Ikkinchi tartibli chiziqli qisman differentsial tenglamalar klassi
Ikkinchi tartibli chiziqli qisman differentsial tenglamalar (PDE) ikkala sifatida tasniflanadi elliptik, giperbolik, yoki parabolik. Ikkita o'zgaruvchidagi har qanday ikkinchi darajali chiziqli PDE shaklda yozilishi mumkin

qayerda A, B, C, D., E, Fva G ning funktsiyalari x va y va qaerda 
 va shunga o'xshash uchun 
. Ushbu shaklda yozilgan PDE agar elliptik bo'lsa

a uchun tenglamadan ilhomlangan ushbu nomlash konvensiyasi bilan planar ellips.
Elliptik PDE ning eng oddiy nodavlat misollari quyidagilardir Laplas tenglamasi, 
, va Puasson tenglamasi, 
 Bir ma'noda, ikkita o'zgaruvchidagi boshqa har qanday elliptik PDE bu tenglamalardan birining umumlashtirilishi deb hisoblanishi mumkin, chunki uni har doim kanonik shaklga qo'yish mumkin

o'zgaruvchilar o'zgarishi orqali.[1][2]
Sifatli xulq-atvor
Elliptik tenglamalarda haqiqiy xarakterli egri chiziqlar mavjud emas, ularning egri chiziqlari bo'yicha kamida bir soniya hosilasini yo'q qilish mumkin emas. 
 shartlaridan Koshi muammosi.[1] Xarakterli egri chiziqlar, tekis parametrlarga ega bo'lgan qisman differentsial tenglamalarning echimlari uzluksiz hosilalarga ega bo'lishi mumkin bo'lgan yagona egri chiziqlar bo'lgani uchun, elliptik tenglamalar echimlari hech qaerda uzluksiz hosilalarga ega bo'lolmaydi. Demak, elliptik tenglamalar muvozanat holatini tavsiflash uchun juda mos keladi, bu erda har qanday uzilishlar allaqachon yumshatilgan. Masalan, biz Laplas tenglamasini issiqlik tenglamasi 
 sozlash orqali 
. Demak, Laplas tenglamasi issiqlik tenglamasining barqaror holatini tavsiflaydi.[2]
Parabolik va giperbolik tenglamalarda xarakteristikalar dastlabki ma'lumotlar haqidagi ma'lumotlar tarqaladigan chiziqlarni tavsiflaydi. Elliptik tenglamalarda haqiqiy xarakterli egri chiziqlar bo'lmaganligi sababli, elliptik tenglamalar uchun ma'lumot tarqalishining mazmunli ma'nosi yo'q. Bu elliptik tenglamalarni dinamik emas, balki statik jarayonlarni tavsiflash uchun yaxshiroq moslashtiradi.[2]
Kanonik shaklni chiqarish
Ikki o'zgaruvchida elliptik tenglamalar uchun kanonik shaklni olamiz, 
.
 va 
.
Agar 
, zanjir qoidasini bir marta qo'llash beradi
 va 
,
ikkinchi dastur beradi

 va

Biz PDE-ni x va y dagi ekvivalent tenglama bilan almashtirishimiz mumkin 
 va 

qayerda

 va

PDE-ni kerakli kanonik shaklga o'tkazish uchun biz izlayapmiz 
 va 
 shu kabi 
 va 
. Bu bizga tenglamalar tizimini beradi


Qo'shilmoqda 
 Ikkinchi tenglamani birinchi va sozlamaga ko'paytiradi 
 kvadrat tenglamani beradi

Diskriminant bo'lgani uchun 
, bu tenglama ikkita aniq echimga ega,

bu murakkab konjugatlar. Ikkala echimni tanlash uchun biz hal qilishimiz mumkin 
va tiklang 
 va 
 transformatsiyalar bilan 
 va 
. Beri 
 va 
 qondiradi 
 va 
, shuning uchun o'zgaruvchilar o'zgarishi bilan x va y dan 
 va 
 PDE-ni o'zgartiradi

kanonik shaklga

xohlagancha.
Yuqori o'lchamlarda
Umumiy ikkinchi darajali qisman differentsial tenglama n o'zgaruvchilar shaklni oladi

Ushbu tenglama elliptik deb hisoblanadi, agar xarakterli yuzalar bo'lmasa, ya'ni hech bo'lmaganda bir soniya hosilasini yo'q qilish mumkin bo'lmagan yuzalar. siz shartlaridan Koshi muammosi.[1]
Ikki o'lchovli holatdan farqli o'laroq, bu tenglamani umuman oddiy kanonik shaklga keltirish mumkin emas.[2]
Shuningdek qarang
Adabiyotlar
Tashqi havolalar