Yilda matematika , bo'lingan farqlar  bu algoritm , tarixiy ravishda logaritmalar va trigonometrik funktsiyalar jadvallarini hisoblash uchun ishlatilgan.[iqtibos kerak  ]   Charlz Babbig "s farq mexanizmi , erta mexanik kalkulyator , ushbu algoritmni o'z ishida ishlatish uchun mo'ljallangan.[1] 
Bo'lingan farqlar a rekursiv  bo'linish  jarayon. Usul koeffitsientlarni hisoblashda ishlatilishi mumkin interpolatsion polinom  ichida Nyuton shakli .
Ta'rif  
Berilgan k  + 1 ma'lumotlar punkti
                    (                   x                       0           ,                   y                       0           )         ,         …         ,         (                   x                       k           ,                   y                       k           )       { displaystyle (x_ {0}, y_ {0}),  ldots, (x_ {k}, y_ {k})}   The oldinga bo'lingan farqlar  quyidagicha aniqlanadi:
                    [                   y                       ν           ]         :=                   y                       ν           ,                  ν         ∈         {         0         ,         …         ,         k         }       { displaystyle [y _ { nu}]: = y _ { nu},  qquad  nu  in  {0,  ldots, k }}                       [                   y                       ν           ,         …         ,                   y                       ν             +             j           ]         :=                                             [                               y                                   ν                   +                   1                 ,               …               ,                               y                                   ν                   +                   j                 ]               −               [                               y                                   ν                 ,               …               ,                               y                                   ν                   +                   j                   −                   1                 ]                                            x                                   ν                   +                   j                 −                               x                                   ν              ,                  ν         ∈         {         0         ,         …         ,         k         −         j         }         ,                   j         ∈         {         1         ,         …         ,         k         }         .       { displaystyle [y _ { nu},  ldots, y _ { nu + j}]: = { frac {[y _ { nu +1},  ldots, y _ { nu + j}] - [y_ { nu},  ldots, y _ { nu + j-1}]} {x _ { nu + j} -x _ { nu}}},  qquad  nu  in  {0,  ldots, kj },  j  in  {1,  ldots, k }.}   The orqaga bo'lingan farqlar  quyidagicha aniqlanadi:
                    [                   y                       ν           ]         :=                   y                       ν           ,                  ν         ∈         {         0         ,         …         ,         k         }       { displaystyle [y _ { nu}]: = y _ { nu},  qquad  nu  in  {0,  ldots, k }}                       [                   y                       ν           ,         …         ,                   y                       ν             −             j           ]         :=                                             [                               y                                   ν                 ,               …               ,                               y                                   ν                   −                   j                   +                   1                 ]               −               [                               y                                   ν                   −                   1                 ,               …               ,                               y                                   ν                   −                   j                 ]                                            x                                   ν                 −                               x                                   ν                   −                   j              ,                  ν         ∈         {         j         ,         …         ,         k         }         ,                   j         ∈         {         1         ,         …         ,         k         }         .       { displaystyle [y _ { nu},  ldots, y _ { nu -j}]: = { frac {[y _ { nu},  ldots, y _ { nu -j + 1}] - [y_ { nu -1},  ldots, y _ { nu -j}]} {x _ { nu} -x _ { nu -j}}},  qquad  nu  in  {j,  ldots, k },  j  in  {1,  ldots, k }.}   Notation  
Agar ma'lumotlar nuqtalari funktsiya sifatida berilgan bo'lsa ƒ ,
                    (                   x                       0           ,         f         (                   x                       0           )         )         ,         …         ,         (                   x                       k           ,         f         (                   x                       k           )         )       { displaystyle (x_ {0}, f (x_ {0})),  ldots, (x_ {k}, f (x_ {k}))}   ba'zida yozadi
                    f         [                   x                       ν           ]         :=         f         (                   x                       ν           )         ,                  ν         ∈         {         0         ,         …         ,         k         }       { displaystyle f [x _ { nu}]: = f (x _ { nu}),  qquad  nu  in  {0,  ldots, k }}                       f         [                   x                       ν           ,         …         ,                   x                       ν             +             j           ]         :=                                             f               [                               x                                   ν                   +                   1                 ,               …               ,                               x                                   ν                   +                   j                 ]               −               f               [                               x                                   ν                 ,               …               ,                               x                                   ν                   +                   j                   −                   1                 ]                                            x                                   ν                   +                   j                 −                               x                                   ν              ,                  ν         ∈         {         0         ,         …         ,         k         −         j         }         ,                   j         ∈         {         1         ,         …         ,         k         }         .       { displaystyle f [x _ { nu},  ldots, x _ { nu + j}]: = { frac {f [x _ { nu +1},  ldots, x _ { nu + j}] - f [x _ { nu},  ldots, x _ { nu + j-1}]} {x _ { nu + j} -x _ { nu}}},  qquad  nu  in  {0,  ldots, kj },  j  in  {1,  ldots, k }.}   Funktsiyaning bo'lingan farqi uchun bir nechta yozuvlar ƒ  tugunlarda x 0 , ..., x n   ishlatiladi:
                    [                   x                       0           ,         …         ,                   x                       n           ]         f         ,       { displaystyle [x_ {0},  ldots, x_ {n}] f,}                       [                   x                       0           ,         …         ,                   x                       n           ;         f         ]         ,       { displaystyle [x_ {0},  ldots, x_ {n}; f],}                       D.         [                   x                       0           ,         …         ,                   x                       n           ]         f       { displaystyle D [x_ {0},  ldots, x_ {n}] f}   va boshqalar.
Misol  
Uchun bo'lingan farqlar                     ν         =         0       { displaystyle  nu = 0}     va ning birinchi bir nechta qiymati                     j       { displaystyle j}    :
                                                                                                              [                                     y                                       0                   ]                                                 =                                   y                                       0                                                                                     [                                     y                                       0                   ,                                   y                                       1                   ]                                                 =                                                                                                     y                                                   1                         −                                               y                                                   0                                                                      x                                                   1                         −                                               x                                                   0                                                                                        [                                     y                                       0                   ,                                   y                                       1                   ,                                   y                                       2                   ]                                                 =                                                                                                                               [                                                 y                                                   1                         ,                                               y                                                   2                         ]                       −                                                                         [                                                 y                                                   0                         ,                                               y                                                   1                         ]                                                                    x                                                   2                         −                                               x                                                   0                      =                                                                                                                                                                                         y                                                               2                               −                                                           y                                                               1                                                                                        x                                                               2                               −                                                           x                                                               1                            −                                                                                                                                   y                                                               1                               −                                                           y                                                               0                                                                                        x                                                               1                               −                                                           x                                                               0                                                                         x                                                   2                         −                                               x                                                   0                      =                                                                                                     y                                                   2                         −                                               y                                                   1                                              (                                               x                                                   2                         −                                               x                                                   1                         )                       (                                               x                                                   2                         −                                               x                                                   0                         )                    −                                                                                                     y                                                   1                         −                                               y                                                   0                                              (                                               x                                                   1                         −                                               x                                                   0                         )                       (                                               x                                                   2                         −                                               x                                                   0                         )                                                                                      [                                     y                                       0                   ,                                   y                                       1                   ,                                   y                                       2                   ,                                   y                                       3                   ]                                                 =                                                                                                                               [                                                 y                                                   1                         ,                                               y                                                   2                         ,                                               y                                                   3                         ]                       −                                                                         [                                                 y                                                   0                         ,                                               y                                                   1                         ,                                               y                                                   2                         ]                                                                    x                                                   3                         −                                               x                                                   0                { displaystyle { begin {aligned} { mathopen {[}} y_ {0}] & = y_ {0}  { mathopen {[}} y_ {0}, y_ {1}] & = { frac {y_ {1} -y_ {0}} {x_ {1} -x_ {0}}}  { mathopen {[}} y_ {0}, y_ {1}, y_ {2}] & = { frac {{ mathopen {[}} y_ {1}, y_ {2}] - { mathopen {[}} y_ {0}, y_ {1}]} {x_ {2} -x_ {0} }} = { frac {{ frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}}} - { frac {y_ {1} -y_ {0}} {x_ {1} -x_ {0}}}} {x_ {2} -x_ {0}}} = { frac {y_ {2} -y_ {1}} {(x_ {2} -x_ {1}) (x_ {2} -x_ {0})}} - { frac {y_ {1} -y_ {0}} {(x_ {1} -x_ {0}) (x_ {2} -x_ {0}) )}}  { mathopen {[}} y_ {0}, y_ {1}, y_ {2}, y_ {3}] & = { frac {{ mathopen {[}} y_ {1}, y_ {2}, y_ {3}] - { mathopen {[}} y_ {0}, y_ {1}, y_ {2}]} {x_ {3} -x_ {0}}}  end {hizalangan }}}   Rekursiv jarayonni yanada aniqroq qilish uchun bo'lingan farqlarni jadval shaklida joylashtirish mumkin:
                                                                                          x                                       0                                                    y                                       0                   =                 [                                   y                                       0                   ]                                                                                                                       [                                   y                                       0                   ,                                   y                                       1                   ]                                                                                            x                                       1                                                    y                                       1                   =                 [                                   y                                       1                   ]                                               [                                   y                                       0                   ,                                   y                                       1                   ,                                   y                                       2                   ]                                                                                         [                                   y                                       1                   ,                                   y                                       2                   ]                                               [                                   y                                       0                   ,                                   y                                       1                   ,                                   y                                       2                   ,                                   y                                       3                   ]                                                               x                                       2                                                    y                                       2                   =                 [                                   y                                       2                   ]                                               [                                   y                                       1                   ,                                   y                                       2                   ,                                   y                                       3                   ]                                                                                         [                                   y                                       2                   ,                                   y                                       3                   ]                                                                                            x                                       3                                                    y                                       3                   =                 [                                   y                                       3                   ]                                                       { displaystyle { begin {matrix} x_ {0} & y_ {0} = [y_ {0}] &&&  && [y_ {0}, y_ {1}] &&  x_ {1} & y_ {1} = [y_ {1}] && [y_ {0}, y_ {1}, y_ {2}] &  && [y_ {1}, y_ {2}] && [y_ {0}, y_ {1} , y_ {2}, y_ {3}]  x_ {2} & y_ {2} = [y_ {2}] && [y_ {1}, y_ {2}, y_ {3}] &  && [ y_ {2}, y_ {3}] &&  x_ {3} & y_ {3} = [y_ {3}] &&&  end {matrix}}}   Xususiyatlari  
                    (         f         +         g         )         [                   x                       0           ,         …         ,                   x                       n           ]         =         f         [                   x                       0           ,         …         ,                   x                       n           ]         +         g         [                   x                       0           ,         …         ,                   x                       n           ]       { displaystyle (f + g) [x_ {0},  nuqta, x_ {n}] = f [x_ {0},  nuqta, x_ {n}] + g [x_ {0},  nuqta, x_ {n}]}                       (         λ         ⋅         f         )         [                   x                       0           ,         …         ,                   x                       n           ]         =         λ         ⋅         f         [                   x                       0           ,         …         ,                   x                       n           ]       { displaystyle ( lambda  cdot f) [x_ {0},  dots, x_ {n}] =  lambda  cdot f [x_ {0},  dots, x_ {n}]}                       (         f         ⋅         g         )         [                   x                       0           ,         …         ,                   x                       n           ]         =         f         [                   x                       0           ]         ⋅         g         [                   x                       0           ,         …         ,                   x                       n           ]         +         f         [                   x                       0           ,                   x                       1           ]         ⋅         g         [                   x                       1           ,         …         ,                   x                       n           ]         +         ⋯         +         f         [                   x                       0           ,         …         ,                   x                       n           ]         ⋅         g         [                   x                       n           ]         =                   ∑                       r             =             0                        n           f         [                   x                       0           ,         …         ,                   x                       r           ]         ⋅         g         [                   x                       r           ,         …         ,                   x                       n           ]       { displaystyle (f  cdot g) [x_ {0},  dots, x_ {n}] = f [x_ {0}]  cdot g [x_ {0},  dots, x_ {n}] + f [x_ {0}, x_ {1}]  cdot g [x_ {1},  nuqta, x_ {n}] +  nuqta + f [x_ {0},  nuqta, x_ {n}]  cdot g [x_ {n}] =  sum _ {r = 0} ^ {n} f [x_ {0},  ldots, x_ {r}]  cdot g [x_ {r},  ldots, x_ {n} ]}   Bo'lingan farqlar nosimmetrikdir: Agar                     σ         :         {         0         ,         …         ,         n         }         →         {         0         ,         …         ,         n         }       { displaystyle  sigma:  {0,  dots, n }  to  {0,  dots, n }}     keyin almashtirishdir                     f         [                   x                       0           ,         …         ,                   x                       n           ]         =         f         [                   x                       σ             (             0             )           ,         …         ,                   x                       σ             (             n             )           ]       { displaystyle f [x_ {0},  dots, x_ {n}] = f [x _ { sigma (0)},  dots, x _ { sigma (n)}]})                       f         [                   x                       0           ,         …         ,                   x                       n           ]         =                                                             f                                   (                   n                   )                 (               ξ               )                            n               !          { displaystyle f [x_ {0},  dots, x_ {n}] = { frac {f ^ {(n)} ( xi)} {n!}}}     qayerda                     ξ       { displaystyle  xi}     ning eng kichigi va eng kattasi aniqlagan ochiq oraliqda                               x                       k         { displaystyle x_ {k}}    .Matritsa shakli Bo'lingan farqlar sxemasini yuqori qismga qo'yish mumkin uchburchak matritsa .Qo'yaylik                               T                       f           (                   x                       0           ,         …         ,                   x                       n           )         =                               (                                                             f                   [                                       x                                           0                     ]                                    f                   [                                       x                                           0                     ,                                       x                                           1                     ]                                    f                   [                                       x                                           0                     ,                                       x                                           1                     ,                                       x                                           2                     ]                                    …                                    f                   [                                       x                                           0                     ,                   …                   ,                                       x                                           n                     ]                                                   0                                    f                   [                                       x                                           1                     ]                                    f                   [                                       x                                           1                     ,                                       x                                           2                     ]                                    …                                    f                   [                                       x                                           1                     ,                   …                   ,                                       x                                           n                     ]                                                   ⋮                                    ⋮                                    ⋮                                    ⋱                                    ⋮                                                   0                                    0                                    0                                    …                                    f                   [                                       x                                           n                     ]                )         { displaystyle T_ {f} (x_ {0},  dots, x_ {n}) = { begin {pmatrix} f [x_ {0}] & f [x_ {0}, x_ {1}] & f [x_ {0}, x_ {1}, x_ {2}] &  ldots & f [x_ {0},  dots, x_ {n}]  0 & f [x_ {1}] & f [x_ {1}, x_ { 2}] &  ldots & f [x_ {1},  dots, x_ {n}]  vdots &  vdots &  vdots &  ddots &  vdots  0 & 0 & 0 &  ldots & f [x_ {n}]  oxiri {pmatrix}}}    .
Keyin u ushlab turadi
                              T                       f             +             g           x         =                   T                       f           x         +                   T                       g           x       { displaystyle T_ {f + g} x = T_ {f} x + T_ {g} x}                                 T                       f             ⋅             g           x         =                   T                       f           x         ⋅                   T                       g           x       { displaystyle T_ {f  cdot g} x = T_ {f} x  cdot T_ {g} x}   Bu Leybnits qoidasidan kelib chiqadi. Bu shuni anglatadiki, bunday matritsalarni ko'paytirish kommutativ . Xulosa qilingan holda, bir xil tugunlar to'plamiga nisbatan bo'lingan farq sxemalarining matritsalari a hosil qiladi komutativ uzuk . Beri                               T                       f           x       { displaystyle T_ {f} x}     bu uchburchak matritsa, uning o'zgacha qiymatlar  aniq                     f         (                   x                       0           )         ,         …         ,         f         (                   x                       n           )       { displaystyle f (x_ {0}),  nuqtalar, f (x_ {n})}    . Ruxsat bering                               δ                       ξ         { displaystyle  delta _ { xi}}     bo'lishi a Kronekker deltasi o'xshash funktsiya, ya'ni                               δ                       ξ           (         t         )         =                               {                                                             1                                    :                   t                   =                   ξ                   ,                                                   0                                    :                                                             boshqa                     .                        { displaystyle  delta _ { xi} (t) = { begin {case} 1 &: t =  xi,  0 &: { mbox {else}}.  end {case}}}   Shubhasiz                     f         ⋅                   δ                       ξ           =         f         (         ξ         )         ⋅                   δ                       ξ         { displaystyle f  cdot  delta _ { xi} = f ( xi)  cdot  delta _ { xi}}    , shunday qilib                               δ                       ξ         { displaystyle  delta _ { xi}}     bu o'ziga xos funktsiya  funktsiyani nuqtali ko'paytirishni. Anavi                               T                                     δ                                                 x                                       men               x       { displaystyle T _ { delta _ {x_ {i}}} x}     qandaydir tarzda "xususiy matritsa "ning                               T                       f           x       { displaystyle T_ {f} x}    :                               T                       f           x         ⋅                   T                                     δ                                                 x                                       men               x         =         f         (                   x                       men           )         ⋅                   T                                     δ                                                 x                                       men               x       { displaystyle T_ {f} x  cdot T _ { delta _ {x_ {i}}} x = f (x_ {i})  cdot T _ { delta _ {x_ {i}}} x}    . Biroq, ning barcha ustunlari                               T                                     δ                                                 x                                       men               x       { displaystyle T _ { delta _ {x_ {i}}} x}     bir-birining ko'paytmasi, the matritsa darajasi  ning                               T                                     δ                                                 x                                       men               x       { displaystyle T _ { delta _ {x_ {i}}} x}     is 1. Demak, dan barcha xususiy vektorlarning matritsasini tuzishingiz mumkin                     men       { displaystyle i}    har birining uchinchi ustuni                               T                                     δ                                                 x                                       men               x       { displaystyle T _ { delta _ {x_ {i}}} x}    . Xususiy vektorlar matritsasini bilan belgilang                     U         x       { displaystyle Ux}    . Misol                    U         (                   x                       0           ,                   x                       1           ,                   x                       2           ,                   x                       3           )         =                               (                                                             1                                                                              1                                               (                                                   x                                                       1                           −                                                   x                                                       0                           )                                                                                 1                                               (                                                   x                                                       2                           −                                                   x                                                       0                           )                         ⋅                         (                                                   x                                                       2                           −                                                   x                                                       1                           )                                                                                 1                                               (                                                   x                                                       3                           −                                                   x                                                       0                           )                         ⋅                         (                                                   x                                                       3                           −                                                   x                                                       1                           )                         ⋅                         (                                                   x                                                       3                           −                                                   x                                                       2                           )                                                      0                                    1                                                                              1                                               (                                                   x                                                       2                           −                                                   x                                                       1                           )                                                                                 1                                               (                                                   x                                                       3                           −                                                   x                                                       1                           )                         ⋅                         (                                                   x                                                       3                           −                                                   x                                                       2                           )                                                      0                                    0                                    1                                                                              1                                               (                                                   x                                                       3                           −                                                   x                                                       2                           )                                                      0                                    0                                    0                                    1                )         { displaystyle U (x_ {0}, x_ {1}, x_ {2}, x_ {3}) = { begin {pmatrix} 1 & { frac {1} {(x_ {1} -x_ {0}) )}} & { frac {1} {(x_ {2} -x_ {0})  cdot (x_ {2} -x_ {1})}} va { frac {1} {(x_ {3}) -x_ {0})  cdot (x_ {3} -x_ {1})  cdot (x_ {3} -x_ {2})}}  0 & 1 & { frac {1} {(x_ {2} -) x_ {1})}} & { frac {1} {(x_ {3} -x_ {1})  cdot (x_ {3} -x_ {2})}}  0 & 0 & 1 & { frac {1} {(x_ {3} -x_ {2})}}  0 & 0 & 0 & 1 & end {pmatrix}}}    The diagonalizatsiya  ning                               T                       f           x       { displaystyle T_ {f} x}     sifatida yozilishi mumkin                    U         x         ⋅         diag                  (         f         (                   x                       0           )         ,         …         ,         f         (                   x                       n           )         )         =                   T                       f           x         ⋅         U         x       { displaystyle Ux  cdot  operator nomi {diag} (f (x_ {0}),  nuqta, f (x_ {n})) = T_ {f} x  cdot Ux}    . Muqobil ta'riflar  
Kengaytirilgan shakl                                                                         f                 [                                   x                                       0                   ]                                                 =                 f                 (                                   x                                       0                   )                                             f                 [                                   x                                       0                   ,                                   x                                       1                   ]                                                 =                                                                             f                       (                                               x                                                   0                         )                                            (                                               x                                                   0                         −                                               x                                                   1                         )                    +                                                                             f                       (                                               x                                                   1                         )                                            (                                               x                                                   1                         −                                               x                                                   0                         )                                                f                 [                                   x                                       0                   ,                                   x                                       1                   ,                                   x                                       2                   ]                                                 =                                                                             f                       (                                               x                                                   0                         )                                            (                                               x                                                   0                         −                                               x                                                   1                         )                       ⋅                       (                                               x                                                   0                         −                                               x                                                   2                         )                    +                                                                             f                       (                                               x                                                   1                         )                                            (                                               x                                                   1                         −                                               x                                                   0                         )                       ⋅                       (                                               x                                                   1                         −                                               x                                                   2                         )                    +                                                                             f                       (                                               x                                                   2                         )                                            (                                               x                                                   2                         −                                               x                                                   0                         )                       ⋅                       (                                               x                                                   2                         −                                               x                                                   1                         )                                                f                 [                                   x                                       0                   ,                                   x                                       1                   ,                                   x                                       2                   ,                                   x                                       3                   ]                                                 =                                                                             f                       (                                               x                                                   0                         )                                            (                                               x                                                   0                         −                                               x                                                   1                         )                       ⋅                       (                                               x                                                   0                         −                                               x                                                   2                         )                       ⋅                       (                                               x                                                   0                         −                                               x                                                   3                         )                    +                                                                             f                       (                                               x                                                   1                         )                                            (                                               x                                                   1                         −                                               x                                                   0                         )                       ⋅                       (                                               x                                                   1                         −                                               x                                                   2                         )                       ⋅                       (                                               x                                                   1                         −                                               x                                                   3                         )                    +                                                                             f                       (                                               x                                                   2                         )                                            (                                               x                                                   2                         −                                               x                                                   0                         )                       ⋅                       (                                               x                                                   2                         −                                               x                                                   1                         )                       ⋅                       (                                               x                                                   2                         −                                               x                                                   3                         )                    +                                                                                                                                                          f                       (                                               x                                                   3                         )                                            (                                               x                                                   3                         −                                               x                                                   0                         )                       ⋅                       (                                               x                                                   3                         −                                               x                                                   1                         )                       ⋅                       (                                               x                                                   3                         −                                               x                                                   2                         )                                                f                 [                                   x                                       0                   ,                 …                 ,                                   x                                       n                   ]                                                 =                                   ∑                                       j                     =                     0                                        n                                                                               f                       (                                               x                                                   j                         )                                                                    ∏                                                   k                           ∈                           {                           0                           ,                           …                           ,                           n                           }                           ∖                           {                           j                           }                         (                                               x                                                   j                         −                                               x                                                   k                         )              { displaystyle { begin {aligned} f [x_ {0}] & = f (x_ {0})  f [x_ {0}, x_ {1}] & = { frac {f (x_ {0) })} {(x_ {0} -x_ {1})}} + { frac {f (x_ {1})} {(x_ {1} -x_ {0})}}  f [x_ { 0}, x_ {1}, x_ {2}] & = { frac {f (x_ {0})} {(x_ {0} -x_ {1})  cdot (x_ {0} -x_ {2) })}} + { frac {f (x_ {1})} {(x_ {1} -x_ {0})  cdot (x_ {1} -x_ {2})}} + { frac {f (x_ {2})} {(x_ {2} -x_ {0})  cdot (x_ {2} -x_ {1})}}  f [x_ {0}, x_ {1}, x_ { 2}, x_ {3}] & = { frac {f (x_ {0})} {(x_ {0} -x_ {1})  cdot (x_ {0} -x_ {2})  cdot ( x_ {0} -x_ {3})}} + { frac {f (x_ {1})} {(x_ {1} -x_ {0})  cdot (x_ {1} -x_ {2})  cdot (x_ {1} -x_ {3})}} + { frac {f (x_ {2})} {(x_ {2} -x_ {0})  cdot (x_ {2} -x_ {) 1})  cdot (x_ {2} -x_ {3})}} +  &  quad  quad { frac {f (x_ {3})} {(x_ {3} -x_ {0})  cdot (x_ {3} -x_ {1})  cdot (x_ {3} -x_ {2})}}  f [x_ {0},  dots, x_ {n}] & =  sum _ {j = 0} ^ {n} { frac {f (x_ {j})} { prod _ {k  in  {0,  dots, n }  setminus  {j }} (x_ { j} -x_ {k})}}  end {hizalanmış}}}   
A yordamida polinom funktsiyasi                      q       { displaystyle q}     bilan                     q         (         ξ         )         =         (         ξ         −                   x                       0           )         ⋯         (         ξ         −                   x                       n           )       { displaystyle q ( xi) = ( xi -x_ {0})  cdots ( xi -x_ {n})}     buni shunday yozish mumkin
                    f         [                   x                       0           ,         …         ,                   x                       n           ]         =                   ∑                       j             =             0                        n                                               f               (                               x                                   j                 )                                            q                 ′                (                               x                                   j                 )            .       { displaystyle f [x_ {0},  dots, x_ {n}] =  sum _ {j = 0} ^ {n} { frac {f (x_ {j})} {q '(x_ {j) })}}.}   Shu bilan bir qatorda, biz ketma-ketlikning boshlanishidan boshlab orqaga qarab hisoblashimiz mumkin                               x                       k           =                   x                       k             +             n             +             1           =                   x                       k             −             (             n             +             1             )         { displaystyle x_ {k} = x_ {k + n + 1} = x_ {k- (n + 1)}}      har doim                     k         <         0       { displaystyle k <0}     yoki                     n         <         k       { displaystyle n     . Ushbu ta'rif beradi                               x                       −             1         { displaystyle x _ {- 1}}     deb talqin qilinishi kerak                               x                       n         { displaystyle x_ {n}}    ,                               x                       −             2         { displaystyle x _ {- 2}}     deb talqin qilinishi kerak                               x                       n             −             1         { displaystyle x_ {n-1}}    ,                               x                       −             n         { displaystyle x _ {- n}}     deb talqin qilinishi kerak                               x                       0         { displaystyle x_ {0}}    Va hokazo. Bo'lingan farqning kengaygan shakli shunday bo'ladi
                    f         [                   x                       0           ,         …         ,                   x                       n           ]         =                   ∑                       j             =             0                        n                                               f               (                               x                                   j                 )                                            ∏                                   k                   =                   j                   −                   n                                    j                   −                   1                 (                               x                                   j                 −                               x                                   k                 )            +                   ∑                       j             =             0                        n                                               f               (                               x                                   j                 )                                            ∏                                   k                   =                   j                   +                   1                                    j                   +                   n                 (                               x                                   j                 −                               x                                   k                 )          { displaystyle f [x_ {0},  dots, x_ {n}] =  sum _ {j = 0} ^ {n} { frac {f (x_ {j})} { prod  limitler _ { k = jn} ^ {j-1} (x_ {j} -x_ {k})}} +  sum _ {j = 0} ^ {n} { frac {f (x_ {j})} { prod  limitlar _ {k = j + 1} ^ {j + n} (x_ {j} -x_ {k})}}}   
Yana bir tavsif cheklovlardan foydalanadi:
                    f         [                   x                       0           ,         …         ,                   x                       n           ]         =                   ∑                       j             =             0                        n                     lim                       x             →                           x                               j                       [                                                     f                 (                                   x                                       j                   )                 (                 x                 −                                   x                                       j                   )                                                  ∏                                       k                     =                     0                                        n                   (                 x                 −                                   x                                       k                   )              ]        { displaystyle f [x_ {0},  dots, x_ {n}] =  sum _ {j = 0} ^ {n}  lim _ {x  rightarrow x_ {j}}  left [{ frac { f (x_ {j}) (x-x_ {j})} { prod  limitlar _ {k = 0} ^ {n} (x-x_ {k})}}  o'ng]}   
Qisman fraksiyalar Siz vakillik qilishingiz mumkin qisman fraksiyalar  bo'lingan farqlarning kengaytirilgan shaklidan foydalanish. (Bu hisoblashni soddalashtirmaydi, lekin o'zi qiziq.) Agar                     p       { displaystyle p}     va                     q       { displaystyle q}     bor polinom funktsiyalari , qayerda                               d           e           g                    p         <                   d           e           g                    q       { displaystyle  mathrm {deg}  p < mathrm {deg}  q}     va                     q       { displaystyle q}     jihatidan berilgan chiziqli omillar  tomonidan                     q         (         ξ         )         =         (         ξ         −                   x                       1           )         ⋅         ⋯         ⋅         (         ξ         −                   x                       n           )       { displaystyle q ( xi) = ( xi -x_ {1})  cdot  dots  cdot ( xi -x_ {n})}    , keyin qisman fraksiya dekompozitsiyasidan kelib chiqadiki
                                                        p               (               ξ               )                            q               (               ξ               )            =                   (                       t             →                                                             p                   (                   t                   )                                    ξ                   −                   t               )          [                   x                       1           ,         …         ,                   x                       n           ]         .       { displaystyle { frac {p ( xi)} {q ( xi)}} =  chap (t  dan { frac {p (t)} { xi -t}}  o'ng) [x_ { 1},  nuqta, x_ {n}].}   Agar chegaralar  bo'lingan farqlar qabul qilinadi, agar ba'zi birlari bo'lsa, bu ulanish ham amalga oshiriladi                               x                       j         { displaystyle x_ {j}}     mos keladi.
Agar                     f       { displaystyle f}     o'zboshimchalik darajasiga ega bo'lgan polinom funktsiyasidir va u tomonidan parchalanadi                     f         (         x         )         =         p         (         x         )         +         q         (         x         )         ⋅         d         (         x         )       { displaystyle f (x) = p (x) + q (x)  cdot d (x)}     foydalanish polinom bo'linishi  ning                     f       { displaystyle f}     tomonidan                     q       { displaystyle q}    , keyin
                                                        p               (               ξ               )                            q               (               ξ               )            =                   (                       t             →                                                             f                   (                   t                   )                                    ξ                   −                   t               )          [                   x                       1           ,         …         ,                   x                       n           ]         .       { displaystyle { frac {p ( xi)} {q ( xi)}} = = chap (t  dan { frac {f (t)} { xi -t}}  o'ng) [x_ { 1},  nuqta, x_ {n}].}   Peano shakli Bo'lingan farqlar quyidagicha ifodalanishi mumkin
                    f         [                   x                       0           ,         …         ,                   x                       n           ]         =                               1                           n               !                      ∫                                     x                               0                                        x                               n                       f                       (             n             )           (         t         )                   B                       n             −             1           (         t         )                  d         t       { displaystyle f [x_ {0},  ldots, x_ {n}] = { frac {1} {n!}}  int _ {x_ {0}} ^ {x_ {n}} f ^ {( n)} (t) B_ {n-1} (t) , dt}   qayerda                               B                       n             −             1         { displaystyle B_ {n-1}}     a B-spline  daraja                     n         −         1       { displaystyle n-1}     ma'lumotlar nuqtalari uchun                               x                       0           ,         …         ,                   x                       n         { displaystyle x_ {0},  dots, x_ {n}}     va                               f                       (             n             )         { displaystyle f ^ {(n)}}     bo'ladi                     n       { displaystyle n}    -chi lotin  funktsiyasi                     f       { displaystyle f}    .
Bunga Peano shakli  bo'lingan farqlarning va                               B                       n             −             1         { displaystyle B_ {n-1}}     deyiladi Peano yadrosi  ikkalasi ham nomlangan bo'lingan farqlar uchun Juzeppe Peano .
Teylor shakli Birinchi buyurtma Agar tugunlar to'plangan bo'lsa, unda bo'linadigan farqlarning soni bo'yicha hisoblash noto'g'ri, chunki siz deyarli ikkita nolga bo'lasiz, ularning har biri yuqori nisbiy xato  sababli o'xshash qiymatlarning farqlari . Ammo, biz buni bilamiz farqli takliflar  taxminan lotin  va aksincha:
                                                        f               (               y               )               −               f               (               x               )                            y               −               x            ≈                   f           ′          (         x         )       { displaystyle { frac {f (y) -f (x)} {y-x}}  f (x)}     uchun                     x         ≈         y       { displaystyle x  y y}   Ushbu taxminiylikni har doim identifikatsiyaga aylantirish mumkin Teylor teoremasi  amal qiladi.
                    f         (         y         )         =         f         (         x         )         +                   f           ′          (         x         )         ⋅         (         y         −         x         )         +                   f           ″          (         x         )         ⋅                                             (               y               −               x                               )                                   2                              2               !            +                   f           ‴          (         x         )         ⋅                                             (               y               −               x                               )                                   3                              3               !            +         …       { displaystyle f (y) = f (x) + f '(x)  cdot (yx) + f' '(x)  cdot { frac {(yx) ^ {2}} {2!}} + f '' '(x)  cdot { frac {(yx) ^ {3}} {3!}} +  dots}                       ⇒                                             f               (               y               )               −               f               (               x               )                            y               −               x            =                   f           ′          (         x         )         +                   f           ″          (         x         )         ⋅                                             y               −               x                            2               !            +                   f           ‴          (         x         )         ⋅                                             (               y               −               x                               )                                   2                              3               !            +         …       { displaystyle  Rightarrow { frac {f (y) -f (x)} {yx}} = f '(x) + f' '(x)  cdot { frac {yx} {2!}} + f '' '(x)  cdot { frac {(yx) ^ {2}} {3!}} +  dots}   Ning g'alati kuchlarini yo'q qilishingiz mumkin                     y         −         x       { displaystyle y-x}     kengaytirish orqali Teylor seriyasi  orasidagi markazda                     x       { displaystyle x}     va                     y       { displaystyle y}    :
                    x         =         m         −         h         ,         y         =         m         +         h       { displaystyle x = m-h, y = m + h}    , anavi                     m         =                                             x               +               y              2           ,         h         =                                             y               −               x              2         { displaystyle m = { frac {x + y} {2}}, h = { frac {y-x} {2}}}                       f         (         m         +         h         )         =         f         (         m         )         +                   f           ′          (         m         )         ⋅         h         +                   f           ″          (         m         )         ⋅                                             h                               2                             2               !            +                   f           ‴          (         m         )         ⋅                                             h                               3                             3               !            +         …       { displaystyle f (m + h) = f (m) + f '(m)  cdot h + f' '(m)  cdot { frac {h ^ {2}} {2!}} + f' '' (m)  cdot { frac {h ^ {3}} {3!}} +  nuqta}                       f         (         m         −         h         )         =         f         (         m         )         −                   f           ′          (         m         )         ⋅         h         +                   f           ″          (         m         )         ⋅                                             h                               2                             2               !            −                   f           ‴          (         m         )         ⋅                                             h                               3                             3               !            +         …       { displaystyle f (mh) = f (m) -f '(m)  cdot h + f' '(m)  cdot { frac {h ^ {2}} {2!}} - f' '' (m)  cdot { frac {h ^ {3}} {3!}} +  nuqta}                                                           f               (               y               )               −               f               (               x               )                            y               −               x            =                                             f               (               m               +               h               )               −               f               (               m               −               h               )                            2               ⋅               h            =                   f           ′          (         m         )         +                   f           ‴          (         m         )         ⋅                                             h                               2                             3               !            +         …       { displaystyle { frac {f (y) -f (x)} {yx}} = { frac {f (m + h) -f (mh)} {2  cdot h}} = f '(m) ) + f '' '(m)  cdot { frac {h ^ {2}} {3!}} +  dots}   Yuqori tartib Teylor seriyasi yoki boshqa har qanday vakili funktsiyalar seriyasi  bo'linib ketgan farqlarni taxmin qilish uchun printsipial jihatdan foydalanish mumkin. Teylor qatorlari cheksiz yig'indidir quvvat funktsiyalari . Funktsiyadan xaritalash                     f       { displaystyle f}     bo'lingan farqga                     f         [                   x                       0           ,         …         ,                   x                       n           ]       { displaystyle f [x_ {0},  dots, x_ {n}]}     a chiziqli funktsional . Ushbu funktsiyani summands funktsiyasiga ham qo'llashimiz mumkin.
Oddiy funksiya bilan tezkor quvvat yozuvlari:                               p                       n           (         x         )         =                   x                       n           .       { displaystyle p_ {n} (x) = x ^ {n}.}   
Muntazam Teylor seriyasi - bu quvvat funktsiyalarining tortilgan yig'indisi:                     f         =         f         (         0         )         ⋅                   p                       0           +                   f           ′          (         0         )         ⋅                   p                       1           +                                                             f                 ″                (               0               )                            2               !            ⋅                   p                       2           +                                                             f                 ‴                (               0               )                            3               !            ⋅                   p                       3           +         …       { displaystyle f = f (0)  cdot p_ {0} + f '(0)  cdot p_ {1} + { frac {f' '(0)} {2!}}  cdot p_ {2} + { frac {f '' '(0)} {3!}}  cdot p_ {3} +  dots}   
Bo'lingan farqlar uchun Teylor seriyasi:                     f         [                   x                       0           ,         …         ,                   x                       n           ]         =         f         (         0         )         ⋅                   p                       0           [                   x                       0           ,         …         ,                   x                       n           ]         +                   f           ′          (         0         )         ⋅                   p                       1           [                   x                       0           ,         …         ,                   x                       n           ]         +                                                             f                 ″                (               0               )                            2               !            ⋅                   p                       2           [                   x                       0           ,         …         ,                   x                       n           ]         +                                                             f                 ‴                (               0               )                            3               !            ⋅                   p                       3           [                   x                       0           ,         …         ,                   x                       n           ]         +         …       { displaystyle f [x_ {0},  dots, x_ {n}] = f (0)  cdot p_ {0} [x_ {0},  dots, x_ {n}] + f '(0)  cdot p_ {1} [x_ {0},  nuqta, x_ {n}] + { frac {f '' (0)} {2!}}  cdot p_ {2} [x_ {0},  nuqta , x_ {n}] + { frac {f '' '(0)} {3!}}  cdot p_ {3} [x_ {0},  nuqta, x_ {n}] +  nuqta}   
Bilamizki, birinchisi                     n       { displaystyle n}     atamalar yo'qoladi, chunki bizda polinom tartibiga qaraganda farqlar tartibi yuqori va keyingi muddatda bo'linadigan farq bitta:
                                                                        ∀                 j                 <                 n                                                  p                                       j                   [                                   x                                       0                   ,                 …                 ,                                   x                                       n                   ]                                =                                0                                                                              p                                       n                   [                                   x                                       0                   ,                 …                 ,                                   x                                       n                   ]                                =                                1                                                                              p                                       n                     +                     1                   [                                   x                                       0                   ,                 …                 ,                                   x                                       n                   ]                                =                                                  x                                       0                   +                 ⋯                 +                                   x                                       n                                                                                p                                       n                     +                     m                   [                                   x                                       0                   ,                 …                 ,                                   x                                       n                   ]                                =                                                  ∑                                       a                     ∈                     {                     0                     ,                     …                     ,                     n                                           }                                               m                                              bilan                                            a                                               1                       ≤                                           a                                               2                       ≤                     ⋯                     ≤                                           a                                               m                                       ∏                                       j                     ∈                     a                                     x                                       j                   .           { displaystyle { begin {array} {llcl}  forall j    Demak, bo'lingan farq uchun Teylor seriyasi aslida bilan boshlanadi                                                                         f                                   (                   n                   )                 (               0               )                            n               !          { displaystyle { frac {f ^ {(n)} (0)} {n!}}}     ga ko'ra bo'lingan farqning oddiy yaqinlashuvi bo'lingan farqlar uchun o'rtacha qiymat teoremasi .
Agar biz quvvat funktsiyalari uchun bo'lingan farqlarni odatdagi tarzda hisoblashimiz kerak bo'lsa, biz bo'lingan farqni hisoblashda bo'lgani kabi bir xil sonli muammolarga duch kelamiz.                     f       { displaystyle f}    . Yaxshisi, oddiyroq yo'l bor
                              t                       n           =         (         1         −                   x                       0           ⋅         t         )         ⋯         ⋅         (         1         −                   x                       n           ⋅         t         )         ⋅         (                   p                       0           [                   x                       0           ,         …         ,                   x                       n           ]         +                   p                       1           [                   x                       0           ,         …         ,                   x                       n           ]         ⋅         t         +                   p                       2           [                   x                       0           ,         …         ,                   x                       n           ]         ⋅                   t                       2           +         …         )         .       { displaystyle t ^ {n} = (1-x_ {0}  cdot t)  dots  cdot (1-x_ {n}  cdot t)  cdot (p_ {0} [x_ {0},  dots , x_ {n}] + p_ {1} [x_ {0},  nuqta, x_ {n}]  cdot t + p_ {2} [x_ {0},  nuqta, x_ {n}]  cdot t ^ {2} +  nuqta).}   Natijada, biz ikkiga bo'lingan farqlarni hisoblashimiz mumkin                               p                       n         { displaystyle p_ {n}}     tomonidan a bo'linish  ning rasmiy quvvat seriyalari . Qanday qilib biz hisoblashda bu kuchlarni ketma-ket hisoblashgacha kamayishini ko'ring                               p                       n           [         h         ]       { displaystyle p_ {n} [h]}     bir necha kishi uchun                     n       { displaystyle n}    .
Agar siz Teylor seriyasiga nisbatan butun bo'linish sxemasini hisoblashingiz kerak bo'lsa, ning bo'lingan farqlari haqidagi bo'limga qarang quvvat seriyasi .
Polinomlar va kuchlar qatori  
Polinomlarning bo'lingan farqlari ayniqsa qiziq, chunki ular Leybnits qoidasidan foydalanishlari mumkin                     J       { displaystyle J}     bilan
                    J         =                               (                                                                                 x                                           0                                      1                                    0                                    0                                    ⋯                                    0                                                   0                                                        x                                           1                                      1                                    0                                    ⋯                                    0                                                   0                                    0                                                        x                                           2                                      1                                                     0                                                   ⋮                                    ⋮                                                     ⋱                                    ⋱                                                                   0                                    0                                    0                                    0                                                                         x                                           n                  )         { displaystyle J = { begin {pmatrix} x_ {0} & 1 & 0 & 0 &  cdots & 0  0 & x_ {1} & 1 & 0 &  cdots & 0  0 & 0 & x_ {2} & 1 && 0  vdots &  vdots &&  ddots &  ddots &  0 & 0 & 0 & 0 && & x_ {n}  end {pmatrix}}}   uchun ajratilgan farq sxemasini o'z ichiga oladi identifikatsiya qilish funktsiyasi  tugunlarga nisbatan                               x                       0           ,         …         ,                   x                       n         { displaystyle x_ {0},  dots, x_ {n}}    , shunday qilib                               J                       n         { displaystyle J ^ {n}}     uchun bo'lingan farqlarni o'z ichiga oladi quvvat funktsiyasi  bilan ko'rsatkich                      n       { displaystyle n}    Shunday qilib, a uchun bo'lingan farqlarni olishingiz mumkin polinom funktsiyasi                      φ         (         p         )       { displaystyle  varphi (p)}    ga nisbatan polinom                      p       { displaystyle p}    murojaat qilish orqali                     p       { displaystyle p}     (aniqrog'i: unga mos keladigan matritsali polinom funktsiyasi                               φ                                     M            (         p         )       { displaystyle  varphi _ { mathrm {M}} (p)}    ) matritsaga                     J       { displaystyle J}    .
                    φ         (         p         )         (         ξ         )         =                   a                       0           +                   a                       1           ⋅         ξ         +         ⋯         +                   a                       n           ⋅                   ξ                       n         { displaystyle  varphi (p) ( xi) = a_ {0} + a_ {1}  cdot  xi +  dots + a_ {n}  cdot  xi ^ {n}}                                 φ                                     M            (         p         )         (         J         )         =                   a                       0           +                   a                       1           ⋅         J         +         ⋯         +                   a                       n           ⋅                   J                       n         { displaystyle  varphi _ { mathrm {M}} (p) (J) = a_ {0} + a_ {1}  cdot J +  dots + a_ {n}  cdot J ^ {n}}                       =                               (                                                             φ                   (                   p                   )                   [                                       x                                           0                     ]                                    φ                   (                   p                   )                   [                                       x                                           0                     ,                                       x                                           1                     ]                                    φ                   (                   p                   )                   [                                       x                                           0                     ,                                       x                                           1                     ,                                       x                                           2                     ]                                    …                                    φ                   (                   p                   )                   [                                       x                                           0                     ,                   …                   ,                                       x                                           n                     ]                                                   0                                    φ                   (                   p                   )                   [                                       x                                           1                     ]                                    φ                   (                   p                   )                   [                                       x                                           1                     ,                                       x                                           2                     ]                                    …                                    φ                   (                   p                   )                   [                                       x                                           1                     ,                   …                   ,                                       x                                           n                     ]                                                   ⋮                                    ⋱                                    ⋱                                    ⋱                                    ⋮                                                   0                                    …                                    0                                    0                                    φ                   (                   p                   )                   [                                       x                                           n                     ]                )         { displaystyle = { begin {pmatrix}  varphi (p) [x_ {0}] &  varphi (p) [x_ {0}, x_ {1}] &  varphi (p) [x_ {0}, x_ {1}, x_ {2}] &  ldots &  varphi (p) [x_ {0},  dots, x_ {n}]  0 &  varphi (p) [x_ {1}] &  varphi (p) [x_ {1}, x_ {2}] &  ldots &  varphi (p) [x_ {1},  dots, x_ {n}]  vdots &  ddots &  ddots &  ddots &  vdots  0 &  ldots & 0 & 0 &  varphi (p) [x_ {n}]  end {pmatrix}}}   Bu sifatida tanilgan Opits 'formulasi .[2] [3] 
Endi darajasini oshirishni o'ylab ko'ring                     p       { displaystyle p}     abadiylikka, ya'ni. Teylor polinomini a ga aylantiring Teylor seriyasi .Qo'yaylik                     f       { displaystyle f}     a ga mos keladigan funktsiya bo'lishi quvvat seriyasi Siz qo'llaniladigan matritsa qatorini hisoblash orqali bo'lingan farqlar sxemasini hisoblashingiz mumkin                     J       { displaystyle J}    Agar tugunlar bo'lsa                               x                       0           ,         …         ,                   x                       n         { displaystyle x_ {0},  dots, x_ {n}}     barchasi tengdir                     J       { displaystyle J}     a Iordaniya to'sig'i  va hisoblash skalyar funktsiyani a ga umumlashtirishga qadar qaynaydi matritsa funktsiyasi  foydalanish Iordaniya parchalanishi .
Oldinga farqlar  
Ma'lumotlar nuqtalari teng masofada taqsimlanganda biz maxsus holatni olamiz oldinga farqlar . Ularni umumiy umumiy farqlarga qaraganda hisoblash osonroq.
"Bo'lingan qism" dan ekanligini unutmang oldinga bo'lingan farq  ni tiklash uchun hali ham hisoblash kerak oldinga bo'lingan farq  dan oldinga farq .
Ta'rif Berilgan n  ma'lumotlar nuqtalari
                    (                   x                       0           ,                   y                       0           )         ,         …         ,         (                   x                       n             −             1           ,                   y                       n             −             1           )       { displaystyle (x_ {0}, y_ {0}),  ldots, (x_ {n-1}, y_ {n-1})}   bilan
                              x                       ν           =                   x                       0           +         ν         h         ,                   h         >         0         ,                   ν         =         0         ,         …         ,         n         −         1       { displaystyle x _ { nu} = x_ {0} +  nu h,  h> 0,   nu = 0,  ldots, n-1}   bo'lingan farqlar orqali hisoblash mumkin oldinga farqlar  sifatida belgilangan
                              Δ                       (             0             )                     y                       men           :=                   y                       men         { displaystyle  Delta ^ {(0)} y_ {i}: = y_ {i}}                                 Δ                       (             k             )                     y                       men           :=                   Δ                       (             k             −             1             )                     y                       men             +             1           −                   Δ                       (             k             −             1             )                     y                       men           ,                   k         ≥         1.       { displaystyle  Delta ^ {(k)} y_ {i}: =  Delta ^ {(k-1)} y_ {i + 1} -  Delta ^ {(k-1)} y_ {i},  k  geq 1.}   Bo'lingan farqlar va oldinga qarab farqlar o'rtasidagi bog'liqlik[4] 
                    f         [                   x                       0           ,                   x                       1           ,         …         ,                   x                       k           ]         =                               1                           k               !                               h                                   k                        Δ                       (             k             )           f         (                   x                       0           )         .       { displaystyle f [x_ {0}, x_ {1},  ldots, x_ {k}] = { frac {1} {k! h ^ {k}}}  Delta ^ {(k)} f ( x_ {0}).}   Misol                                                                                           y                                       0                                                                                                          Δ                                   y                                       0                                                                                              y                                       1                                                                   Δ                                       2                                     y                                       0                                                                            Δ                                   y                                       1                                                                   Δ                                       3                                     y                                       0                                                                 y                                       2                                                                   Δ                                       2                                     y                                       1                                                                            Δ                                   y                                       2                                                                                              y                                       3                                                         { displaystyle { begin {matrix} y_ {0} &&&  &  Delta y_ {0} &&  y_ {1} &&  Delta ^ {2} y_ {0} &  &  Delta y_ {1 } &&  Delta ^ {3} y_ {0}  y_ {2} &&  Delta ^ {2} y_ {1} &  &  Delta y_ {2} &&  y_ {3} &&&  oxiri {matritsa}}}   Shuningdek qarang  
Adabiyotlar  
^   Isaakson, Valter (2014). Innovatorlar . Simon va Shuster. p. 20. ISBN  978-1-4767-0869-0  . ^   de Bur, Karl , Bo'lingan farqlar , Surv. Taxminan. Nazariya 1 (2005), 46-69, [1] ^   Opits, G. Steigungsmatrizen , Z. Anjyu. Matematika. Mex. (1964), 44, T52-T54 ^   Yuk, Richard L.; Faires, J. Duglas (2011). Raqamli tahlil   (9-nashr). p.129 . Lui Melvil Milne-Tomson  (2000) [1933]. Sonli farqlarning hisobi . Amerika matematik sots. 1-bob: Bo'lingan farqlar. ISBN  978-0-8218-2107-7  .Miron B. Allen; Eli L. Isaacson (1998). Amaliy fan uchun raqamli tahlil . John Wiley & Sons. Ilova A. ISBN  978-1-118-03027-1  . Ron Goldman (2002). Piramida algoritmlari: geometrik modellashtirish uchun egri va sirtlarga dinamik dasturlash usuli . Morgan Kaufmann. 4-bob: Nyuton interpolatsiyasi va farq uchburchagi. ISBN  978-0-08-051547-2  . Tashqi havolalar