Feynman parametrlanishi baholash texnikasi halqa integrallari kelib chiqadi Feynman diagrammalari bir yoki bir nechta ilmoq bilan. Biroq, ba'zida bu sohalarda birlashishda foydalidir sof matematika shuningdek.
Formulalar
Richard Feynman quyidagilarni kuzatdi:
![{ frac {1} {AB}} =  int _ {0} ^ {1} { frac {du} { left [uA + (1-u) B  right] ^ {2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba6124fb1e6f1989accc58fa8f8fdefeb8f767bf)
har qanday murakkab sonlar uchun amal qiladi A va B 0 chiziqli segmentga ulanmasa A va B. Formula quyidagi kabi integrallarni baholashga yordam beradi:
![int { frac {dp} {A (p) B (p)}} =  int dp  int _ {0} ^ {1} { frac {du} { left [uA (p) + (1 -u) B (p)  o'ng] ^ {2}}} =  int _ {0} ^ {1} du  int { frac {dp} { chap [uA (p) + (1-u) B (p)  o'ng] ^ {2}}}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/dd7ec9daf0ae058280778e79ab74831a23848444)
Agar A (p) va B (p) ning chiziqli funktsiyalari p, keyin oxirgi integralni almashtirish yordamida baholash mumkin.
Umuman olganda Dirac delta funktsiyasi 
:[1]
![{ displaystyle { begin {aligned} { frac {1} {A_ {1}  cdots A_ {n}}} & = (n-1)!  int _ {0} ^ {1} du_ {1}  cdots  int _ {0} ^ {1} du_ {n} { frac { delta (1-  sum _ {k = 1} ^ {n} u_ {k}) ;} { left ( sum _ {k = 1} ^ {n} u_ {k} A_ {k}  right) ^ {n}}}  & = (n-1)!  int _ {0} ^ {1} du_ { 1}  int _ {0} ^ {u_ {1}} du_ {2}  cdots  int _ {0} ^ {u_ {n-2}} du_ {n-1} { frac {1} { chap [A_ {1} + u_ {1} (A_ {2} -A_ {1}) +  nuqta + u_ {n-1} (A_ {n} -A_ {n-1})  o'ng] ^ { n}}}.  end {hizalangan}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a049f04b1de5dae0e89f3be60db0369592b58769)
Ushbu formula har qanday murakkab sonlar uchun amal qiladi A1,...,An 0 ularning tarkibida bo'lmasa qavariq korpus.
Umuman olganda, bu shart bilan 
 Barcha uchun 
:

qaerda Gamma funktsiyasi 
 ishlatilgan.[2]
Hosil qilish

Endi o'rnini bosuvchi yordamida integralni chiziqli ravishda o'zgartiring,
 olib keladi 
 shunday 
va biz kerakli natijani olamiz:
![{ frac {1} {AB}} =  int _ {0} ^ {1} { frac {du} { left [uA + (1-u) B  right] ^ {2}}}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/7c889abc83102e38acad92e417ca8271f2b7dbf2)
Ko'proq umumiy holatlarda, lotinlarni juda samarali ravishda bajarish mumkin Shvinger parametrlari. Masalan, Feynmanning parametrlangan shaklini olish uchun 
, biz birinchi navbatda maxrajdagi barcha omillarni Shviner parametrlangan shaklida ifodalaymiz:

va qayta yozing,

Keyin integral o'zgaruvchilarning quyidagi o'zgarishini amalga oshiramiz,


olish,

qayerda 
 mintaqa bo'yicha integratsiyani bildiradi 
 bilan 
.
Keyingi qadam 
 integratsiya.

biz aniqlagan joyda 
Ushbu natijani o'rnini egallab, oldingi shaklga o'tamiz,
![{ displaystyle { frac {1} {A_ {1}  cdots A_ {n}}} =  chap (n-1  o'ng)!  int _ {0} ^ {1} d  alfa _ {1}  cdots d  alpha _ {n-1} { frac {1} {[ alpha _ {1} A_ {1} +  cdots +  alpha _ {n-1} A_ {n-1} +  chap (1-  alfa _ {1} -  cdots -  alfa _ {n-1}  o'ng) A_ {n}] ^ {n}}},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9f292fd8ef3883120a5bf7f93df4cabf998a83cc)
va qo'shimcha integralni kiritgandan so'ng, biz Feynman parametrlashining yakuniy shakliga kelamiz, ya'ni
![{ displaystyle { frac {1} {A_ {1}  cdots A_ {n}}} =  chap (n-1  o'ng)!  int _ {0} ^ {1} d  alfa _ {1}  cdots  int _ {0} ^ {1} d  alfa _ {n} { frac { delta  left (1-  alpha _ {1} -  cdots -  alpha _ {n}  right)} {[ alpha _ {1} A_ {1} +  cdots +  alpha _ {n} A_ {n}] ^ {n}}}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b11d20312b5ef0eb58f51c9cb4b61c2cc8b95f71)
Xuddi shu tarzda, Feynman parametrlash shaklini eng umumiy holatni olish uchun:
 Bu maxrajdagi omillarning mos keladigan turli xil Shvinger parametrlash shakli bilan boshlanishi mumkin, ya'ni

va keyin oldingi holat bo'yicha aniq davom eting.
Muqobil shakl
Parametrlashning ba'zan foydali bo'lgan muqobil shakli
![frac {1} {AB} =  int_ {0} ^ { infty}  frac {d  lambda} { left [ lambda A + B  right] ^ 2}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/96b103991b478aa4c7f21ffc0d51b9c8e7711846)
Ushbu shakl o'zgaruvchilar o'zgarishi yordamida olinishi mumkin 
.Bizdan foydalanishimiz mumkin mahsulot qoidasi buni ko'rsatish uchun 
, keyin
![start {align}
 frac {1} {AB} & =  int ^ 1_0  frac {du} { left [uA + (1-u) B  right] ^ 2} 
& =  int ^ 1_0  frac {du} {(1-u) ^ {2}}  frac {1} { left [ frac {u} {1-u} A + B  right] ^ 2} 
& =  int_ {0} ^ { infty}  frac {d  lambda} { left [ lambda A + B  right] ^ 2} 
 end {align}](https://wikimedia.org/api/rest_v1/media/math/render/svg/53d4182ef7a1d46a52f9f40f0c9cea3988f7c028)
Umuman olganda bizda
![frac {1} {A ^ {m} B ^ {n}} =  frac { Gamma (m + n)} { Gamma (m)  Gamma (n)}  int_ {0} ^ { infty }  frac { lambda ^ {m-1} d  lambda} { left [ lambda A + B  right] ^ {n + m}},](https://wikimedia.org/api/rest_v1/media/math/render/svg/7b986497e8262710b61788c4b56e6b6753d55a3e)
qayerda 
 bo'ladi gamma funktsiyasi.
Ushbu shakl chiziqli maxrajni birlashtirganda foydali bo'lishi mumkin 
 kvadrat maxraj bilan 
kabi og'ir kvark samarali nazariyasi (HQET).
Nosimmetrik shakl
Parametrlashning nosimmetrik shakli vaqti-vaqti bilan ishlatiladi, bu erda integral uning o'rniga intervalda bajariladi 
, olib boradi:
![{ frac {1} {AB}} = 2  int _ {{- 1}} ^ {1} { frac {du} { left [(1 + u) A + (1-u) B  right] ^ {2}}}.](https://wikimedia.org/api/rest_v1/media/math/render/svg/869668a62d68d9029027a8be5272a4ec432944ef)
Adabiyotlar
 | 
|---|
| Karyera |  | 
|---|
| Ishlaydi |  | 
|---|
| Oila |  | 
|---|
| Bog'liq |  | 
|---|