Yilda differentsial geometriya , to'rt gradyanli  (yoki 4 gradyanli )                               ∂        { displaystyle  mathbf { kısalt}}     bo'ladi to'rt vektorli  analogi gradient                                                                          ∇                →          { displaystyle { vec { mathbf { nabla}}}}     dan vektor hisobi .
Yilda maxsus nisbiylik  va kvant mexanikasi , to'rtta gradyan turli fizikaviy to'rt vektorlarning xususiyatlari va munosabatlarini aniqlash uchun ishlatiladi tensorlar .
Notation  
Ushbu maqolada (+ − − −)  metrik imzo .
SR va GR - bu qisqartmalar maxsus nisbiylik  va umumiy nisbiylik  navbati bilan.
(                    v       { displaystyle c}    ) belgisini bildiradi yorug'lik tezligi  vakuumda.
                              η                       m             ν           =         diag                  [         1         ,         −         1         ,         −         1         ,         −         1         ]       { displaystyle  eta _ { mu  nu} =  operator nomi {diag} [1, -1, -1, -1]}     yassi bo'sh vaqt  metrik  SR.
Fizikada to'rt vektorli ifodalarni yozishning muqobil usullari mavjud:
                              A          ⋅                   B        { displaystyle  mathbf {A}  cdot  mathbf {B}}     a to'rt vektorli  odatda ixchamroq va ishlatilishi mumkin bo'lgan uslub vektor yozuvlari , (masalan, ichki mahsulot "nuqta"), har doim to'rtta vektorni ko'rsatish uchun qalin katta harflar va 3 bo'shliqli vektorlarni ko'rsatish uchun qalin kichik harflar bilan, masalan.                                                                         a                →            ⋅                                                             b                →          { displaystyle { vec { mathbf {a}}}  cdot { vec { mathbf {b}}}}    . 3 fazoviy vektor qoidalarining aksariyati to'rt vektorli matematikada o'xshashlarga ega.                              A                       m                     η                       m             ν                     B                       ν         { displaystyle A ^ { mu}  eta _ { mu  nu} B ^ { nu}}     a Ricci hisob-kitobi  ishlatadigan uslub tensor ko'rsatkichi  va yanada murakkab ifodalar uchun foydalidir, ayniqsa, bir nechta indeksli tensorlarni o'z ichiga olgan, masalan                               F                       m             ν           =                   ∂                       m                     A                       ν           −                   ∂                       ν                     A                       m         { displaystyle F ^ { mu  nu} =  qismli ^ { mu} A ^ { nu} -  qisman ^ { nu} A ^ { mu}}    .Lotin tensorining ko'rsatkichi {1, 2, 3},  va 3 fazoviy vektorni ifodalaydi, masalan.                               A                       men           =         (                   a                       1           ,                   a                       2           ,                   a                       3           )         =                                                             a                →          { displaystyle A ^ {i} = (a ^ {1}, a ^ {2}, a ^ {3}) = { vec { mathbf {a}}}}    .
Yunoniston tensor ko'rsatkichi oralig'ida {0, 1, 2, 3},  va 4-vektorni ifodalaydi, masalan.                               A                       m           =         (                   a                       0           ,                   a                       1           ,                   a                       2           ,                   a                       3           )         =                   A        { displaystyle A ^ { mu} = (a ^ {0}, a ^ {1}, a ^ {2}, a ^ {3}) =  mathbf {A}}    .
SR fizikasida odatda ixcham aralash ishlatiladi, masalan.                               A          =         (                   a                       0           ,                                                             a                →            )       { displaystyle  mathbf {A} = (a ^ {0}, { vec { mathbf {a}}})}    , qayerda                               a                       0         { displaystyle a ^ {0}}     vaqtinchalik komponentni ifodalaydi va                                                                         a                →          { displaystyle { vec { mathbf {a}}}}     fazoviy 3 komponentni ifodalaydi.
Da ishlatiladigan tenzor qisqarishi Minkovskiy metrikasi  har ikki tomonga o'tishi mumkin (qarang Eynshteyn yozuvlari ):[1] 
                              A          ⋅                   B          =                   A                       m                     η                       m             ν                     B                       ν           =                   A                       ν                     B                       ν           =                   A                       m                     B                       m           =                   ∑                       m             =             0                        3                     a                       m                     b                       m           =                   a                       0                     b                       0           −                   ∑                       men             =             1                        3                     a                       men                     b                       men           =                   a                       0                     b                       0           −                                                             a                →            ⋅                                                             b                →          { displaystyle  mathbf {A}  cdot  mathbf {B} = A ^ { mu}  eta _ { mu  nu} B ^ { nu} = A _ { nu} B ^ { nu} = A ^ { mu} B _ { mu} =  sum _ { mu = 0} ^ {3} a ^ { mu} b _ { mu} = a ^ {0} b ^ {0} -  sum _ {i = 1} ^ {3} a ^ {i} b ^ {i} = a ^ {0} b ^ {0} - { vec { mathbf {a}}}  cdot { vec { mathbf {b}}}}   Ta'rif  
Kompakt tarzda yozilgan 4 gradyanli kovariant komponentlar to'rt vektorli  va Ricci hisob-kitobi  yozuvlar:[2] [3] 
                                                        ∂                               ∂                                   X                                       m               =                   (                                     ∂                               0               ,                           ∂                               1               ,                           ∂                               2               ,                           ∂                               3              )          =                   (                                     ∂                               0               ,                           ∂                               men              )          =                   (                                                     1                 v                                             ∂                                   ∂                   t                ,                                                             ∇                   →               )          =                   (                                                                       ∂                                       t                   v               ,                                                             ∇                   →               )          =                   (                                                                       ∂                                       t                   v               ,                           ∂                               x               ,                           ∂                               y               ,                           ∂                               z              )          =                   ∂                       m           =                                          ,             m         { displaystyle { dfrac { qismli} { qismli X ^ { mu}}} =  chap ( qisman _ {0},  qismli _ {1},  qismli _ {2},  qisman _ { 3}  o'ng) =  chap ( qismli _ {0},  qismli _ {i}  o'ng) =  chap ({ frac {1} {c}} { frac { qismli} { qisman t }}, { vec { nabla}}  o'ng) =  chap ({ frac { kısalt _ {t}} {c}}, { vec { nabla}}  o'ng) =  chap ({  frac { kısalt _ {t}} {c}},  qismli _ {x},  qismli _ {y},  qismli _ {z}  o'ng) =  qisman _ { mu} = {} _ {,  mu}}   The vergul  yuqoridagi oxirgi qismda                                                      ,             m         { displaystyle {} _ {,  mu}}     nazarda tutadi qisman farqlash   4-pozitsiyaga nisbatan                               X                       m         { displaystyle X ^ { mu}}    .
Qarama-qarshi komponentlar:[4] [5] 
                              ∂          =                   ∂                       a           =                   η                       a             β                     ∂                       β           =                   (                                     ∂                               0               ,                           ∂                               1               ,                           ∂                               2               ,                           ∂                               3              )          =                   (                                     ∂                               0               ,                           ∂                               men              )          =                   (                                                     1                 v                                             ∂                                   ∂                   t                ,             −                                                             ∇                   →               )          =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          =                   (                                                                       ∂                                       t                   v               ,             −                           ∂                               x               ,             −                           ∂                               y               ,             −                           ∂                               z              )        { displaystyle  mathbf { kısalt} =  qismli ^ { alfa} =  eta ^ { alfa  beta}  qisman _ { beta} =  chap ( qismli ^ {0},  qisman ^ {1 },  qismli ^ {2},  qismli ^ {3}  o'ng) =  chap ( qismli ^ {0},  qismli ^ {i}  o'ng) =  chap ({ frac {1} {c }} { frac { qismli} { qismli t}}, - { vec { nabla}}  o'ng) =  chap ({ frac { qismli _ {t}} {c}}, - {  vec { nabla}}  o'ng) =  chap ({ frac { qismli _ {t}} {c}}, -  qisman _ {x}, -  qisman _ {y}, -  qisman _ {z}  o'ng)}   Ga muqobil belgilar                               ∂                       a         { displaystyle  kısalt _ { alfa}}     bor                     ◻       { displaystyle  Box}     va D.  (garchi                     ◻       { displaystyle  Box}     shuningdek, ishora qilishi mumkin                               ∂                       m                     ∂                       m         { displaystyle  kısalt ^ { mu}  qisman _ { mu}}    , d'Alembert operatori ).
GR-da umumiyroqdan foydalanish kerak metrik tensor                                g                       a             β         { displaystyle g ^ { alpha  beta}}    va tensor kovariant hosilasi                                ∇                       m           =                                          ;             m         { displaystyle  nabla _ { mu} = {} _ {;  mu}}    , (vektor 3-gradient bilan adashtirmaslik kerak                                                         ∇               →          { displaystyle { vec { nabla}}}    ).
Kovariant hosilasi                               ∇                       ν         { displaystyle  nabla _ { nu}}     4 gradyanni o'z ichiga oladi                               ∂                       ν         { displaystyle  kısalt _ { nu}}     ortiqcha bo'sh vaqt  egrilik  orqali effektlar Christoffel ramzlari                                Γ                       m                                            σ             ν         { displaystyle  Gamma ^ { mu} {} _ { sigma  nu}}   
The kuchli ekvivalentlik printsipi  quyidagicha ifodalanishi mumkin:[6] 
"SRda tenzor yozuvida ifodalanishi mumkin bo'lgan har qanday jismoniy qonun egri bo'shliq vaqtining lokal ravishda inersial ramkasida aynan bir xil shaklga ega." SRdagi 4 gradyanli vergul (,) shunchaki GR ichida kovariant hosilasi yarim nuqta (;) ga o'zgartirildi, ikkalasi orasidagi bog'lanish bilan Christoffel ramzlari . Bu nisbiylik fizikasida "vergulga yarim yo'g'on ichak qoidasi" nomi bilan ma'lum.
Shunday qilib, masalan, agar                               T                       m             ν                                            ,             m           =         0       { displaystyle T ^ { mu  nu} {} _ {,  mu} = 0}     SRda, keyin                               T                       m             ν                                            ;             m           =         0       { displaystyle T ^ { mu  nu} {} _ {;  mu} = 0}     GR da.
(1,0) -tensor yoki 4-vektorda quyidagilar bo'ladi:[7] 
                              ∇                       β                     V                       a           =                   ∂                       β                     V                       a           +                   V                       m                     Γ                       a                                            m             β         { displaystyle  nabla _ { beta} V ^ { alpha} =  qismli _ { beta} V ^ { alfa} + V ^ { mu}  Gamma ^ { alpha} {} _ { mu  beta}}                                 V                       a                                            ;             β           =                   V                       a                                            ,             β           +                   V                       m                     Γ                       a                                            m             β         { displaystyle V ^ { alpha} {} _ {;  beta} = V ^ { alpha} {} _ {,  beta} + V ^ { mu}  Gamma ^ { alpha} {} _ {  mu  beta}}   (2,0) -tensorda bu shunday bo'ladi:
                              ∇                       ν                     T                       m             ν           =                   ∂                       ν                     T                       m             ν           +                   Γ                       m                                            σ             ν                     T                       σ             ν           +                   Γ                       ν                                            σ             ν                     T                       m             σ         { displaystyle  nabla _ { nu} T ^ { mu  nu} =  qisman _ { nu} T ^ { mu  nu} +  Gamma ^ { mu} {} _ { sigma  nu } T ^ { sigma  nu} +  Gamma ^ { nu} {} _ { sigma  nu} T ^ { mu  sigma}}                                 T                       m             ν                                            ;             ν           =                   T                       m             ν                                            ,             ν           +                   Γ                       m                                            σ             ν                     T                       σ             ν           +                   Γ                       ν                                            σ             ν                     T                       m             σ         { displaystyle T ^ { mu  nu} {} _ {;  nu} = T ^ { mu  nu} {} _ {,  nu} +  Gamma ^ { mu} {} _ { sigma  nu} T ^ { sigma  nu} +  Gamma ^ { nu} {} _ { sigma  nu} T ^ { mu  sigma}}   Foydalanish  
4-gradyan turli xil usullarda qo'llaniladi maxsus nisbiylik  (SR):
Ushbu maqola davomida formulalar tekis vaqt oralig'ida to'g'ri keladi Minkovskiy koordinatalari  SR, lekin umumiy egri koordinatalari uchun o'zgartirilishi kerak umumiy nisbiylik  (GR).
4-divergensiya va saqlanish qonunlarining manbai sifatida Tafovut  a vektor operatori  a miqdorini beradigan imzolangan skalar maydonini hosil qiladi vektor maydoni "s manba  har bir nuqtada.
Ning 4 xilligi 4-pozitsiya                                X                       m           =         (         v         t         ,                                                             x                →            )       { displaystyle X ^ { mu} = (ct, { vec { mathbf {x}}})}     beradi o'lchov  ning bo'sh vaqt :
                              ∂          ⋅                   X          =                   ∂                       m                     η                       m             ν                     X                       ν           =                   ∂                       ν                     X                       ν           =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          ⋅         (         v         t         ,                                             x               →            )         =                                             ∂                               t               v           (         v         t         )         +                                             ∇               →            ⋅                                             x               →            =         (                   ∂                       t           t         )         +         (                   ∂                       x           x         +                   ∂                       y           y         +                   ∂                       z           z         )         =         (         1         )         +         (         3         )         =         4       { displaystyle  mathbf { qismli}  cdot  mathbf {X} =  qismli ^ { mu}  eta _ { mu  nu} X ^ { nu} =  qismli _ { nu} X ^ {  nu} =  chap ({ frac { qismli _ {t}} {c}}, - { vec { nabla}}  o'ng)  cdot (ct, { vec {x}}) = {  frac { kısalt _ {t}} {c}} (ct) + { vec { nabla}}  cdot { vec {x}} = ( qismli _ {t} t) + ( qismli _ {x} x +  qismli _ {y} y +  qismli _ {z} z) = (1) + (3) = 4}   Ning 4 xilligi 4 oqim zichligi                                J                       m           =         (         r         v         ,                                                             j                →            )         =                   r                       o                     U                       m           =                   r                       o           γ         (         v         ,                                                             siz                →            )         =         (         r         v         ,         r                                                             siz                →            )       { displaystyle J ^ { mu} = ( rho c, { vec { mathbf {j}}}) =  rho _ {o} U ^ { mu} =  rho _ {o}  gamma ( c, { vec { mathbf {u}}}) = ( rho c,  rho { vec { mathbf {u}}})}     beradi muhofaza qilish qonuni  - the zaryadni tejash :[8] 
                              ∂          ⋅                   J          =                   ∂                       m                     η                       m             ν                     J                       ν           =                   ∂                       ν                     J                       ν           =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          ⋅         (         r         v         ,                                             j               →            )         =                                             ∂                               t               v           (         r         v         )         +                                             ∇               →            ⋅                                             j               →            =                   ∂                       t           r         +                                             ∇               →            ⋅                                             j               →            =         0       { displaystyle  mathbf { qismli}  cdot  mathbf {J} =  qismli ^ { mu}  eta _ { mu  nu} J ^ { nu} =  qismli _ { nu} J ^ {  nu} =  chap ({ frac { qismli _ {t}} {c}}, - { vec { nabla}}  o'ng)  cdot ( rho c, { vec {j}}) = { frac { kısalt _ {t}} {c}} ( rho c) + { vec { nabla}}  cdot { vec {j}} =  qisman _ {t}  rho + {  vec { nabla}}  cdot { vec {j}} = 0}   Bu shuni anglatadiki, zaryad zichligining o'zgarishi vaqt tezligi oqim zichligining salbiy fazoviy farqlanishiga teng bo'lishi kerak                               ∂                       t           r         =         −                                             ∇               →            ⋅                                             j               →          { displaystyle  kısalt _ {t}  rho = - { vec { nabla}}  cdot { vec {j}}}    .
Boshqacha qilib aytganda, qutidagi zaryad o'zboshimchalik bilan o'zgarishi mumkin emas, u qutiga oqim orqali kirib chiqishi kerak. Bu uzluksizlik tenglamasi .
Ning 4 xilligi 4-sonli oqim  (4-chang)                               N                       m           =         (         n         v         ,                                                             n                →            )         =                   n                       o                     U                       m           =                   n                       o           γ         (         v         ,                                                             siz                →            )         =         (         n         v         ,         n                                                             siz                →            )       { displaystyle N ^ { mu} = (nc, { vec { mathbf {n}}}) = n_ {o} U ^ { mu} = n_ {o}  gamma (c, { vec {  mathbf {u}}}) = (nc, n { vec { mathbf {u}}})}     zarralarni saqlashda ishlatiladi:[9] 
                              ∂          ⋅                   N          =                   ∂                       m                     η                       m             ν                     N                       ν           =                   ∂                       ν                     N                       ν           =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          ⋅                   (                       n             v             ,             n                                                                                 siz                    →               )          =                                             ∂                               t               v                     (                       n             v            )          +                                             ∇               →            ⋅         n                                                             siz                →            =                   ∂                       t           n         +                                             ∇               →            ⋅         n                                                             siz                →            =         0       { displaystyle  mathbf { qismli}  cdot  mathbf {N} =  qismli ^ { mu}  eta _ { mu  nu} N ^ { nu} =  qismli _ { nu} N ^ {  nu} =  chap ({ frac { qismli _ {t}} {c}}, - { vec { nabla}}  o'ng)  cdot  chap (nc, n { vec { mathbf { u}}}  o'ng) = { frac { kısalt _ {t}} {c}}  chap (nc  o'ng) + { vec { nabla}}  cdot n { vec { mathbf {u }}} =  kısalt _ {t} n + { vec { nabla}}  cdot n { vec { mathbf {u}}} = 0}   Bu muhofaza qilish qonuni  zarrachalar soni zichligi uchun, odatda barion soni zichligi kabi narsa.
Ning 4 xilligi elektromagnit 4-potentsial                                A                       m           =                   (                                                     ϕ                 v               ,                                                                                 a                    →               )        { displaystyle A ^ { mu} =  chap ({ frac { phi} {c}}, { vec { mathbf {a}}}  o'ng)}     da ishlatiladi Lorenz o'lchagichining holati :[10] 
                              ∂          ⋅                   A          =                   ∂                       m                     η                       m             ν                     A                       ν           =                   ∂                       ν                     A                       ν           =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          ⋅                   (                                                     ϕ                 v               ,                                                             a                   →               )          =                                             ∂                               t               v                     (                                     ϕ               v             )          +                                             ∇               →            ⋅                                             a               →            =                                                             ∂                                   t                 ϕ                            v                               2             +                                             ∇               →            ⋅                                             a               →            =         0       { displaystyle  mathbf { qismli}  cdot  mathbf {A} =  qismli ^ { mu}  eta _ { mu  nu} A ^ { nu} =  qismli _ { nu} A ^ {  nu} =  chap ({ frac { qismli _ {t}} {c}}, - { vec { nabla}}  o'ng)  cdot  chap ({ frac { phi} {c} }, { vec {a}}  right) = { frac { kısalt _ {t}} {c}}  chap ({ frac { phi} {c}}  o'ng) + { vec {  nabla}}  cdot { vec {a}} = { frac { qismli _ {t}  phi} {c ^ {2}}} + { vec { nabla}}  cdot { vec { a}} = 0}   Bu $ a $ ga teng muhofaza qilish qonuni  EM 4 potentsiali uchun.
Ko'ndalang izsiz 2-tensorning 4-divergensiyasi                               h                       T             T                        m             ν         { displaystyle h_ {TT} ^ { mu  nu}}     zaif maydon chegarasida tortishish nurlanishini ifodalovchi (ya'ni manbadan uzoqda erkin tarqaladigan).
                              ∂          ⋅                   h                       T             T                        m             ν           =                   ∂                       m                     h                       T             T                        m             ν           =         0       { displaystyle  mathbf { kısalt}  cdot h_ {TT} ^ { mu  nu} =  qisman _ { mu} h_ {TT} ^ { mu  nu} = 0}     : Ko'ndalang holattortishish to'lqinlarining erkin tarqalishi uchun saqlanish tenglamasining ekvivalenti.
Ning 4 xilligi stress-energiya tensori                                T                       m             ν         { displaystyle T ^ { mu  nu}}    , konservalanganlar Hozir mavjud emas  bilan bog'liq bo'sh vaqt  tarjimalar , SRda to'rtta saqlanish qonunini beradi:[11] 
The energiyani tejash  (vaqtinchalik yo'nalish) va chiziqli impulsning saqlanishi  (3 ta alohida fazoviy yo'nalish).
                              ∂          ⋅                   T                       m             ν           =                   ∂                       ν                     T                       m             ν           =                   T                       m             ν                                            ,             ν           =                   0                       m           =         (         0         ,         0         ,         0         ,         0         )       { displaystyle  mathbf { qismli}  cdot T ^ { mu  nu} =  qisman _ { nu} T ^ { mu  nu} = T ^ { mu  nu} {} _ {,  nu} = 0 ^ { mu} = (0,0,0,0)}   Ko'pincha shunday yoziladi:
                              ∂                       ν                     T                       m             ν           =                   T                       m             ν                                            ,             ν           =         0       { displaystyle  kısalt _ { nu} T ^ { mu  nu} = T ^ { mu  nu} {} _ {,  nu} = 0}   bu erda bitta nol aslida 4 vektorli nol ekanligi tushuniladi                               0                       m           =         (         0         ,         0         ,         0         ,         0       { displaystyle 0 ^ { mu} = (0,0,0,0}    ).
Stress-energiya tenzori saqlanganda (                              ∂                       ν                     T                       m             ν           =                   0                       m         { displaystyle  kısalt _ { nu} T ^ { mu  nu} = 0 ^ { mu}}    ) uchun mukammal suyuqlik  zarrachalar sonining zichligini saqlash bilan birlashtiriladi (                              ∂          ⋅                   N          =         0       { displaystyle  mathbf { kısalt}  cdot  mathbf {N} = 0}    ), ikkalasi ham 4 gradiyentdan foydalanib, relyativistik Eyler tenglamalari , qaysi ichida suyuqlik mexanikasi  va astrofizika  ning umumlashtirilishi Eyler tenglamalari  ta'sirini hisobga olgan holda maxsus nisbiylik .Bu tenglamalar, agar suyuqlik 3 fazoviy tezligi bo'lsa, klassik Eyler tenglamalariga kamayadi juda oz  yorug'lik tezligidan, bosim nisbatan ancha past energiya zichligi , ikkinchisida qolgan massa zichligi ustunlik qiladi.
Yassi bo'shliqda va dekart koordinatalari yordamida, agar buni stress-energiya tenzori simmetriyasi bilan birlashtirsa, buni ko'rsatish mumkin burchak momentum  (relyativistik burchak impulsi ) shuningdek saqlanib qoladi:
                              ∂                       ν           (                   x                       a                     T                       m             ν           −                   x                       m                     T                       a             ν           )         =         (                   x                       a                     T                       m             ν           −                   x                       m                     T                       a             ν                     )                       ,             ν           =                   0                       a             m         { displaystyle  kısalt _ { nu} (x ^ { alfa} T ^ { mu  nu} -x ^ { mu} T ^ { alfa  nu}) = (x ^ { alfa} T ^ { mu  nu} -x ^ { mu} T ^ { alfa  nu}) _ {,  nu} = 0 ^ { alfa  mu}}   bu erda nol aslida (2,0) -tensor nolga teng.
SR Minkovskiy metrik tensori uchun Jacobian matritsasi sifatida The Yakobian matritsasi  bo'ladi matritsa  birinchi darajali qisman hosilalar  a vektorli funktsiya .
4 gradyan                               ∂                       m         { displaystyle  kısmi ^ { mu}}     bo'yicha harakat qilish 4-pozitsiya                                X                       ν         { displaystyle X ^ { nu}}     SR beradi Minkovskiy maydoni  metrik                               η                       m             ν         { displaystyle  eta ^ { mu  nu}}    :[12] 
                              ∂          [                   X          ]         =                   ∂                       m           [                   X                       ν           ]         =                   X                                     ν                               ,               m           =                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          [         (         v         t         ,                                             x               →            )         ]         =                   (                                                                       ∂                                       t                   v               ,             −                           ∂                               x               ,             −                           ∂                               y               ,             −                           ∂                               z              )          [         (         v         t         ,         x         ,         y         ,         z         )         ]         ,       { displaystyle  mathbf { qismli} [ mathbf {X}] =  qisman ^ { mu} [X ^ { nu}] = X ^ { nu _ {,}  mu} =  chap ({  frac { kısalt _ {t}} {c}}, - { vec { nabla}}  o'ng) [(ct, { vec {x}})] = = chap ({ frac { qism) _ {t}} {c}}, -  qisman _ {x}, -  qisman _ {y}, -  qisman _ {z}  o'ng) [(ct, x, y, z)],}                       =                               [                                                                                                                               ∂                                                   t                         v                     v                   t                                                                                                      ∂                                                   t                         v                     x                                                                                                      ∂                                                   t                         v                     y                                                                                                      ∂                                                   t                         v                     z                                                   −                                       ∂                                           x                     v                   t                                    −                                       ∂                                           x                     x                                    −                                       ∂                                           x                     y                                    −                                       ∂                                           x                     z                                                   −                                       ∂                                           y                     v                   t                                    −                                       ∂                                           y                     x                                    −                                       ∂                                           y                     y                                    −                                       ∂                                           y                     z                                                   −                                       ∂                                           z                     v                   t                                    −                                       ∂                                           z                     x                                    −                                       ∂                                           z                     y                                    −                                       ∂                                           z                     z                ]           =                               [                                                             1                                    0                                    0                                    0                                                   0                                    −                   1                                    0                                    0                                                   0                                    0                                    −                   1                                    0                                                   0                                    0                                    0                                    −                   1                ]           =         diag                  [         1         ,         −         1         ,         −         1         ,         −         1         ]       { displaystyle = { begin {bmatrix} { frac { kısalt _ {t}} {c}} ct & { frac { kısalt _ {t}} {c}} x & { frac { qismli _ { t}} {c}} y & { frac { kısalt _ {t}} {c}} z  -  qismli _ {x} ct & -  qisman _ {x} x & -  qismli _ {x} y & -  kısalt _ {x} z  -  qisman _ {y} ct & -  qisman _ {y} x & -  qisman _ {y} y & -  qisman _ {y} z  -  qisman _ {z } ct & -  kısalt _ {z} x & -  qisman _ {z} y & -  qismli _ {z} z  end {bmatrix}} = { begin {bmatrix} 1 & 0 & 0 & 0 & 0  0 & -1 & 0 & 0  0 & 0 & -1 & 0  0 & 0 & 0 & -1  end {bmatrix}} =  operatorname {diag} [1, -1, -1, -1]}                                 ∂          [                   X          ]         =                   η                       m             ν           .       { displaystyle  mathbf { qismli} [ mathbf {X}] =  eta ^ { mu  nu}.}   Minkovskiy metrikasi uchun tarkibiy qismlar                     [                   η                       m             m           ]         =         1                   /          [                   η                       m             m           ]       { displaystyle [ eta ^ { mu  mu}] = 1 / [ eta _ { mu  mu}]}}      {                    m       { displaystyle  mu}     yig'ilmagan}, diagonal bo'lmagan komponentlar bilan barchasi nolga teng.
Dekart Minkovskiy metrikasi uchun bu beradi                               η                       m             ν           =                   η                       m             ν           =         diag                  [         1         ,         −         1         ,         −         1         ,         −         1         ]       { displaystyle  eta ^ { mu  nu} =  eta _ { mu  nu} =  operator nomi {diag} [1, -1, -1, -1]}    .
Odatda,                               η                       m                        ν           =                   δ                       m                        ν           =         diag                  [         1         ,         1         ,         1         ,         1         ]       { displaystyle  eta _ { mu} ^ { nu} =  delta _ { mu} ^ { nu} =  operator nomi {diag} [1,1,1,1]}    , qayerda                               δ                       m                        ν         { displaystyle  delta _ { mu} ^ { nu}}     bu 4D Kronekker deltasi .
Lorents o'zgarishini aniqlash usuli sifatida Lorents o'zgarishi tenzor shaklida quyidagicha yozilgan[13] 
                              X                                     m               ′            =                   Λ                       ν                                      m               ′                      X                       ν         { displaystyle X ^ { mu '} =  Lambda _ { nu} ^ { mu'} X ^ { nu}}   va beri                               Λ                       ν                                      m               ′          { displaystyle  Lambda _ { nu} ^ { mu '}}     faqat doimiylar, keyin
                    ∂                   X                                     m               ′                      /          ∂                   X                       ν           =                   Λ                       ν                                      m               ′          { displaystyle  kısmi X ^ { mu '} /  qisman X ^ { nu} =  Lambda _ { nu} ^ { mu'}}   Shunday qilib, 4-gradyan ta'rifi bo'yicha
                              ∂                       ν           [                   X                                     m               ′            ]         =         (         ∂                   /          ∂                   X                       ν           )         [                   X                                     m               ′            ]         =         ∂                   X                                     m               ′                      /          ∂                   X                       ν           =                   Λ                       ν                                      m               ′          { displaystyle  kısalt _ { nu} [X ^ { mu '}] = ( qisman /  qisman X ^ { nu}) [X ^ { mu'}] =  qisman X ^ { mu '} /  qisman X ^ { nu} =  Lambda _ { nu} ^ { mu'}}   Bu o'ziga xoslik muhim ahamiyatga ega. 4-gradyanning tarkibiy qismlari 4-vektorlarning tarkibiy qismlariga teskari tomonga qarab o'zgaradi. Demak, 4 gradiyent "arketipal" bir shakl.
Jami to'g'ri vaqt lotinining bir qismi sifatida Ning skalar mahsuloti 4 tezlik                                U                       m         { displaystyle U ^ { mu}}     4 gradyan bilan the beradi jami hosila  munosabat bilan to'g'ri vaqt                                            d                           d               τ          { displaystyle { frac {d} {d  tau}}}    :[14] 
                              U          ⋅                   ∂          =                   U                       m                     η                       m             ν                     ∂                       ν           =         γ         (         v         ,                                             siz               →            )         ⋅                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )          =         γ                   (                       v                                                             ∂                                       t                   v               +                                                             siz                   →                ⋅                                                             ∇                   →               )          =         γ                   (                                     ∂                               t               +                                                             d                   x                                    d                   t                              ∂                               x               +                                                             d                   y                                    d                   t                              ∂                               y               +                                                             d                   z                                    d                   t                              ∂                               z              )          =         γ                               d                           d               t            =                               d                           d               τ          { displaystyle  mathbf {U}  cdot  mathbf { qismli} = U ^ { mu}  eta _ { mu  nu}  qismli ^ { nu} =  gamma (c, { vec {u }})  cdot  chap ({ frac { qismli _ {t}} {c}}, - { vec { nabla}}  o'ng) =  gamma  chap (c { frac { qismli _) {t}} {c}} + { vec {u}}  cdot { vec { nabla}}  o'ng) =  gamma  chap ( qismli _ {t} + { frac {dx} {dt }}  kısalt _ {x} + { frac {dy} {dt}}  qismli _ {y} + { frac {dz} {dt}}  qisman _ {z}  o'ng) =  gamma { frac {d} {dt}} = { frac {d} {d  tau}}}                                             d                           d               τ            =                                             d                               X                                   m                              d                               X                                   m                                    d                           d               τ            =                                             d                               X                                   m                              d               τ                                  d                           d                               X                                   m              =                   U                       m                     ∂                       m           =                   U          ⋅                   ∂        { displaystyle { frac {d} {d  tau}} = { frac {dX ^ { mu}} {dX ^ { mu}}} { frac {d} {d  tau}} = {  frac {dX ^ { mu}} {d  tau}} { frac {d} {dX ^ { mu}}} = U ^ { mu}  kısalt _ { mu} =  mathbf {U }  cdot  mathbf { qismli}}   Haqiqat                               U          ⋅                   ∂        { displaystyle  mathbf {U}  cdot  mathbf { qismli}}     a Lorents skalar o'zgarmas  ekanligini ko'rsatadi jami hosila  munosabat bilan to'g'ri vaqt                                            d                           d               τ          { displaystyle { frac {d} {d  tau}}}     xuddi shu kabi Lorents skalar invariantidir.
Masalan, 4 tezlik                                U                       m         { displaystyle U ^ { mu}}     ning lotinidir 4-pozitsiya                                X                       m         { displaystyle X ^ { mu}}     tegishli vaqtga nisbatan:
                                          d                           d               τ                      X          =         (                   U          ⋅                   ∂          )                   X          =                   U          ⋅                   ∂          [                   X          ]         =                   U                       a           ⋅                   η                       m             ν           =                   U                       a                     η                       a             ν                     η                       m             ν           =                   U                       a                     δ                       a                        m           =                   U                       m           =                   U        { displaystyle { frac {d} {d  tau}}  mathbf {X} = ( mathbf {U}  cdot  mathbf { qismli})  mathbf {X} =  mathbf {U}  cdot  mathbf { qismli} [ mathbf {X}] = U ^ { alfa}  cdot  eta ^ { mu  nu} = U ^ { alpha}  eta _ { alpha  nu}  eta ^ {  mu  nu} = U ^ { alpha}  delta _ { alpha} ^ { mu} = U ^ { mu} =  mathbf {U}}   yoki
                                          d                           d               τ                      X          =         γ                               d                           d               t                      X          =         γ                               d                           d               t            (         v         t         ,                                             x               →            )         =         γ                   (                                                     d                                   d                   t                v             t             ,                                           d                                   d                   t                                                                x                   →               )          =         γ         (         v         ,                                             siz               →            )         =                   U        { displaystyle { frac {d} {d  tau}}  mathbf {X} =  gamma { frac {d} {dt}}  mathbf {X} =  gamma { frac {d} {dt} } (ct, { vec {x}}) =  gamma  left ({ frac {d} {dt}} ct, { frac {d} {dt}} { vec {x}}  right) =  gamma (c, { vec {u}}) =  mathbf {U}}   Yana bir misol 4-tezlanish                                A                       m         { displaystyle A ^ { mu}}     ning to'g'ri vaqtda hosilasi 4 tezlik                                U                       m         { displaystyle U ^ { mu}}    :
                                          d                           d               τ                      U          =         (                   U          ⋅                   ∂          )                   U          =                   U          ⋅                   ∂          [                   U          ]         =                   U                       a                     η                       a             m                     ∂                       m           [                   U                       ν           ]       { displaystyle { frac {d} {d  tau}}  mathbf {U} = ( mathbf {U}  cdot  mathbf { qismli})  mathbf {U} =  mathbf {U}  cdot  mathbf { qismli} [ mathbf {U}] = U ^ { alfa}  eta _ { alpha  mu}  qismli ^ { mu} [U ^ { nu}]}                       =                   U                       a                     η                       a             m                                 [                                                                                                                               ∂                                                   t                         v                     γ                   v                                                                                                      ∂                                                   t                         v                     γ                                                                                     siz                         →                                                      −                                                                                     ∇                         →                      γ                   v                                    −                                                                                     ∇                         →                      γ                                                                                     siz                         →                   ]           =                   U                       a                                 [                                                                                                                                                   ∂                                                   t                         v                     γ                   v                                    0                                                   0                                                                                                      ∇                         →                      γ                                                                                     siz                         →                   ]         { displaystyle = U ^ { alpha}  eta _ { alpha  mu} { begin {bmatrix} { frac { kısalt _ {t}} {c}}  gamma c & { frac { qismli _ {t}} {c}}  gamma { vec {u}}  - { vec { nabla}}  gamma c & - { vec { nabla}}  gamma { vec {u}}  end {bmatrix}} = U ^ { alpha} { begin {bmatrix}  { frac { kısalt _ {t}} {c}}  gamma c & 0  0 & { vec { nabla}}  gamma { vec {u}}  end {bmatrix}}}                       =         γ                   (                       v                                                             ∂                                       t                   v               γ             v             ,                                                             siz                   →                ⋅             ∇             γ                                                             siz                   →               )          =         γ                   (                       v                           ∂                               t               γ             ,                                           d                                   d                   t                [             γ                                                             siz                   →                ]            )          =         γ         (         v                                             γ               ˙            ,                                             γ               ˙                                                siz               →            +         γ                                                                               siz                   →                 ˙            )         =                   A        { displaystyle =  gamma  chap (c { frac { kısalt _ {t}} {c}}  gamma c, { vec {u}}  cdot  nabla  gamma { vec {u}}  o'ng) =  gamma  chap (c  qismli _ {t}  gamma, { frac {d} {dt}} [ gamma { vec {u}}]  o'ng) =  gamma (c { nuqta) { gamma}}, { dot { gamma}} { vec {u}} +  gamma { dot { vec {u}}}) =  mathbf {A}}   yoki
                                          d                           d               τ                      U          =         γ                               d                           d               t            (         γ         v         ,         γ                                             siz               →            )         =         γ                   (                                                     d                                   d                   t                [             γ             v             ]             ,                                           d                                   d                   t                [             γ                                                             siz                   →                ]            )          =         γ         (         v                                             γ               ˙            ,                                             γ               ˙                                                siz               →            +         γ                                                                               siz                   →                 ˙            )         =                   A        { displaystyle { frac {d} {d  tau}}  mathbf {U} =  gamma { frac {d} {dt}} ( gamma c,  gamma { vec {u}}) =  gamma  chap ({ frac {d} {dt}} [ gamma c], { frac {d} {dt}} [ gamma { vec {u}}]  o'ng) =  gamma (c {  dot { gamma}}, { dot { gamma}} { vec {u}} +  gamma { dot { vec {u}}}) =  mathbf {A}}   Faradey elektromagnit tensorini aniqlash va Maksvell tenglamalarini chiqarish usuli sifatida Faradey elektromagnit tensor                                F                       m             ν         { displaystyle F ^ { mu  nu}}     - elektromagnit maydonni tavsiflovchi matematik ob'ekt bo'sh vaqt  jismoniy tizim.[15] [16] [17] [18] [19] 
Antisimetrik tensor hosil qilish uchun 4 gradyanni qo'llagan holda quyidagilar olinadi:
                              F                       m             ν           =                   ∂                       m                     A                       ν           −                   ∂                       ν                     A                       m           =                               [                                                             0                                    −                                       E                                           x                                         /                    v                                    −                                       E                                           y                                         /                    v                                    −                                       E                                           z                                         /                    v                                                                       E                                           x                                         /                    v                                    0                                    −                                       B                                           z                                                          B                                           y                                                                         E                                           y                                         /                    v                                                        B                                           z                                      0                                    −                                       B                                           x                                                                         E                                           z                                         /                    v                                    −                                       B                                           y                                                          B                                           x                                      0                ]         { displaystyle F ^ { mu  nu} =  qismli ^ { mu} A ^ { nu} -  qisman ^ { nu} A ^ { mu} = { begin {bmatrix} 0 & -E_ { x} / c & -E_ {y} / c & -E_ {z} / c  E_ {x} / c & 0 & -B_ {z} & B_ {y}  E_ {y} / c & B_ {z} & 0 & -B_ { x}  E_ {z} / c & -B_ {y} & B_ {x} & 0  end {bmatrix}}}   qaerda:
Elektromagnit 4-potentsial                                A                       m           =                   A          =                   (                                                     ϕ                 v               ,                                                                                 a                    →               )        { displaystyle A ^ { mu} =  mathbf {A} =  chap ({ frac { phi} {c}}, { vec { mathbf {a}}}  o'ng)}    , bilan adashtirmaslik kerak 4-tezlanish                                A          =         γ         (         v                                             γ               ˙            ,                                             γ               ˙                                                siz               →            +         γ                                                                               siz                   →                 ˙            )       { displaystyle  mathbf {A} =  gamma (c { dot { gamma}}, { dot { gamma}} { vec {u}} +  gamma { dot { vec {u}} })}                       ϕ       { displaystyle  phi}     bo'ladi elektr  skalar potentsiali va                                                                         a                →          { displaystyle { vec { mathbf {a}}}}     bo'ladi magnit  3 fazoviy vektor salohiyati .
4-gradyanni qayta qo'llagan holda va 4 oqim zichligi  kabi                               J                       β           =                   J          =         (         v         r         ,                                                             j                →            )       { displaystyle J ^ { beta} =  mathbf {J} = (c  rho, { vec { mathbf {j}}})}     ning tenzor shaklini olish mumkin Maksvell tenglamalari :
                              ∂                       a                     F                       a             β           =                   m                       o                     J                       β         { displaystyle  kısalt _ { alfa} F ^ { alfa  beta} =  mu _ {o} J ^ { beta}}                                 ∂                       γ                     F                       a             β           +                   ∂                       a                     F                       β             γ           +                   ∂                       β                     F                       γ             a           =                   0                       a             β             γ         { displaystyle  kısalt _ { gamma} F _ { alfa  beta} +  qisman _ { alfa} F _ { beta  gamma} +  qismli _ { beta} F _ { gamma  alfa} = 0_ {  alfa  beta  gamma}}   bu erda ikkinchi satr Byankining o'ziga xosligi  (Jakobining o'ziga xosligi ).
4 to'lqinli vektorni aniqlash usuli sifatida A to'lqin vektori  a vektor  bu tasvirlashga yordam beradi to'lqin . Har qanday vektor singari u ham bor kattaligi va yo'nalishi , ikkalasi ham muhim: Uning kattaligi yoki gulchambar  yoki burchakli to'lqin  to'lqinning (ga teskari proportsional to'lqin uzunligi ) va uning yo'nalishi odatdagidek yo'nalishidir to'lqinlarning tarqalishi 
The 4-to'lqinli vektor                                K                       m         { displaystyle K ^ { mu}}     manfiy fazaning 4 gradiyenti hisoblanadi                     Φ       { displaystyle  Phi}     (yoki fazaning manfiy 4-gradienti) Minkovskiy fazosidagi to'lqinning:[20] 
                              K                       m           =                   K          =                   (                                                     ω                 v               ,                                                                                 k                    →               )          =                   ∂          [         −         Φ         ]         =         −                   ∂          [         Φ         ]       { displaystyle K ^ { mu} =  mathbf {K} =  chap ({ frac { omega} {c}}, { vec { mathbf {k}}}  right) =  mathbf { qisman} [-  Phi] = -  mathbf { qismli} [ Phi]}   Bu matematik jihatdan ta'rifiga tengdir bosqich  a to'lqin  (yoki aniqrog'i a tekislik to'lqini ):
                              K          ⋅                   X          =         ω         t         −                                                             k                →            ⋅                                                             x                →            =         −         Φ       { displaystyle  mathbf {K}  cdot  mathbf {X} =  omega t - { vec { mathbf {k}}}  cdot { vec { mathbf {x}}} = -  Phi}   qaerda 4-pozitsiya                               X          =         (         v         t         ,                                                             x                →            )       { displaystyle  mathbf {X} = (ct, { vec { mathbf {x}}})}    ,                     ω       { displaystyle  omega}     vaqtinchalik burchak chastotasi,                                                                         k                →          { displaystyle { vec { mathbf {k}}}}     bu fazoviy 3 fazali to'lqin vektori va                     Φ       { displaystyle  Phi}     Lorentsning skalar o'zgarmas fazasi.
                    ∂         [                   K          ⋅                   X          ]         =         ∂         [         ω         t         −                                                             k                →            ⋅                                                             x                →            ]         =                   (                                                                       ∂                                       t                   v               ,             −             ∇            )          [         ω         t         −                                                             k                →            ⋅                                                             x                →            ]         =                   (                                                                       ∂                                       t                   v               [             ω             t             −                                                                                 k                    →                ⋅                                                                                 x                    →                ]             ,             −             ∇             [             ω             t             −                                                                                 k                    →                ⋅                                                                                 x                    →                ]            )          =                   (                                                                       ∂                                       t                   v               [             ω             t             ]             ,             −             ∇             [             −                                                                                 k                    →                ⋅                                                                                 x                    →                ]            )          =                   (                                                     ω                 v               ,                                                                                 k                    →               )          =                   K        { displaystyle  kısalt [ mathbf {K}  cdot  mathbf {X}] =  qisman [ omega t - { vec { mathbf {k}}}  cdot { vec { mathbf {x}} }] =  chap ({ frac { qismli _ {t}} {c}}, -  nabla  o'ng) [ omega t - { vec { mathbf {k}}}  cdot { vec {  mathbf {x}}}] =  chap ({ frac { kısalt _ {t}} {c}} [ omega t - { vec { mathbf {k}}}  cdot { vec { mathbf {x}}}], -  nabla [ omega t - { vec { mathbf {k}}}  cdot { vec { mathbf {x}}}]  o'ng) =  chap ({ frac { kısalt _ {t}} {c}} [ omega t], -  nabla [- { vec { mathbf {k}}}  cdot { vec { mathbf {x}}}]  o'ng) =  chap ({ frac { omega} {c}}, { vec { mathbf {k}}}  o'ng) =  mathbf {K}}   samolyot to'lqini degan taxmin bilan                     ω       { displaystyle  omega}     va                                                                         k                →          { displaystyle { vec { mathbf {k}}}}     ning aniq funktsiyalari emas                     t       { displaystyle t}     yoki                                                                         x                →          { displaystyle { vec { mathbf {x}}}}   
SR tekisligi to'lqinining aniq shakli                               Ψ                       n           (                   X          )       { displaystyle  Psi _ {n} ( mathbf {X})}     quyidagicha yozilishi mumkin:[21] 
                              Ψ                       n           (                   X          )         =                   A                       n                     e                       −             men             (                                           K                                   n                ⋅                           X              )           =                   A                       n                     e                       men             (                           Φ                               n               )         { displaystyle  Psi _ {n} ( mathbf {X}) = A_ {n} e ^ {- i ( mathbf {K_ {n}}  cdot  mathbf {X})} = A_ {n} e ^ {i ( Phi _ {n})}}     qayerda                               A                       n         { displaystyle A_ {n}}     bu (ehtimol murakkab ) amplituda.Umumiy to'lqin                     Ψ         (                   X          )       { displaystyle  Psi ( mathbf {X})}     bo'lar edi superpozitsiya  ko'p tekislik to'lqinlari:
                    Ψ         (                   X          )         =                   ∑                       n           [                   Ψ                       n           (                   X          )         ]         =                   ∑                       n           [                   A                       n                     e                       −             men             (                                           K                                   n                ⋅                           X              )           ]         =                   ∑                       n           [                   A                       n                     e                       men             (                           Φ                               n               )           ]       { displaystyle  Psi ( mathbf {X}) =  sum _ {n} [ Psi _ {n} ( mathbf {X})] =  sum _ {n} [A_ {n} e ^ {- i ( mathbf {K_ {n}}  cdot  mathbf {X})}] =  sum _ {n} [A_ {n} e ^ {i ( Phi _ {n})}]}   Yana 4 gradyan yordamida,
                    ∂         [         Ψ         (                   X          )         ]         =         ∂         [         A                   e                       −             men             (                           K              ⋅                           X              )           ]         =         −         men                   K          [         A                   e                       −             men             (                           K              ⋅                           X              )           ]         =         −         men                   K          [         Ψ         (                   X          )         ]       { displaystyle  kısalt [ Psi ( mathbf {X})] =  qisman [Ae ^ {- i ( mathbf {K}  cdot  mathbf {X})}] = - i  mathbf {K} [ Ae ^ {- i ( mathbf {K}  cdot  mathbf {X})}] = - i  mathbf {K} [ Psi ( mathbf {X})]}   yoki
                              ∂          =         −         men                   K        { displaystyle  mathbf { qismli} = -i  mathbf {K}}    , bu 4 gradiyentli versiyasi murakkab qadrli  tekislik to'lqinlari D'Alembertian operatori sifatida Maxsus nisbiylik, elektromagnetizm va to'lqinlar nazariyasida d'Alembertian yoki to'lqin operatori deb ham nomlangan d'Alembert operatori Minkovski fazosining Laplas operatori hisoblanadi. Operatorga frantsuz matematikasi va fizigi Jan le Rond d'Alembert nomi berilgan.
Ning kvadrati                               ∂        { displaystyle  mathbf { kısalt}}     bu 4-Laplasiya deb nomlangan d'Alembert operatori :[22] [23] [24] [25] 
                              ∂          ⋅                   ∂          =                   ∂                       m           ⋅                   ∂                       ν           =                   ∂                       m                     η                       m             ν                     ∂                       ν           =                   ∂                       ν                     ∂                       ν           =                               1                           v                               2                                                 ∂                               2                             ∂                               t                                   2              −                                                             ∇                 →                          2           =                               (                                                             ∂                                       t                   v               )                        2           −                                                             ∇                 →                          2         { displaystyle  mathbf { qismli}  cdot  mathbf { qismli} =  qisman ^ { mu}  cdot  qisman ^ { nu} =  qisman ^ { mu}  eta _ { mu  nu }  kısmi ^ { nu} =  qismli _ { nu}  qismli ^ { nu} = { frac {1} {c ^ {2}}} { frac { qismli ^ {2}} {  qisman t ^ {2}}} - { vec { nabla}} ^ {2} =  chap ({ frac { kısalt _ {t}} {c}}  o'ng) ^ {2} - {  vec { nabla}} ^ {2}}    .Bu kabi nuqta mahsuloti  ikkita 4-vektordan, d'Alembertian a Lorents o'zgarmas  skalar.
Ba'zan, 3 o'lchovli yozuvga o'xshash, belgilar                     ◻       { displaystyle  Box}     va                               ◻                       2         { displaystyle  Box ^ {2}}     navbati bilan 4 gradyan va d'Alembertian uchun ishlatiladi. Odatda, ramz                     ◻       { displaystyle  Box}     d'Alembertian uchun saqlangan.
D'Alembertianda ishlatilgan 4 gradyanning ba'zi bir misollari quyidagicha:
In Klayn-Gordon  spin-0 zarralari uchun relyativistik kvant to'lqin tenglamasi (masalan, Xiggs bozon ):
                    [         (                   ∂          ⋅                   ∂          )         +                               (                                                                                 m                                           0                     v                  ℏ               )                        2           ]         ψ         =         [                   (                                                                       ∂                                       t                                        2                                     v                                       2                 −                                                                                 ∇                     →                                  2              )          +                               (                                                                                 m                                           0                     v                  ℏ               )                        2           ]         ψ         =         0       { displaystyle [( mathbf { qismli}  cdot  mathbf { qismli}) +  chap ({ frac {m_ {0} c} { hbar}}  o'ng) ^ {2}]  psi = [ chap ({ frac { kısalt _ {t} ^ {2}} {c ^ {2}}} - { vec { nabla}} ^ {2}  o'ng) + + chap ({ frac {m_ {0} c} { hbar}}  o'ng) ^ {2}]  psi = 0}   In to'lqin tenglamasi  uchun elektromagnit maydon  {foydalanish Lorenz o'lchovi                      (                   ∂          ⋅                   A          )         =         (                   ∂                       m                     A                       m           )         =         0       { displaystyle ( mathbf { qismli}  cdot  mathbf {A}) = ( qismli _ { mu} A ^ { mu}) = 0}     }:
                    (                   ∂          ⋅                   ∂          )                   A          =                   0        { displaystyle ( mathbf { qismli}  cdot  mathbf { qismli})  mathbf {A} =  mathbf {0}}     {vakuumda}                    (                   ∂          ⋅                   ∂          )                   A          =                   m                       0                     J        { displaystyle ( mathbf { qismli}  cdot  mathbf { qismli})  mathbf {A} =  mu _ {0}  mathbf {J}}     {bilan 4-oqim  spin ta'sirini hisobga olmaganda}                    (                   ∂          ⋅                   ∂          )                   A                       m           =         e                                             ψ               ¯                      γ                       m           ψ       { displaystyle ( mathbf { qismli}  cdot  mathbf { qismli}) A ^ { mu} = e { bar { psi}}  gamma ^ { mu}  psi}     {bilan kvant elektrodinamikasi  manba, shu jumladan spin effektlari}qaerda:
Elektromagnit 4-potentsial                                A          =                   A                       a           =                   (                                                     ϕ                 v               ,                                                             a                   →               )        { displaystyle  mathbf {A} = A ^ { alpha} =  chap ({ frac { phi} {c}},  mathbf { vec {a}}  o'ng)}     elektromagnit vektor potentsialidir4 oqim zichligi                                J          =                   J                       a           =         (         r         v         ,                                             j               →            )       { displaystyle  mathbf {J} = J ^ { alpha} = ( rho c,  mathbf { vec {j}})}     oqimning elektromagnit zichligiDirak Gamma matritsalari                                γ                       a           =         (                   γ                       0           ,                   γ                       1           ,                   γ                       2           ,                   γ                       3           )       { displaystyle  gamma ^ { alpha} = ( gamma ^ {0},  gamma ^ {1},  gamma ^ {2},  gamma ^ {3})}     spinning ta'sirini ta'minlash In to'lqin tenglamasi  a tortishish to'lqini  {o'xshashidan foydalanib Lorenz o'lchovi                      (                   ∂                       m                     h                       T             T                        m             ν           )         =         0       { displaystyle ( kısalt _ { mu} h_ {TT} ^ { mu  nu}) = 0}     }[26] 
                    (                   ∂          ⋅                   ∂          )                   h                       T             T                        m             ν           =         0       { displaystyle ( mathbf { qismli}  cdot  mathbf { qismli}) h_ {TT} ^ { mu  nu} = 0}   qayerda                               h                       T             T                        m             ν         { displaystyle h_ {TT} ^ { mu  nu}}     kuchsiz maydon chegarasida tortishish nurlanishini ifodalovchi transvers traceless 2-tensor (ya'ni manbadan uzoqda erkin tarqalish).
Qo'shimcha shartlar                               h                       T             T                        m             ν         { displaystyle h_ {TT} ^ { mu  nu}}     ular:
                              U          ⋅                   h                       T             T                        m             ν           =                   h                       T             T                        0             ν           =         0       { displaystyle  mathbf {U}  cdot h_ {TT} ^ { mu  nu} = h_ {TT} ^ {0  nu} = 0}     : Sof fazoviy                              η                       m             ν                     h                       T             T                        m             ν           =                   h                       T             T             ν                        ν           =         0       { displaystyle  eta _ { mu  nu} h_ {TT} ^ { mu  nu} = h_ {TT  nu} ^ { nu} = 0}     : Izsiz                              ∂          ⋅                   h                       T             T                        m             ν           =                   ∂                       m                     h                       T             T                        m             ν           =         0       { displaystyle  mathbf { kısalt}  cdot h_ {TT} ^ { mu  nu} =  qisman _ { mu} h_ {TT} ^ { mu  nu} = 0}     : TransversNing 4 o'lchovli versiyasida Yashilning vazifasi :
                    (                   ∂          ⋅                   ∂          )         G         [                   X          −                               X             ′           ]         =                   δ                       (             4             )           [                   X          −                               X             ′           ]       { displaystyle ( mathbf { qismli}  cdot  mathbf { qismli}) G [ mathbf {X} -  mathbf {X '}] =  delta ^ {(4)} [ mathbf {X} -  mathbf {X '}]}   qaerda 4D Delta funktsiyasi  bu:
                              δ                       (             4             )           [                   X          ]         =                               1                           (               2               π                               )                                   4              ∫                   d                       4                     K                    e                       −             men             (                           K              ⋅                           X              )         { displaystyle  delta ^ {(4)} [ mathbf {X}] = { frac {1} {(2  pi) ^ {4}}}  int d ^ {4}  mathbf {K} e ^ {- i ( mathbf {K}  cdot  mathbf {X})}}   4D Gauss teoremasi / Stoks teoremasi / divergensiya teoremasining tarkibiy qismi sifatida Yilda vektor hisobi , divergensiya teoremasi , shuningdek Gauss teoremasi yoki Ostrogradskiy teoremasi deb ham ataladi, bu oqim bilan bog'liq bo'lgan natijadir (ya'ni, oqim ) ning vektor maydoni  orqali sirt  sirt ichidagi vektor maydonining xatti-harakatlariga. Aniqrog'i, divergentsiya teoremasi tashqi tomonni ta'kidlaydi oqim  yopiq sirt orqali vektor maydonining tenglamasi hajm integral  ning kelishmovchilik  mintaqa bo'ylab Intuitiv ravishda, buni ta'kidlaydi barcha manbalarning yig'indisi, barcha lavabolar yig'indisi, mintaqadan chiqib ketadigan oqimni beradi . Vektorli hisoblashda va umuman, differentsial geometriyada, Stoks teoremasi  (shuningdek, umumlashtirilgan Stoks teoremasi deb ataladi) - bu vektor hisobidan bir nechta teoremalarni soddalashtiradigan va umumlashtiradigan differentsial shakllarni manifoldlarga qo'shilishi haqidagi bayonot.
                              ∫                       Ω                     d                       4           X         (                   ∂                       m                     V                       m           )         =                   ∮                       ∂             Ω           d         S         (                   V                       m                     N                       m           )       { displaystyle  int _ { Omega} d ^ {4} X ( qismli _ { mu} V ^ { mu}) =  oint _ { qismli  Omega} dS (V ^ { mu} N_ { mu})}   yoki
                              ∫                       Ω                     d                       4           X         (                   ∂          ⋅                   V          )         =                   ∮                       ∂             Ω           d         S         (                   V          ⋅                   N          )       { displaystyle  int _ { Omega} d ^ {4} X ( mathbf { qismli}  cdot  mathbf {V}) =  oint _ { qismli  Omega} dS ( mathbf {V}  cdot  mathbf {N})}   qayerda
                              V          =                   V                       m         { displaystyle  mathbf {V} = V ^ { mu}}     da belgilangan 4-vektorli maydon                     Ω       { displaystyle  Omega}                                 ∂          ⋅                   V          =                   ∂                       m                     V                       m         { displaystyle  mathbf { qismli}  cdot  mathbf {V} =  qisman _ { mu} V ^ { mu}}     ning 4-divergensiyasi                     V       { displaystyle V}                                 V          ⋅                   N          =                   V                       m                     N                       m         { displaystyle  mathbf {V}  cdot  mathbf {N} = V ^ { mu} N _ { mu}}     ning tarkibiy qismidir                     V       { displaystyle V}     yo'nalish bo'yicha                     N       { displaystyle N}                       Ω       { displaystyle  Omega}     bu Minkovskiyning 4D oddiy bog'langan mintaqasi                    ∂         Ω         =         S       { displaystyle  kısalt  Omega = S}     o'zining 3D hajm elementi bilan uning 3D chegarasi                     d         S       { displaystyle dS}                                 N          =                   N                       m         { displaystyle  mathbf {N} = N ^ { mu}}     tashqi tomonga qarab normal holat                              d                       4           X         =         (         v                  d         t         )         (                   d                       3           x         )         =         (         v                  d         t         )         (         d         x                  d         y                  d         z         )       { displaystyle d ^ {4} X = (c , dt) (d ^ {3} x) = (c , dt) (dx , dy , dz)}     4D differentsial hajm elementidirRelativistik analitik mexanikada SR Hamilton-Jakobi tenglamasining tarkibiy qismi sifatida The Gemilton-Jakobi tenglamasi  (HJE) bu kabi boshqa formulalarga teng klassik mexanikaning formulasi Nyuton harakat qonunlari , Lagranj mexanikasi  va Hamilton mexanikasi . Gemilton-Jakobi tenglamasi mexanik tizimlar uchun saqlanib qolgan miqdorlarni aniqlashda ayniqsa foydalidir, bu mexanik masalaning o'zi to'liq hal etilmasa ham mumkin. HJE shuningdek, zarrachaning harakatini to'lqin sifatida ifodalash mumkin bo'lgan mexanikaning yagona formulasidir. Shu ma'noda, HJE uzoq vaqtdan beri ko'zda tutilgan nazariy fizikani (hech bo'lmaganda 18-asrda Yoxann Bernulliga tegishli) amalga oshirib, nur tarqalishi va zarracha harakati o'rtasida o'xshashlikni topdi.
Umumlashtirilgan relyativistik impuls                                           P                           T          { displaystyle  mathbf {P_ {T}}}     zarrachani quyidagicha yozish mumkin[27] 
                                          P                           T            =                   P          +         q                   A        { displaystyle  mathbf {P_ {T}} =  mathbf {P} + q  mathbf {A}}   qayerda                               P          =                   (                                                     E                 v               ,                                                                                 p                    →               )        { displaystyle  mathbf {P} =  chap ({ frac {E} {c}}, { vec { mathbf {p}}}  o'ng)}     va                               A          =                   (                                                     ϕ                 v               ,                                                                                 a                    →               )        { displaystyle  mathbf {A} =  chap ({ frac { phi} {c}}, { vec { mathbf {a}}}  o'ng)}   
Bu asosan 4 ta impuls                                           P                           T            =                   (                                                                       E                                       T                   v               ,                                                                                                       p                                               T                      →               )        { displaystyle  mathbf {P_ {T}} =  chap ({ frac {E_ {T}} {c}}, { vec { mathbf {p_ {T}}}}  o'ng)}     tizimning; a sinov zarrasi  a maydon  yordamida minimal ulanish  qoida Zarrachaning o'ziga xos impulsi mavjud                               P        { displaystyle  mathbf {P}}    , EM 4-vektor potentsiali bilan o'zaro ta'sir tufayli ortiqcha impuls                               A        { displaystyle  mathbf {A}}     zarracha zaryadi orqali                     q       { displaystyle q}    .
Relyativistik Gemilton-Jakobi tenglamasi  umumiy impulsni ning salbiy 4 gradyaniga tenglashtirib olinadi harakat                      S       { displaystyle S}    .
                                          P                           T            =         −                   ∂          [         S         ]       { displaystyle  mathbf {P_ {T}} = -  mathbf { qismli} [S]}                                             P                           T            =                   (                                                                       E                                       T                   v               ,                                                                                                       p                                               T                      →               )          =                   (                                                     H                 v               ,                                                                                                       p                                               T                      →               )          =         −                   ∂          [         S         ]         =         −                   (                                                                       ∂                                       t                   v               ,             −                                                                                 ∇                    →               )          [         S         ]       { displaystyle  mathbf {P_ {T}} =  chap ({ frac {E_ {T}} {c}}, { vec { mathbf {p_ {T}}}}  o'ng) =  chap ( { frac {H} {c}}, { vec { mathbf {p_ {T}}}}  o'ng) = -  mathbf { qismli} [S] = -  chapga ({ frac { qismli) _ {t}} {c}}, - { vec { mathbf { nabla}}}  o'ng) [S]}   Vaqtinchalik komponent:                               E                       T           =         H         =         −                   ∂                       t           [         S         ]       { displaystyle E_ {T} = H = -  kısalt _ {t} [S]}   
Mekansal komponentlar quyidagilarni beradi.                                                                                           p                                       T                  →            =                                                             ∇                →            [         S         ]       { displaystyle { vec { mathbf {p_ {T}}}} = { vec { mathbf { nabla}}} [S]}   
qayerda                     H       { displaystyle H}     Hamiltoniyalik.
Bu, aslida, 4-to'lqinli vektorning yuqoridan fazaning salbiy 4-gradyaniga teng bo'lishi bilan bog'liq.                              K                       m           =                   K          =                   (                                                     ω                 v               ,                                                                                 k                    →               )          =         −                   ∂          [         Φ         ]       { displaystyle K ^ { mu} =  mathbf {K} =  chap ({ frac { omega} {c}}, { vec { mathbf {k}}}  o'ng) = -  mathbf {  qisman} [ Phi]}   
HJE-ni olish uchun birinchi navbatda Lorentz skalyar o'zgarmas qoidasidan 4-impuls bo'yicha foydalaniladi:
                              P          ⋅                   P          =         (                   m                       0           v                   )                       2         { displaystyle  mathbf {P}  cdot  mathbf {P} = (m_ {0} c) ^ {2}}   Ammo minimal ulanish  qoida:
                              P          =                               P                           T            −         q                   A        { displaystyle  mathbf {P} =  mathbf {P_ {T}} -q  mathbf {A}}   Shunday qilib:
                    (                               P                           T            −         q                   A          )         ⋅         (                               P                           T            −         q                   A          )         =         (                   m                       0           v                   )                       2         { displaystyle ( mathbf {P_ {T}} -q  mathbf {A})  cdot ( mathbf {P_ {T}} -q  mathbf {A}) = (m_ {0} c) ^ {2 }}                       (                               P                           T            −         q                   A                    )                       2           =         (                   m                       0           v                   )                       2         { displaystyle ( mathbf {P_ {T}} -q  mathbf {A}) ^ {2} = (m_ {0} c) ^ {2}}                       (         −                   ∂          [         S         ]         −         q                   A                    )                       2           =         (                   m                       0           v                   )                       2         { displaystyle (-  mathbf { qismli} [S] -q  mathbf {A}) ^ {2} = (m_ {0} c) ^ {2}}   Vaqtinchalik va fazoviy tarkibiy qismlarga o'tish:
                    (         −                   ∂                       t           [         S         ]                   /          v         −         q         ϕ                   /          v                   )                       2           −         (                   ∇          [         S         ]         −         q                   a                    )                       2           =         (                   m                       0           v                   )                       2         { displaystyle (-  kısalt _ {t} [S] / cq  phi / c) ^ {2} - ( mathbf { nabla} [S] -q  mathbf {a}) ^ {2} = ( m_ {0} c) ^ {2}}                       (                   ∇          [         S         ]         −         q                   a                    )                       2           −         (         1                   /          v                   )                       2           (         −                   ∂                       t           [         S         ]         −         q         ϕ                   )                       2           +         (                   m                       0           v                   )                       2           =         0       { displaystyle ( mathbf { nabla} [S] -q  mathbf {a}) ^ {2} - (1 / c) ^ {2} (-  qismli _ {t} [S] -q  phi ) ^ {2} + (m_ {0} c) ^ {2} = 0}                       (                   ∇          [         S         ]         −         q                   a                    )                       2           −         (         1                   /          v                   )                       2           (                   ∂                       t           [         S         ]         +         q         ϕ                   )                       2           +         (                   m                       0           v                   )                       2           =         0       { displaystyle ( mathbf { nabla} [S] -q  mathbf {a}) ^ {2} - (1 / c) ^ {2} ( qismli _ {t} [S] + q  phi) ^ {2} + (m_ {0} c) ^ {2} = 0}   bu erda relyativistik Gemilton-Jakobi tenglamasi .
Kvant mexanikasidagi Shredinger munosabatlarining tarkibiy qismi sifatida 4 gradyan bilan bog'langan kvant mexanikasi .
Orasidagi bog'liqlik 4 momentum                                P        { displaystyle  mathbf {P}}     va 4 gradyanli                               ∂        { displaystyle  mathbf { kısalt}}     beradi Shredinger bilan QM munosabatlari .[28] 
                              P          =                   (                                                     E                 v               ,                                                             p                   →               )          =         men         ℏ                   ∂          =         men         ℏ                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )        { displaystyle  mathbf {P} =  chap ({ frac {E} {c}}, { vec {p}}  right) = i  hbar  mathbf { qismli} = i  hbar  left ( { frac { kısalt _ {t}} {c}}, - { vec { nabla}}  o'ng)}   
Vaqtinchalik komponent:                     E         =         men         ℏ                   ∂                       t         { displaystyle E = i  hbar  kısalt _ {t}}   
Mekansal komponentlar quyidagilarni beradi.                                                         p               →            =         −         men         ℏ                                             ∇               →          { displaystyle { vec {p}} = - i  hbar { vec { nabla}}}   
Bu aslida ikkita alohida bosqichdan iborat bo'lishi mumkin.
Birinchisi:[29] 
                              P          =                   (                                                     E                 v               ,                                                             p                   →               )          =         ℏ                   K          =         ℏ                   (                                                     ω                 v               ,                                                             k                   →               )        { displaystyle  mathbf {P} =  chap ({ frac {E} {c}}, { vec {p}}  right) =  hbar  mathbf {K} =  hbar  chap ({ frac { omega} {c}}, { vec {k}}  o'ng)}     bu to'liq 4-vektorli versiyasi:
(Vaqtinchalik komponent) Plank-Eynshteyn munosabatlari                      E         =         ℏ         ω       { displaystyle E =  hbar  omega}   
(Fazoviy komponentlar) de Broyl  materiya to'lqini  munosabat                                                         p               →            =         ℏ                                             k               →          { displaystyle { vec {p}} =  hbar { vec {k}}}   
Ikkinchi:[30] 
                              K          =                   (                                                     ω                 v               ,                                                             k                   →               )          =         men                   ∂          =         men                   (                                                                       ∂                                       t                   v               ,             −                                                             ∇                   →               )        { displaystyle  mathbf {K} =  chap ({ frac { omega} {c}}, { vec {k}}  o'ng) = i  mathbf { qismli} = i  chap ({ frac { kısalt _ {t}} {c}}, - { vec { nabla}}  o'ng)}     bu faqat 4 gradiyentli versiyasidir to'lqin tenglamasi  uchun murakkab qadrli  tekislik to'lqinlari 
Vaqtinchalik komponent:                     ω         =         men                   ∂                       t         { displaystyle  omega = i  qisman _ {t}}   
Mekansal komponentlar quyidagilarni beradi.                                                         k               →            =         −         men                                             ∇               →          { displaystyle { vec {k}} = - i { vec { nabla}}}   
Kvant almashtirish munosabati kovariant shaklining tarkibiy qismi sifatida Kvant mexanikasida (fizika) kanonik kommutatsiya munosabati  kanonik konjuge miqdorlar o'rtasidagi asosiy munosabatdir (bu ikkinchisining Furye konvertatsiyasi bo'lishi uchun ta'rifi bilan bog'liq bo'lgan miqdorlar).
                    [                   P                       m           ,                   X                       ν           ]         =         men         ℏ         [                   ∂                       m           ,                   X                       ν           ]         =         men         ℏ                   ∂                       m           [                   X                       ν           ]         =         men         ℏ                   η                       m             ν         { displaystyle [P ^ { mu}, X ^ { nu}] = i  hbar [ kısmi ^ { mu}, X ^ { nu}] = i  hbar  qisman ^ { mu} [ X ^ { nu}] = i  hbar  eta ^ { mu  nu}}   [31]                     [                   p                       j           ,                   x                       k           ]         =         men         ℏ                   η                       j             k         { displaystyle [p ^ {j}, x ^ {k}] = i  hbar  eta ^ {jk}}    : Mekansal komponentlarni olish:                    [                   p                       j           ,                   x                       k           ]         =         −         men         ℏ                   δ                       j             k         { displaystyle [p ^ {j}, x ^ {k}] = - i  hbar  delta ^ {jk}}    : chunki                               η                       m             ν           =         diag                  [         1         ,         −         1         ,         −         1         ,         −         1         ]       { displaystyle  eta ^ { mu  nu} =  operator nomi {diag} [1, -1, -1, -1]}                       [                   x                       k           ,                   p                       j           ]         =         men         ℏ                   δ                       k             j         { displaystyle [x ^ {k}, p ^ {j}] = i  hbar  delta ^ {kj}}    : chunki                     [         a         ,         b         ]         =         −         [         b         ,         a         ]       { displaystyle [a, b] = - [b, a]}                       [                   x                       j           ,                   p                       k           ]         =         men         ℏ                   δ                       j             k         { displaystyle [x ^ {j}, p ^ {k}] = i  hbar  delta ^ {jk}}    : indekslarni qayta nomlash odatdagi kvant kommutatsiya qoidalarini beradiRelyativistik kvant mexanikasida to'lqin tenglamalari va ehtimollik oqimlarining tarkibiy qismi sifatida 4-gradyan relyativistik to'lqin tenglamalarining bir qismidir:[32] [33] 
In Klein-Gordon relyativistik kvant to'lqini tenglamasi  spin-0 zarralari uchun (masalan, Xiggs bozon ):[34] 
                    [         (                   ∂                       m                     ∂                       m           )         +                               (                                                                                 m                                           0                     v                  ℏ               )                        2           ]         ψ         =         0       { displaystyle [( kısmi ^ { mu}  qisman _ { mu}) +  chap ({ frac {m_ {0} c} { hbar}}  o'ng) ^ {2}]  psi = 0}   In Dirakning relyativistik kvant to'lqinining tenglamasi  spin-1/2 zarralari uchun (masalan, elektronlar ):[35] 
                    [         men                   γ                       m                     ∂                       m           −                                                             m                                   0                 v              ℏ           ]         ψ         =         0       { displaystyle [i  gamma ^ { mu}  kısalt _ { mu} - { frac {m_ {0} c} { hbar}}]  psi = 0}   qayerda                               γ                       m         { displaystyle  gamma ^ { mu}}     ular Dirak gamma matritsalari  va                     ψ       { displaystyle  psi}     relyativistikdir to'lqin funktsiyasi .
                    ψ       { displaystyle  psi}     bu Lorents skalar  Klein-Gordon tenglamasi uchun va a spinor  Dirak tenglamasi uchun.
Gamma matritsalarning o'zlari SR ning asosiy jihati, Minkovskiy metrikasiga murojaat qilganlari ma'qul:[36] 
                    {                   γ                       m           ,                   γ                       ν           }         =                   γ                       m                     γ                       ν           +                   γ                       ν                     γ                       m           =         2                   η                       m             ν                     Men                       4                 { displaystyle  { gamma ^ { mu},  gamma ^ { nu} } =  gamma ^ { mu}  gamma ^ { nu} +  gamma ^ { nu}  gamma ^ { mu} = 2  eta ^ { mu  nu} I_ {4} ,}   4 ta ehtimollik oqim zichligini saqlash doimiylik tenglamasidan kelib chiqadi:[37] 
                              ∂          ⋅                   J          =                   ∂                       t           r         +                                                             ∇                →            ⋅                                                             j                →            =         0       { displaystyle  mathbf { kısalt}  cdot  mathbf {J} =  qisman _ {t}  rho + { vec { mathbf { nabla}}}  cdot { vec { mathbf {j}} } = 0}   The 4-ehtimollik oqim zichligi  relyativistik kovariant ifodasiga ega:[38] 
                              J                       p             r             o             b                        m           =                                             men               ℏ                            2                               m                                   0              (                   ψ                       ∗                     ∂                       m           ψ         −         ψ                   ∂                       m                     ψ                       ∗           )       { displaystyle J_ {prob} ^ { mu} = { frac {i  hbar} {2m_ {0}}} ( psi ^ {*}  kısalt ^ { mu}  psi -  psi  qismli ^ { mu}  psi ^ {*})}   The 4 zaryadli oqim zichligi  faqat zaryad (q) 4 ehtimollik oqim zichligidan oshadi:[39] 
                              J                       v             h             a             r             g             e                        m           =                                             men               ℏ               q                            2                               m                                   0              (                   ψ                       ∗                     ∂                       m           ψ         −         ψ                   ∂                       m                     ψ                       ∗           )       { displaystyle J_ {charge} ^ { mu} = { frac {i  hbar q} {2m_ {0}}} ( psi ^ {*}  qismli ^ { mu}  psi -  psi  qism ^ { mu}  psi ^ {*})}   Kvant mexanikasi va relyativistik kvant to'lqin tenglamalarini maxsus nisbiylikdan olishning asosiy komponenti sifatida Relativistik to'lqin tenglamalari  kovariant bo'lish uchun 4-vektordan foydalaning.[40] [41] 
Standart SR 4-vektorlardan boshlang:[42] 
4-pozitsiya                                X          =         (         v         t         ,                                                             x                →            )       { displaystyle  mathbf {X} = (ct, { vec { mathbf {x}}})}   4 tezlik                                U          =         γ         (         v         ,                                                             siz                →            )       { displaystyle  mathbf {U} =  gamma (c, { vec { mathbf {u}}})}   4 momentum                                P          =                   (                                                     E                 v               ,                                                                                 p                    →               )        { displaystyle  mathbf {P} =  chap ({ frac {E} {c}}, { vec { mathbf {p}}}  o'ng)}   4-to'lqinli vektor                                K          =                   (                                                     ω                 v               ,                                                                                 k                    →               )        { displaystyle  mathbf {K} =  chap ({ frac { omega} {c}}, { vec { mathbf {k}}}  o'ng)}   4 gradyanli                               ∂          =                   (                                                                       ∂                                       t                   v               ,             −                                                                                 ∇                    →               )        { displaystyle  mathbf { qismli} =  chap ({ frac { kısalt _ {t}} {c}}, - { vec { mathbf { nabla}}}  o'ng)}    Oldingi boblardagi quyidagi oddiy munosabatlarga e'tibor bering, bu erda har bir 4-vektor boshqasiga a bilan bog'liq Lorents skalar :
                              U          =                               d                           d               τ                      X        { displaystyle  mathbf {U} = { frac {d} {d  tau}}  mathbf {X}}    , qayerda                     τ       { displaystyle  tau}     bo'ladi to'g'ri vaqt                               P          =                   m                       0                     U        { displaystyle  mathbf {P} = m_ {0}  mathbf {U}}    , qayerda                               m                       0         { displaystyle m_ {0}}     bo'ladi dam olish massasi                               K          =         (         1                   /          ℏ         )                   P        { displaystyle  mathbf {K} = (1 /  hbar)  mathbf {P}}    , bu 4-vektor  versiyasi Plank-Eynshteyn munosabatlari  & de Broyl  materiya to'lqini  munosabat                              ∂          =         −         men                   K        { displaystyle  mathbf { qismli} = -i  mathbf {K}}    , bu 4 gradiyentli versiyasi murakkab qadrli  tekislik to'lqinlari Endi Lorentz skalar mahsulotining standart qoidasini har biriga qo'llang:
                              U          ⋅                   U          =         (         v                   )                       2         { displaystyle  mathbf {U}  cdot  mathbf {U} = (c) ^ {2}}                                 P          ⋅                   P          =         (                   m                       0           v                   )                       2         { displaystyle  mathbf {P}  cdot  mathbf {P} = (m_ {0} c) ^ {2}}                                 K          ⋅                   K          =                               (                                                                                 m                                           0                     v                  ℏ               )                        2         { displaystyle  mathbf {K}  cdot  mathbf {K} =  chap ({ frac {m_ {0} c} { hbar}}  o'ng) ^ {2}}                                 ∂          ⋅                   ∂          =                               (                                                             −                   men                                       m                                           0                     v                  ℏ               )                        2           =         −                               (                                                                                 m                                           0                     v                  ℏ               )                        2         { displaystyle  mathbf { kısalt}  cdot  mathbf { qismli} =  chap ({ frac {-im_ {0} c} { hbar}}  o'ng) ^ {2} = -  chap ({  frac {m_ {0} c} { hbar}}  o'ng) ^ {2}}   Oxirgi tenglama (4 gradyanli skaler mahsulot bilan) bu asosiy kvant munosabati.
Lorents skalar maydoniga qo'llanganda                     ψ       { displaystyle  psi}    , kvantning eng asosiysi Klein-Gordon tenglamasini oladi relyativistik to'lqin tenglamalari :[43] 
                    [                   ∂          ⋅                   ∂          +                               (                                                                                 m                                           0                     v                  ℏ               )                        2           ]         ψ         =         0       { displaystyle [ mathbf { kısalt}  cdot  mathbf { qismli} +  chap ({ frac {m_ {0} c} { hbar}}  o'ng) ^ {2}]  psi = 0}   The Shredinger tenglamasi  bu past tezlik cheklovchi ish  {| v | ning << c} Klayn - Gordon tenglamasi .[44] 
Agar kvant munosabati 4 vektorli maydonga qo'llanilsa                               A                       m         { displaystyle A ^ { mu}}     Lorents skalar maydoni o'rniga                     ψ       { displaystyle  psi}    , then one gets the Proka tenglamasi :[45] 
                    [                   ∂          ⋅                   ∂          +                               (                                                                                 m                                           0                     v                  ℏ               )                        2           ]                   A                       m           =                   0                       m         {displaystyle [mathbf {partial } cdot mathbf {partial } +left({frac {m_{0}c}{hbar }}
ight)^{2}]A^{mu }=0^{mu }}   If the rest mass term is set to zero (light-like particles), then this gives the free Maksvell tenglamasi :
                    [                   ∂          ⋅                   ∂          ]                   A                       m           =                   0                       m         {displaystyle [mathbf {partial } cdot mathbf {partial } ]A^{mu }=0^{mu }}   More complicated forms and interactions can be derived by using the minimal coupling  qoida:
As a component of the RQM covariant derivative (internal particle spaces) Zamonaviy boshlang'ich  zarralar fizikasi , a ni aniqlash mumkin gauge covariant derivative  which utilizes the extra RQM fields (internal particle spaces) now known to exist.
The version known from classical EM (in natural units) is:[46] 
                              D.                       m           =                   ∂                       m           −         men         g                   A                       m         {displaystyle D^{mu }=partial ^{mu }-igA^{mu }}   The full covariant derivative for the asosiy o'zaro ta'sirlar  ning Standart model  that we are presently aware of (in tabiiy birliklar ) bu:[47] 
                              D.                       m           =                   ∂                       m           −         men                   g                       1           (         Y                   /          2         )                   B                       m           −         men                   g                       2           (                   τ                       men                     /          2         )         ⋅                   V                       men                        m           −         men                   g                       3           (                   λ                       a                     /          2         )         ⋅                   G                       a                        m         {displaystyle D^{mu }=partial ^{mu }-ig_{1}(Y/2)B^{mu }-ig_{2}(	au _{i}/2)cdot W_{i}^{mu }-ig_{3}(lambda _{a}/2)cdot G_{a}^{mu }}   yoki
                              D.          =                   ∂          −         men                   g                       1           (         Y                   /          2         )                   B          −         men                   g                       2           (                               τ                           men                      /          2         )         ⋅                               V                           men            −         men                   g                       3           (                               λ                           a                      /          2         )         ⋅                               G                           a          {displaystyle mathbf {D} =mathbf {partial } -ig_{1}(Y/2)mathbf {B} -ig_{2}(mathbf {	au _{i}} /2)cdot mathbf {W_{i}} -ig_{3}(mathbf {lambda _{a}} /2)cdot mathbf {G_{a}} }   qaerda:
the scalar product summations (                    ⋅       { displaystyle  cdot}    ) here refer to the internal spaces, not the tensor indices                               B                       m         {displaystyle B^{mu }}     ga mos keladi U (1)  invariance = (1) EM force  o'lchov boson                               V                       men                        m         {displaystyle W_{i}^{mu }}     ga mos keladi SU (2)  invariance = (3) kuchsiz kuch  gauge bosons (men  = 1, ..., 3)                              G                       a                        m         {displaystyle G_{a}^{mu }}     ga mos keladi SU (3)  invariance = (8) color force  gauge bosons (a  = 1, ..., 8)The birikma konstantalari                      (                   g                       1           ,                   g                       2           ,                   g                       3           )       {displaystyle (g_{1},g_{2},g_{3})}     are arbitrary numbers that must be discovered from experiment.  It is worth emphasizing that for the abeliy bo'lmagan  transformations once the                               g                       men         { displaystyle g_ {i}}     are fixed for one representation, they are known for all representations.
These internal particle spaces have been discovered empirically.[48] 
Hosil qilish  
In three dimensions, the gradient operator maps a scalar field to a vector field such that the line integral between any two points in the vector field is equal to the difference between the scalar field at these two points.  Based on this, it may paydo bo'ladi  noto'g'ri  that the natural extension of the gradient to 4 dimensions kerak  bo'lishi:
                              ∂                       a                     =         ?         =                   (                                                     ∂                                   ∂                   t                ,                                                             ∇                   →               )        {displaystyle partial ^{alpha } =?=left({frac {partial }{partial t}},{vec {
abla }}
ight)}      noto'g'ri  
However, a line integral involves the application of the vector dot product, and when this is extended to 4-dimensional spacetime, a change of sign is introduced to either the spatial co-ordinates or the time co-ordinate depending on the convention used.  This is due to the non-Euclidean nature of spacetime.  In this article, we place a negative sign on the spatial coordinates (the time-positive metric convention                               η                       m             ν           =         diag                  [         1         ,         −         1         ,         −         1         ,         −         1         ]       {displaystyle eta ^{mu 
u }=operatorname {diag} [1,-1,-1,-1]}    ). The factor of (1/v ) is to keep the correct unit dimensionality  {1/[length]} for all components of the 4-vector and the (−1) is to keep the 4-gradient Lorents kovariant . Adding these two corrections to the above expression gives the to'g'ri  definition of 4-gradient:
                              ∂                       a                     =                   (                                                     1                 v                                             ∂                                   ∂                   t                ,             −                                                             ∇                   →               )        {displaystyle partial ^{alpha } =left({frac {1}{c}}{frac {partial }{partial t}},-{vec {
abla }}
ight)}      to'g'ri  
[49] [50] 
Shuningdek qarang  
Note about References  
Regarding the use of scalars, 4-vectors and tensors in physics, various authors use slightly different notations for the same equations.  For instance, some use                     m       { displaystyle m}     for invariant rest mass, others use                               m                       0         { displaystyle m_ {0}}     for invariant rest mass and use                     m       { displaystyle m}     for relativistic mass.  Many authors set factors of                     v       { displaystyle c}     va                     ℏ       { displaystyle  hbar}     va                     G       { displaystyle G}     to dimensionless unity. Others show some or all the constants. Ba'zi mualliflar foydalanadilar                     v       { displaystyle v}     for velocity, others use                     siz       { displaystyle u}    . Ba'zilar foydalanadi                     K       { displaystyle K}     as a 4-wavevector (to pick an arbitrary example).  Others use                     k       { displaystyle k}     yoki                               K        { displaystyle  mathbf {K}}     yoki                               k                       m         { displaystyle k ^ { mu}}     yoki                               k                       m         {displaystyle k_{mu }}     yoki                               K                       ν         {displaystyle K^{
u }}     yoki                     N       { displaystyle N}    , etc.  Some write the 4-wavevector as                     (                               ω             v           ,                   k          )       {displaystyle ({frac {omega }{c}},mathbf {k} )}    , some as                     (                   k          ,                               ω             v           )       {displaystyle (mathbf {k} ,{frac {omega }{c}})}     yoki                     (                   k                       0           ,                   k          )       {displaystyle (k^{0},mathbf {k} )}     yoki                     (                   k                       0           ,                   k                       1           ,                   k                       2           ,                   k                       3           )       {displaystyle (k^{0},k^{1},k^{2},k^{3})}     yoki                     (                   k                       1           ,                   k                       2           ,                   k                       3           ,                   k                       4           )       {displaystyle (k^{1},k^{2},k^{3},k^{4})}     yoki                     (                   k                       t           ,                   k                       x           ,                   k                       y           ,                   k                       z           )       {displaystyle (k_{t},k_{x},k_{y},k_{z})}    yoki                     (                   k                       1           ,                   k                       2           ,                   k                       3           ,         men                   k                       4           )       {displaystyle (k^{1},k^{2},k^{3},ik^{4})}    . Some will make sure that the dimensional units match across the 4-vector, others do not. Some refer to the temporal component in the 4-vector name, others refer to the spatial component in the 4-vector name. Some mix it throughout the book, sometimes using one then later on the other. Some use the metric (+ − − −) , others use the metric (− + + +) . Some don't use 4-vectors, but do everything as the old style E  and 3-space vector p . The thing is, all of these are just notational styles, with some more clear and concise than the others. The physics is the same as long as one uses a consistent style throughout the whole derivation.[51] 
Adabiyotlar  
^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. pp. 56, 151–152, 158–161. ISBN  0-19-853952-5  . ^   The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN  978-0-521-57507-2  ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 16. ISBN  0-201-62460-5  . ^   The Cambridge Handbook of Physics Formulas, G. Woan, Cambridge University Press, 2010, ISBN  978-0-521-57507-2  ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 16. ISBN  0-201-62460-5  . ^   Shultz, Bernard F. (1985). Umumiy nisbiylik bo'yicha birinchi kurs  (1-nashr). Kembrij universiteti matbuoti. p. 184. ISBN  0-521-27703-5  . ^   Shultz, Bernard F. (1985). Umumiy nisbiylik bo'yicha birinchi kurs  (1-nashr). Kembrij universiteti matbuoti. 136-139 betlar. ISBN  0-521-27703-5  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 103-107 betlar. ISBN  0-19-853952-5  . ^   Shultz, Bernard F. (1985). Umumiy nisbiylik bo'yicha birinchi kurs  (1-nashr). Kembrij universiteti matbuoti. 90-110 betlar. ISBN  0-521-27703-5  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 105-107 betlar. ISBN  0-19-853952-5  . ^   Shultz, Bernard F. (1985). Umumiy nisbiylik bo'yicha birinchi kurs  (1-nashr). Kembrij universiteti matbuoti. pp. 101–106. ISBN  0-521-27703-5  . ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 16. ISBN  0-201-62460-5  . ^   Shultz, Bernard F. (1985). Umumiy nisbiylik bo'yicha birinchi kurs  (1-nashr). Kembrij universiteti matbuoti. p. 69. ISBN  0-521-27703-5  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 58-59 betlar. ISBN  0-19-853952-5  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 101-128 betlar. ISBN  0-19-853952-5  . ^   Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians   (1-nashr). Kembrij universiteti matbuoti. p.314 . ISBN  0-521-27765-5  . ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. pp. 17–18. ISBN  0-201-62460-5  . ^   Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry  (1-nashr). Addison-Wesley Publishing Co. pp. 29–30. ISBN  0-8053-8732-3  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 4. ISBN  3-540-67457-8  . ^   Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry  (1-nashr). Addison-Wesley Publishing Co. p. 387. ISBN  0-8053-8732-3  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 9. ISBN  3-540-67457-8  . ^   Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians   (1-nashr). Kembrij universiteti matbuoti. p.300 . ISBN  0-521-27765-5  . ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. pp. 17–18. ISBN  0-201-62460-5  . ^   Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry  (1-nashr). Addison-Wesley Publishing Co. p. 41. ISBN  0-8053-8732-3  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 4. ISBN  3-540-67457-8  . ^   Carroll, Sean M. (2004). An Introduction to General Relativity: Spacetime and Geometry  (1-nashr). Addison-Wesley Publishing Co. pp. 274–322. ISBN  0-8053-8732-3  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 93-96 betlar. ISBN  0-19-853952-5  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. 3-5 bet. ISBN  3-540-67457-8  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 82-84 betlar. ISBN  0-19-853952-5  . ^   Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians   (1-nashr). Kembrij universiteti matbuoti. p.300 . ISBN  0-521-27765-5  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 4. ISBN  3-540-67457-8  . ^   Sudbury, Anthony (1986). Quantum mechanics and the particles of nature: An outline for mathematicians   (1-nashr). Kembrij universiteti matbuoti. pp.300–309 . ISBN  0-521-27765-5  . ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. pp. 25, 30–31, 55–69. ISBN  0-201-62460-5  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 5. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 130. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 129. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 6. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 6. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 8. ISBN  3-540-67457-8  . ^   Kane, Gordon (1994). Modern Elementary Particle Physics: The Fundamental Particles and Forces  (Yangilangan tahrir). Addison-Wesley Publishing Co. ISBN  0-201-62460-5  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. ISBN  3-540-67457-8  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. ISBN  0-19-853952-5  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. 5-8 betlar. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. 7-8 betlar. ISBN  3-540-67457-8  . ^   Greiner, Walter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. p. 361. ISBN  3-540-67457-8  . ^   Kane, Gordon (1994). Zamonaviy elementar zarralar fizikasi: asosiy zarralar va kuchlar  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 39. ISBN  0-201-62460-5  . ^   Keyn, Gordon (1994). Zamonaviy elementar zarralar fizikasi: asosiy zarralar va kuchlar  (Yangilangan tahrir). Addison-Wesley Publishing Co., 35-53 betlar. ISBN  0-201-62460-5  . ^   Keyn, Gordon (1994). Zamonaviy elementar zarralar fizikasi: asosiy zarralar va kuchlar  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 47. ISBN  0-201-62460-5  . ^   Rindler, Volfgang (1991). Maxsus nisbiylikka kirish   (2-nashr). Oksford ilmiy nashrlari. 55-56 betlar. ISBN  0-19-853952-5  . ^   Keyn, Gordon (1994). Zamonaviy elementar zarralar fizikasi: asosiy zarralar va kuchlar  (Yangilangan tahrir). Addison-Wesley Publishing Co. p. 16. ISBN  0-201-62460-5  . ^   Greiner, Valter (2000). Relativistik kvant mexanikasi: to'lqinli tenglamalar  (3-nashr). Springer. 2-4 betlar. ISBN  3-540-67457-8  . Qo'shimcha o'qish  
S. Xildebrandt, "Tahlil II" (Hisob II), ISBN  3-540-43970-6 , 2003 L.C. Evans, "Qisman differentsial tenglamalar", AM Jamiyat, Grad.Studies Vol.19, 1988 J.D.Jekson, "Klassik elektrodinamika" 11-bob, Vili ISBN  0-471-30932-X