A Doob martingale (nomi bilan Jozef L. Doob,[1] a nomi bilan ham tanilgan Levy martingale) a ning matematik konstruktsiyasi stoxastik jarayon bu berilganga yaqinlashadi tasodifiy o'zgaruvchi va ega martingale mulki berilganlarga nisbatan filtrlash. Buni ma'lum vaqtgacha to'plangan ma'lumotlarga asoslanib, tasodifiy o'zgaruvchiga eng yaxshi yaqinlashuvning rivojlanayotgan ketma-ketligi deb hisoblash mumkin.
Summalarni tahlil qilayotganda, tasodifiy yurish, yoki ning boshqa qo'shimcha funktsiyalari mustaqil tasodifiy o'zgaruvchilar, tez-tez ishlatilishi mumkin markaziy chegara teoremasi, katta sonlar qonuni, Chernoffning tengsizligi, Chebyshevning tengsizligi yoki shunga o'xshash vositalar. Farqlari mustaqil bo'lmagan o'xshash ob'ektlarni tahlil qilishda asosiy vositalar martingalalar va Azumaning tengsizligi.[tushuntirish kerak]
Ta'rif
Ruxsat bering
bilan har qanday tasodifiy o'zgaruvchi bo'lishi mumkin
. Aytaylik
a filtrlash, ya'ni
qachon
. Aniqlang
![{ displaystyle Z_ {t} = mathbb {E} [Y mid { mathcal {F}} _ {t}],}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f74edc01fe1ddb6ff7e76c0c37ada4f444c3adbd)
keyin
a martingale,[2] ya'ni Doob martingale, filtrlashga nisbatan
.
Buni ko'rish uchun e'tibor bering
;
kabi
.
Xususan, har qanday tasodifiy o'zgaruvchilar ketma-ketligi uchun
ehtimollik maydoni bo'yicha
va funktsiyasi
shu kabi
, birini tanlash mumkin edi

va filtrlash
shu kabi

ya'ni
tomonidan yaratilgan algebra
. Keyin, Doob martingale ta'rifiga ko'ra, jarayon
qayerda
![{ displaystyle { begin {aligned} Z_ {0} &: = mathbb {E} [f (X_ {1}, X_ {2}, dots, X_ {n}) mid { mathcal {F} } _ {0}] = mathbb {E} [f (X_ {1}, X_ {2}, dots, X_ {n})], Z_ {t} &: = mathbb {E} [ f (X_ {1}, X_ {2}, nuqtalar, X_ {n}) mid { mathcal {F}} _ {t}] = mathbb {E} [f (X_ {1}, X_ {) 2}, dots, X_ {n}) mid X_ {1}, X_ {2}, dots, X_ {t}], forall t geq 1 end {hizalangan}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e26744a2522547f8affafbd91491b6bf0cd64c73)
Doob martingale hosil qiladi. Yozib oling
. Ushbu martingale isbotlash uchun ishlatilishi mumkin McDiarmidning tengsizligi.
McDiarmidning tengsizligi
Bayonot[1]
Mustaqil tasodifiy o'zgaruvchilarni ko'rib chiqing
ehtimollik maydoni bo'yicha
qayerda
Barcha uchun
va xaritalash
. Doimiy mavjud deb taxmin qiling
hamma uchun shunday
,

(Boshqacha qilib aytganda, ning qiymatini o'zgartirish
koordinata
qiymatini o'zgartiradi
ko'pi bilan
.) Keyin, har qanday kishi uchun
,
![{ displaystyle { text {P}} (f (X_ {1}, X_ {2}, cdots, X_ {n}) - mathbb {E} [f (X_ {1}, X_ {2}, cdots, X_ {n})] geq epsilon) leq exp left (- { frac {2 epsilon ^ {2}} { sum _ {i = 1} ^ {n} c_ {i } ^ {2}}} o'ng),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7cfd063d447f2d9bd51ae683eb25e348dacfe7c0)
![{ displaystyle { text {P}} (f (X_ {1}, X_ {2}, cdots, X_ {n}) - mathbb {E} [f (X_ {1}, X_ {2}, cdots, X_ {n})] leq - epsilon) leq exp left (- { frac {2 epsilon ^ {2}} { sum _ {i = 1} ^ {n} c_ { i} ^ {2}}} o'ng),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/75d0d735b02a4e0fc31a9cb829d4ef581c463f25)
va
![{ displaystyle { text {P}} (| f (X_ {1}, X_ {2}, cdots, X_ {n}) - mathbb {E} [f (X_ {1}, X_ {2}) , cdots, X_ {n})] | geq epsilon) leq 2 exp left (- { frac {2 epsilon ^ {2}} { sum _ {i = 1} ^ {n} c_ {i} ^ {2}}} o'ng).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/37b55543a835bc2db99ca2c2296e98f8902592de)
Isbot
Istalganini tanlang
shundayki, qiymati
har qanday narsa uchun chegaralangan
, tomonidan uchburchak tengsizligi,

shunday qilib
chegaralangan.
Aniqlang
Barcha uchun
va
. Yozib oling
. Beri
Doob martingale ta'rifi bilan chegaralangan,
martingale hosil qiladi. Endi aniqlang![{ displaystyle { begin {aligned} U_ {i} & = { underset {x in { mathcal {X}} _ {i}} { sup}} mathbb {E} [f (X_ {1) }, cdots, X_ {n}) mid X_ {1}, cdots, X_ {i-1}, x] - mathbb {E} [f (X_ {1}, cdots, X_ {n} ) mid X_ {1}, cdots, X_ {i-1}], L_ {i} & = { underset {x in { mathcal {X}} _ {i}} { inf} } mathbb {E} [f (X_ {1}, cdots, X_ {n}) mid X_ {1}, cdots, X_ {i-1}, x] - mathbb {E} [f ( X_ {1}, cdots, X_ {n}) mid X_ {1}, cdots, X_ {i-1}]. End {hizalangan}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/25b549c4a76ff84b72e806da41f47a1106cc0d59)
Yozib oling
va
ikkalasi ham
-o'lchovli. Bunga qo'chimcha,
![{ displaystyle { begin {aligned} U_ {i} -L_ {i} & = { underset {x_ {u} in { mathcal {X}} _ {i}, x_ {l} in { mathcal {X}} _ {i}} { sup}} mathbb {E} [f (X_ {1}, cdots, X_ {n}) mid X_ {1}, cdots, X_ {i- 1}, x_ {u}] - mathbb {E} [f (X_ {1}, cdots, X_ {n}) mid X_ {1}, cdots, X_ {i-1}, x_ {l }] & = { pastki qator {x_ {u} in { mathcal {X}} _ {i}, x_ {l} in { mathcal {X}} _ {i}} { sup} } int _ {{ mathcal {X}} _ {i + 1} times cdots times { mathcal {X}} _ {n}} f (X_ {1}, cdots, X_ {i- 1}, x_ {u}, x_ {i + 1}, cdots, x_ {n}) { text {d}} { text {P}} _ {X_ {i + 1}, cdots, X_ {n} mid X_ {1}, cdots, X_ {t-1}, x_ {u}} (x_ {i + 1}, cdots, x_ {n}) & quad - int _ {{ mathcal {X}} _ {i + 1} times cdots times { mathcal {X}} _ {n}} f (X_ {1}, cdots, X_ {i-1}, x_ {l}, x_ {i + 1}, cdots, x_ {n}) { text {d}} { text {P}} _ {X_ {i + 1}, cdots, X_ {n} o'rtalarida X_ {1}, cdots, X_ {t-1}, x_ {l}} (x_ {i + 1}, cdots, x_ {n}) & = { underset {x_ {u} { mathcal {X}} _ {i}, x_ {l} in { mathcal {X}} _ {i}} { sup}} int _ {{ mathcal {X}} _ {i +1} times cdots times { mathcal {X}} _ {n}} f (X_ {1}, cdots, X_ {i-1}, x_ {u}, x_ {i + 1}, cdots, x_ {n}) { text {d}} { text {P }} _ {X_ {i + 1}, cdots, X_ {n}} (x_ {i + 1}, cdots, x_ {n}) & quad - int _ {{ mathcal {X }} _ {i + 1} times cdots times { mathcal {X}} _ {n}} f (X_ {1}, cdots, X_ {i-1}, x_ {l}, x_ { i + 1}, cdots, x_ {n}) { text {d}} { text {P}} _ {X_ {i + 1}, cdots, X_ {n}} (x_ {i + 1) }, cdots, x_ {n}) & = { underset {x_ {u} in { mathcal {X}} _ {i}, x_ {l} in { mathcal {X}} _ {i}} { sup}} int _ {{ mathcal {X}} _ {i + 1} times cdots times { mathcal {X}} _ {n}} f (X_ {1} , cdots, X_ {i-1}, x_ {u}, x_ {i + 1}, cdots, x_ {n}) & quad -f (X_ {1}, cdots, X_ {i -1}, x_ {l}, x_ {i + 1}, cdots, x_ {n}) { text {d}} { text {P}} _ {X_ {i + 1}, cdots , X_ {n}} (x_ {i + 1}, cdots, x_ {n}) & leq { underset {x_ {u} in { mathcal {X}} _ {i}, x_ {l} in { mathcal {X}} _ {i}} { sup}} int _ {{ mathcal {X}} _ {i + 1} times cdots times { mathcal {X }} _ {n}} c_ {i} { text {d}} { text {P}} _ {X_ {i + 1}, cdots, X_ {n}} (x_ {i + 1} , cdots, x_ {n}) & leq c_ {i} end {aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c6683eb3528074e10297430fe89fd1a235a70095)
bu erda mustaqillik tufayli uchinchi tenglik mavjud
. So'ngra Azumaning tengsizligining umumiy shakli ga
, bizda ... bor
![{ displaystyle { text {P}} (f (X_ {1}, cdots, X_ {n}) - mathbb {E} [f (X_ {1}, cdots, X_ {n})]] geq epsilon) = { text {P}} (Z_ {n} -Z_ {0} geq epsilon) leq exp left (- { frac {2 epsilon ^ {2}} { sum _ {i = 1} ^ {n} c_ {i} ^ {2}}} o'ng).}](https://wikimedia.org/api/rest_v1/media/math/render/svg/de1902bdef822e60d7771fad7ec4bbd6ea25b95c)
Boshqa tomonga bir tomonlama bog'lanish Azumaning tengsizligini qo'llash orqali olinadi
va ikki tomonlama chegara quyidagidan kelib chiqadi birlashma bilan bog'liq. 
Shuningdek qarang
Adabiyotlar