qayerda 
 va 
.
Shunday qilib, dastlabki holatlarning yuqori darajalari uchun quyidagi chiziqli tizim olinadi:
![{ displaystyle { frac {d (x ^ {[i]})} {dt}}  simeq  sum _ {k = 0} ^ { eta -i + 1} A_ {i, k} x ^ { [k + i-1]} +  sum _ _ j = 1} ^ {m}  sum _ {k = 0} ^ { eta -i + 1} B_ {j, i, k} x ^ {[ k + i-1]} d_ {j}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd0b8b3adffc2c4d6bacf9eb517a4471755af0a3)
qayerda
va shunga o'xshash 
.
Kronecker mahsulot operatorida ishlaydigan taxminiy tizim quyidagi shaklda taqdim etilgan
![{ displaystyle { dot {x}} _ { otimes}  simeq Ax _ { otimes} +  sum _ {j = 1} ^ {m} [B_ {j} x _ { otimes} d_ {j} + B_ {j0} d_ {j}] + A_ {r}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/65d5ed5157c6aaaa06fa46899e1a2f24fccf5fa6)
qayerda
va 
 va 
 matritsalar (Hashimiy va Armau 2015) da aniqlangan.[1]
Shuningdek qarang
Adabiyotlar
- R Aldrovandi, Matematik fizikaning maxsus matritsalari: Stochastic, Circulant and Bell Matrices, World Scientific, 2001. (oldindan ko'rish)
 - R. Aldrovandi, L. P. Freitas, Dinamik xaritalarning doimiy takrorlanishi, onlayn preprint, 1997 yil.
 - P. Gralevich, K. Kovalski, Takrorlangan xaritalardan doimiy vaqt evolyutsiyasi va Carleman linearizatsiyasi, onlayn preprint, 2000 yil.
 - K Kovalski va W-H Stib, Lineer bo'lmagan dinamik tizimlar va Carleman linearizatsiya, World Scientific, 1991. (oldindan ko'rish)
 - D. Knut, Konvolyutsion polinomlar arXiv onlayn nashr, 1992 yil
 - Jabotinskiy, Eri: Matritsalar tomonidan funktsiyalarning namoyishi. Faber polinomlariga murojaat qilish: Amerika Matematik Jamiyati Ishlari, jild. 4, № 4 (1953 yil avgust), 546–553 betlar Barqaror jstor-URL