Ellipsoidal koordinatalar  uch o'lchovli ortogonal  koordinatalar tizimi                      (         λ         ,         m         ,         ν         )       {displaystyle (lambda, mu, u)}     bu ikki o'lchovni umumlashtiradi elliptik koordinatalar tizimi . Ko'p uch o'lchovli narsalardan farqli o'laroq ortogonal  koordinatali tizimlar  bu xususiyat kvadratik  koordinatali yuzalar , ellipsoidal koordinata tizimi asoslanadi konfokal kvadrikalar .
Asosiy formulalar  
Dekart koordinatalari                     (         x         ,         y         ,         z         )       {displaystyle (x, y, z)}     ellipsoidal koordinatalardan hosil bo'lishi mumkin                     (         λ         ,         m         ,         ν         )       {displaystyle (lambda, mu, u)}     tenglamalar bo'yicha
                              x                       2           =                                                             (                                                       a                                           2                     +                   λ                  )                                (                                                       a                                           2                     +                   m                  )                                (                                                       a                                           2                     +                   ν                  )                                             (                                                       a                                           2                     −                                       b                                           2                    )                                (                                                       a                                           2                     −                                       v                                           2                    )           {displaystyle x ^ {2} = {frac {left (a ^ {2} + lambda ight) left (a ^ {2} + mu ight) left (a ^ {2} + u ight)} {left (a ^ {2} -b ^ {2} ight) chap (a ^ {2} -c ^ {2} ight)}}}                                 y                       2           =                                                             (                                                       b                                           2                     +                   λ                  )                                (                                                       b                                           2                     +                   m                  )                                (                                                       b                                           2                     +                   ν                  )                                             (                                                       b                                           2                     −                                       a                                           2                    )                                (                                                       b                                           2                     −                                       v                                           2                    )           {displaystyle y ^ {2} = {frac {left (b ^ {2} + lambda ight) left (b ^ {2} + mu ight) left (b ^ {2} + u ight)} {left (b ^) {2} -a ^ {2} tun) chap (b ^ {2} -c ^ {2} tun)}}}                                 z                       2           =                                                             (                                                       v                                           2                     +                   λ                  )                                (                                                       v                                           2                     +                   m                  )                                (                                                       v                                           2                     +                   ν                  )                                             (                                                       v                                           2                     −                                       b                                           2                    )                                (                                                       v                                           2                     −                                       a                                           2                    )           {displaystyle z ^ {2} = {frac {left (c ^ {2} + lambda ight) left (c ^ {2} + mu ight) left (c ^ {2} + u ight)} {left (c ^) {2} -b ^ {2} ight) chap (c ^ {2} -a ^ {2} ight)}}}   bu erda koordinatalarga quyidagi chegaralar qo'llaniladi
                    −         λ         <                   v                       2           <         −         m         <                   b                       2           <         −         ν         <                   a                       2           .       {displaystyle -lambda    Binobarin, doimiy yuzalar                     λ       {displaystyle lambda}     bor ellipsoidlar 
                                                        x                               2                                             a                                   2                 +               λ            +                                             y                               2                                             b                                   2                 +               λ            +                                             z                               2                                             v                                   2                 +               λ            =         1         ,       {displaystyle {frac {x ^ {2}} {a ^ {2} + lambda}} + {frac {y ^ {2}} {b ^ {2} + lambda}} + {frac {z ^ {2} } {c ^ {2} + lambda}} = 1,}   doimiy yuzalar esa                     m       {displaystyle mu}     bor giperboloidlar  bitta varaqdan
                                                        x                               2                                             a                                   2                 +               m            +                                             y                               2                                             b                                   2                 +               m            +                                             z                               2                                             v                                   2                 +               m            =         1         ,       {displaystyle {frac {x ^ {2}} {a ^ {2} + mu}} + {frac {y ^ {2}} {b ^ {2} + mu}} + {frac {z ^ {2} } {c ^ {2} + mu}} = 1,}   chunki lhsdagi oxirgi atama manfiy va doimiy yuzalar                     ν       {displaystyle u}     bor giperboloidlar  ikki varaqdan
                                                        x                               2                                             a                                   2                 +               ν            +                                             y                               2                                             b                                   2                 +               ν            +                                             z                               2                                             v                                   2                 +               ν            =         1       {displaystyle {frac {x ^ {2}} {a ^ {2} + u}} + {frac {y ^ {2}} {b ^ {2} + u}} + {frac {z ^ {2} } {c ^ {2} + u}} = 1}   chunki lhsdagi oxirgi ikki atama manfiydir.
Ellipsoidal koordinatalar uchun ishlatiladigan kvadrikalarning ortogonal tizimi quyidagilardir konfokal kvadrikalar .
Miqyos omillari va differentsial operatorlar  
Quyidagi tenglamalarda qisqalik uchun biz funktsiyani kiritamiz
                    S         (         σ         )                                                                       =                                                  d                   e                   f                                  (                                     a                               2               +             σ            )                    (                                     b                               2               +             σ            )                    (                                     v                               2               +             σ            )        {displaystyle S (sigma) {stackrel {mathrm {def}} {=}} chap (a ^ {2} + sigma ight) chap (b ^ {2} + sigma ight) chap (c ^ {2} + sigma ight) )}   qayerda                     σ       {displaystyle sigma}     uchta o'zgaruvchidan istalganini ko'rsatishi mumkin                     (         λ         ,         m         ,         ν         )       {displaystyle (lambda, mu, u)}    . Ushbu funktsiyadan foydalanib, o'lchov omillarini yozish mumkin
                              h                       λ           =                               1             2                                                                                 (                                       λ                     −                     m                    )                                    (                                       λ                     −                     ν                    )                                 S                 (                 λ                 )           {displaystyle h_ {lambda} = {frac {1} {2}} {sqrt {frac {left (lambda -mu ight) left (lambda -u ight)} {S (lambda)}}}}                                 h                       m           =                               1             2                                                                                 (                                       m                     −                     λ                    )                                    (                                       m                     −                     ν                    )                                 S                 (                 m                 )           {displaystyle h_ {mu} = {frac {1} {2}} {sqrt {frac {left (mu -lambda ight) left (mu -u ight)} {S (mu)}}}}                                 h                       ν           =                               1             2                                                                                 (                                       ν                     −                     λ                    )                                    (                                       ν                     −                     m                    )                                 S                 (                 ν                 )           {displaystyle h_ {u} = {frac {1} {2}} {sqrt {frac {left (u -lambda ight) left (u -mu ight)} {S (u)}}}}   Demak, cheksiz kichik hajmli element tenglashadi
                    d         V         =                                                             (                                   λ                   −                   m                  )                                (                                   λ                   −                   ν                  )                                (                                   m                   −                   ν                  )                             8                                                 −                   S                   (                   λ                   )                   S                   (                   m                   )                   S                   (                   ν                   )                        d         λ         d         m         d         ν       {displaystyle dV = {frac {left (lambda -mu ight) left (lambda -u ight) left (mu -u ight)} {8 {sqrt {-S (lambda) S (mu) S (u)}}} } dlambda dmu du}   va Laplasiya  bilan belgilanadi
                              ∇                       2           Φ         =                                             4                                                 S                   (                   λ                   )                                              (                                   λ                   −                   m                  )                                (                                   λ                   −                   ν                  )                                   ∂                           ∂               λ                      [                                                     S                 (                 λ                 )                                                               ∂                   Φ                                    ∂                   λ               ]                    +       {displaystyle abla ^ {2} Phi = {frac {4 {sqrt {S (lambda)}}} {left (lambda -mu ight) left (lambda -u ight)}} {frac {kısalt} {qisman lambda}} chap [{sqrt {S (lambda)}} {frac {qisman Phi} {qisman lambda}} ight] +}                                                           4                                                 S                   (                   m                   )                                              (                                   m                   −                   λ                  )                                (                                   m                   −                   ν                  )                                   ∂                           ∂               m                      [                                                     S                 (                 m                 )                                                               ∂                   Φ                                    ∂                   m               ]                    +                                                       4                                                 S                   (                   ν                   )                                              (                                   ν                   −                   λ                  )                                (                                   ν                   −                   m                  )                                   ∂                           ∂               ν                      [                                                     S                 (                 ν                 )                                                               ∂                   Φ                                    ∂                   ν               ]        {displaystyle {frac {4 {sqrt {S (mu)}}} {chap (mu -lambda ight) chap (mu -u ight)}} {frac {qisman} {qisman mu}} chap [{sqrt {S ( mu)}} {frac {qisman Phi} {qisman mu}} ight] + {frac {4 {sqrt {S (u)}}} {left (u -lambda ight) left (u -mu ight)}} { frac {qisman} {qisman u}} chap [{sqrt {S (u)}} {frac {qisman Phi} {qisman u}} ight]}   Kabi boshqa differentsial operatorlar                     ∇         ⋅                   F        {displaystyle abla cdot mathbf {F}}     va                     ∇         ×                   F        {displaystyle abla imes mathbf {F}}     koordinatalarda ifodalanishi mumkin                     (         λ         ,         m         ,         ν         )       {displaystyle (lambda, mu, u)}     shkala omillarini umumiy formulalarga almashtirish orqali ortogonal koordinatalar .
Shuningdek qarang  
Adabiyotlar  
Bibliografiya  
Morse PM, Feshbach H (1953). Nazariy fizika metodikasi, I qism . Nyu-York: McGraw-Hill. p. 663. Zwillinger D (1992). Integratsiya bo'yicha qo'llanma . Boston, MA: Jons va Bartlett. p. 114. ISBN  0-86720-293-9  . Sauer R, Sabo I (1967). Mathematische Hilfsmittel des Ingenieurs . Nyu-York: Springer Verlag. 101-102 betlar. LCCN  67025285 . Korn GA, Korn TM (1961). Olimlar va muhandislar uchun matematik qo'llanma  . Nyu-York: McGraw-Hill. p.176 . LCCN  59014456 . Margenau H, Merfi GM (1956). Fizika va kimyo matematikasi  . Nyu-York: D. van Nostran. pp.178 –180. LCCN  55010911 . Oy PH, Spenser DE (1988). "Ellipsoidal koordinatalar (η, θ, λ)". Koordinata tizimlari, differentsial tenglamalar va ularning echimlarini o'z ichiga olgan dala nazariyasi qo'llanmasi   (tuzatilgan 2-chi, 3-nashr). Nyu-York: Springer Verlag. pp.40 –44 (1.10-jadval). ISBN  0-387-02732-7  . G'ayrioddiy anjuman Landau LD, Lifshitz EM, Pitaevskii LP (1984). Uzluksiz ommaviy axborot vositalarining elektrodinamikasi (8-jild) Nazariy fizika kursi )  (2-nashr). Nyu-York: Pergamon Press. 19-29 betlar. ISBN  978-0-7506-2634-7  .    Masofa birliklari kvadratiga ega bo'lgan (ξ, η, ζ) koordinatalardan foydalanadi.Tashqi havolalar  
Ikki o'lchovli Uch o'lchovli