Polinomlar ketma-ketligi
Yilda matematika , Yakobi polinomlari  (vaqti-vaqti bilan chaqiriladi gipergeometrik polinomlar ) P (a , β ) n  (x )  sinfidir klassik  ortogonal polinomlar . Ular vaznga nisbatan ortogonaldir (1 − x )a  (1 + x )β   oraliqda [−1, 1] . The Gegenbauer polinomlari va shuning uchun ham Legendre , Zernike  va Chebyshev polinomlari , Jakobi polinomlarining alohida holatlari.[1] 
Jacobi polinomlari tomonidan kiritilgan Karl Gustav Yakob Jakobi .
Ta'riflar  
Gipergeometrik funktsiya orqali Yakobi polinomlari gipergeometrik funktsiya  quyidagicha:[2] 
                              P                       n                        (             a             ,             β             )           (         z         )         =                                             (               a               +               1                               )                                   n                              n               !                                                      2                     F                       1                     (                       −             n             ,             1             +             a             +             β             +             n             ;             a             +             1             ;                                                             1                   2                (             1             −             z             )            )          ,       { displaystyle P_ {n} ^ {( alfa,  beta)} (z) = { frac {( alfa +1) _ {n}} {n!}} , {} _ {2} F_ {1}  chap (-n, 1 +  alfa +  beta + n;  alfa +1; { tfrac {1} {2}} (1-z)  o'ng),}   qayerda                     (         a         +         1                   )                       n         { displaystyle ( alfa +1) _ {n}}     bu Pochhammerning ramzi  (ko'tarilayotgan faktorial uchun). Bunday holda, gipergeometrik funktsiya uchun ketma-ketlik cheklangan, shuning uchun quyidagi ekvivalent ifoda olinadi:
                              P                       n                        (             a             ,             β             )           (         z         )         =                                             Γ               (               a               +               n               +               1               )                            n               !                              Γ               (               a               +               β               +               n               +               1               )                      ∑                       m             =             0                        n                                               (                            n               m                            )                                                Γ               (               a               +               β               +               n               +               m               +               1               )                            Γ               (               a               +               m               +               1               )                                  (                                                             z                   −                   1                  2               )                        m           .       { displaystyle P_ {n} ^ {( alfa,  beta)} (z) = { frac { Gamma ( alfa + n + 1)} {n! ,  Gamma ( alfa +  beta + n + 1)}}  sum _ {m = 0} ^ {n} {n  m} { frac { Gamma ( alfa +  beta + n + m + 1)}} { Gamma ( alfa) ni tanlang + m + 1)}}  chap ({ frac {z-1} {2}}  o'ng) ^ {m}.}   Rodrigesning formulasi Ekvivalent ta'rifi tomonidan berilgan Rodrigesning formulasi :[1] [3] 
                              P                       n                        (             a             ,             β             )           (         z         )         =                                             (               −               1                               )                                   n                                              2                                   n                 n               !            (         1         −         z                   )                       −             a           (         1         +         z                   )                       −             β                                               d                               n                             d                               z                                   n                        {                       (             1             −             z                           )                               a               (             1             +             z                           )                               β                                             (                                   1                   −                                       z                                           2                    )                                n              }          .       { displaystyle P_ {n} ^ {( alfa,  beta)} (z) = { frac {(-1) ^ {n}} {2 ^ {n} n!}} (1-z) ^ {-  alfa} (1 + z) ^ {-  beta} { frac {d ^ {n}} {dz ^ {n}}}  left  {(1-z) ^ { alpha} (1 + z) ^ { beta}  chap (1-z ^ {2}  o'ng) ^ {n}  o'ng }.}   Agar                     a         =         β         =         0       { displaystyle  alpha =  beta = 0}    , keyin u kamayadi Legendre polinomlari : 
                              P                       n           (         z         )         =                               1                                           2                                   n                 n               !                                                d                               n                             d                               z                                   n              (                   z                       2           −         1                   )                       n                    .       { displaystyle P_ {n} (z) = { frac {1} {2 ^ {n} n!}} { frac {d ^ {n}} {dz ^ {n}}} (z ^ {2 } -1) ^ {n}  ;.}   Haqiqiy argument uchun muqobil ifoda Haqiqatdan x  muqobil ravishda Jakobi polinomini quyidagicha yozish mumkin
                              P                       n                        (             a             ,             β             )           (         x         )         =                   ∑                       s             =             0                        n                                               (                                            n                 +                 a                                n                 −                 s                             )                                                (                                            n                 +                 β                s                            )                                  (                                                             x                   −                   1                  2               )                        s                                 (                                                             x                   +                   1                  2               )                        n             −             s         { displaystyle P_ {n} ^ {( alfa,  beta)} (x) =  sum _ {s = 0} ^ {n} {n +  alpha  ns}} {n +  beta  s} ni tanlang} chap ({ frac {x-1} {2}}  o'ng) ^ {s}  chap ({ frac {x + 1} {2}}  o'ng) ^ {ns}}   va butun son uchun n 
                                                        (                            z               n                            )            =                               {                                                                                                                               Γ                         (                         z                         +                         1                         )                                                Γ                         (                         n                         +                         1                         )                         Γ                         (                         z                         −                         n                         +                         1                         )                                       n                   ≥                   0                                                   0                                    n                   <                   0                        { displaystyle {z  select n} = { begin {case} { frac { Gamma (z + 1)} { Gamma (n + 1)  Gamma (z-n + 1)}} & n  geq 0  0 & n <0  end {case}}}   qayerda Γ (z )  bo'ladi Gamma funktsiyasi .
Maxsus holatda to'rtta miqdor n , n  + a , n  + β  va n  + a  + β   manfiy bo'lmagan tamsayılar, Jakobi polinomini quyidagicha yozish mumkin
                              P                       n                        (             a             ,             β             )           (         x         )         =         (         n         +         a         )         !         (         n         +         β         )         !                   ∑                       s             =             0                        n                                 1                           s               !               (               n               +               a               −               s               )               !               (               β               +               s               )               !               (               n               −               s               )               !                                  (                                                             x                   −                   1                  2               )                        n             −             s                                 (                                                             x                   +                   1                  2               )                        s           .       { displaystyle P_ {n} ^ {( alfa,  beta)} (x) = (n +  alfa)! (n +  beta)!  sum _ {s = 0} ^ {n} { frac {1 } {s! (n +  alfa -s)! ( beta + s)! (ns)!}}  chap ({ frac {x-1} {2}}  right) ^ {ns}  left ( { frac {x + 1} {2}}  right) ^ {s}.}   (1 ) 
Yig‘indagi qiymatlar butun songa teng bo‘ladi s  buning uchun faktoriallarning dalillari salbiy emas.
Maxsus holatlar                               P                       0                        (             a             ,             β             )           (         z         )         =         1         ,       { displaystyle P_ {0} ^ {( alfa,  beta)} (z) = 1,}                                 P                       1                        (             a             ,             β             )           (         z         )         =         (         a         +         1         )         +         (         a         +         β         +         2         )                                             z               −               1              2           ,       { displaystyle P_ {1} ^ {( alfa,  beta)} (z) = ( alfa +1) + ( alfa +  beta +2) { frac {z-1} {2}}, }                                 P                       2                        (             a             ,             β             )           (         z         )         =                                             (               a               +               1               )               (               a               +               2               )              2           +         (         a         +         2         )         (         a         +         β         +         3         )                                             z               −               1              2           +                                             (               a               +               β               +               3               )               (               a               +               β               +               4               )              2                                 (                                                             z                   −                   1                  2               )                        2           ,         .         .         .       { displaystyle P_ {2} ^ {( alfa,  beta)} (z) = { frac {( alfa +1) ( alfa +2)} {2}} + ( alfa +2) {  alfa +  beta +3) { frac {z-1} {2}} + { frac {( alfa +  beta +3) ( alfa +  beta +4)} {2}}  chap ({ frac {z-1} {2}}  o'ng) ^ {2}, ...}   Asosiy xususiyatlar  
Ortogonallik Yakobi polinomlari ortogonallik shartini qondiradi
                              ∫                       −             1                        1           (         1         −         x                   )                       a           (         1         +         x                   )                       β                     P                       m                        (             a             ,             β             )           (         x         )                   P                       n                        (             a             ,             β             )           (         x         )                  d         x         =                                             2                               a                 +                 β                 +                 1                             2               n               +               a               +               β               +               1                                                Γ               (               n               +               a               +               1               )               Γ               (               n               +               β               +               1               )                            Γ               (               n               +               a               +               β               +               1               )               n               !                      δ                       n             m           ,                  a         ,                   β         >         −         1.       { displaystyle  int _ {- 1} ^ {1} (1-x) ^ { alpha} (1 + x) ^ { beta} P_ {m} ^ {( alfa,  beta)} (x ) P_ {n} ^ {( alfa,  beta)} (x) , dx = { frac {2 ^ { alpha +  beta +1}} {2n +  alfa +  beta +1}} {  frac { Gamma (n +  alfa +1)  Gamma (n +  beta +1)} { Gamma (n +  alfa +  beta +1) n!}}  delta _ {nm},  qquad  alpha ,   beta> -1.}   Belgilanganidek, ularning vazni bo'yicha birlik normasi yo'q. Buni yuqoridagi tenglamaning o'ng tomonining kvadrat ildiziga bo'linib, qachon tuzatish mumkin                     n         =         m       { displaystyle n = m}    .
Garchi u ortonormal asosga ega bo'lmasa-da, ba'zida soddaligi tufayli alternativ normallashtirishga ustunlik beriladi:
                              P                       n                        (             a             ,             β             )           (         1         )         =                                             (                                            n                 +                 a                n                            )            .       { displaystyle P_ {n} ^ {( alfa,  beta)} (1) = {n +  alfa  n} ni tanlang.}   Simmetriya munosabati Polinomlar simmetriya munosabatiga ega
                              P                       n                        (             a             ,             β             )           (         −         z         )         =         (         −         1                   )                       n                     P                       n                        (             β             ,             a             )           (         z         )         ;       { displaystyle P_ {n} ^ {( alfa,  beta)} (- z) = (- 1) ^ {n} P_ {n} ^ {( beta,  alfa)} (z);}   shuning uchun boshqa terminal qiymati
                              P                       n                        (             a             ,             β             )           (         −         1         )         =         (         −         1                   )                       n                                               (                                            n                 +                 β                n                            )            .       { displaystyle P_ {n} ^ {( alfa,  beta)} (- 1) = (- 1) ^ {n} {n +  beta  n} ni tanlang.}   Hosilalari The k aniq ifodaning th hosilasi olib keladi
                                                        d                               k                             d                               z                                   k                        P                       n                        (             a             ,             β             )           (         z         )         =                                             Γ               (               a               +               β               +               n               +               1               +               k               )                                            2                                   k                 Γ               (               a               +               β               +               n               +               1               )                      P                       n             −             k                        (             a             +             k             ,             β             +             k             )           (         z         )         .       { displaystyle { frac {d ^ {k}} {dz ^ {k}}} P_ {n} ^ {( alfa,  beta)} (z) = { frac { Gamma ( alfa + ) beta + n + 1 + k)} {2 ^ {k}  Gamma ( alfa +  beta + n + 1)}} P_ {nk} ^ {( alfa + k,  beta + k)} (z ).}   Differentsial tenglama Yakobiy polinom P (a , β ) n   ikkinchi tartibning echimi chiziqli bir hil differentsial tenglama [1] 
                              (                       1             −                           x                               2              )                    y           ″          +         (         β         −         a         −         (         a         +         β         +         2         )         x         )                   y           ′          +         n         (         n         +         a         +         β         +         1         )         y         =         0.       { displaystyle  chap (1-x ^ {2}  o'ng) y '' + ( beta -  alfa - ( alfa +  beta +2) x) y '+ n (n +  alfa +  beta + 1) y = 0.}   Takrorlanish munosabatlari The takrorlanish munosabati  yakobi polinomlari uchun belgilangan a ,β  bu:[1] 
                                                                                       2                 n                 (                 n                 +                 a                 +                 β                 )                 (                 2                 n                 +                 a                 +                 β                 −                 2                 )                                   P                                       n                                        (                     a                     ,                     β                     )                   (                 z                 )                                                                                              =                 (                 2                 n                 +                 a                 +                 β                 −                 1                 )                                                       {                   (                 2                 n                 +                 a                 +                 β                 )                 (                 2                 n                 +                 a                 +                 β                 −                 2                 )                 z                 +                                   a                                       2                   −                                   β                                       2                                                         }                                     P                                       n                     −                     1                                        (                     a                     ,                     β                     )                   (                 z                 )                 −                 2                 (                 n                 +                 a                 −                 1                 )                 (                 n                 +                 β                 −                 1                 )                 (                 2                 n                 +                 a                 +                 β                 )                                   P                                       n                     −                     2                                        (                     a                     ,                     β                     )                   (                 z                 )                 ,           { displaystyle { begin {aligned} & 2n (n +  alfa +  beta) (2n +  alfa +  beta -2) P_ {n} ^ {( alfa,  beta)} (z)  &  qquad = (2n +  alfa +  beta -1) { Big  {} (2n +  alfa +  beta) (2n +  alfa +  beta -2) z +  alfa ^ {2} -  beta ^ {2} {  Big }} P_ {n-1} ^ {( alfa,  beta)} (z) -2 (n +  alfa -1) (n +  beta -1) (2n +  alfa +  beta) P_ { n-2} ^ {( alfa,  beta)} (z),  end {hizalanmış}}}   uchun n  = 2, 3, ....
Yakobi polinomlarini gipergeometrik funktsiya nuqtai nazaridan tavsiflash mumkin bo'lganligi sababli, gipergeometrik funktsiyani takrorlashlari Jakobi polinomlarining ekvivalent takrorlanishlarini beradi. Xususan, Gaussning tutashgan munosabatlari o'zliklariga mos keladi
                                                                        (                 z                 −                 1                 )                                                       d                                           d                       z                                      P                                       n                                        (                     a                     ,                     β                     )                   (                 z                 )                                                 =                                                       1                     2                   (                 z                 −                 1                 )                 (                 1                 +                 a                 +                 β                 +                 n                 )                                   P                                       n                     −                     1                                        (                     a                     +                     1                     ,                     β                     +                     1                     )                                                                               =                 n                                   P                                       n                                        (                     a                     ,                     β                     )                   −                 (                 a                 +                 n                 )                                   P                                       n                     −                     1                                        (                     a                     ,                     β                     +                     1                     )                                                                               =                 (                 1                 +                 a                 +                 β                 +                 n                 )                                   (                                                             P                                               n                                                (                         a                         ,                         β                         +                         1                         )                       −                                           P                                               n                                                (                         a                         ,                         β                         )                      )                                                                              =                 (                 a                 +                 n                 )                                   P                                       n                                        (                     a                     −                     1                     ,                     β                     +                     1                     )                   −                 a                                   P                                       n                                        (                     a                     ,                     β                     )                                                                               =                                                                             2                       (                       n                       +                       1                       )                                               P                                                   n                           +                           1                                                    (                           a                           ,                           β                           −                           1                           )                         −                                               (                                                   z                           (                           1                           +                           a                           +                           β                           +                           n                           )                           +                           a                           +                           1                           +                           n                           −                           β                          )                                                P                                                   n                                                    (                           a                           ,                           β                           )                                              1                       +                       z                                                                                =                                                                             (                       2                       β                       +                       n                       +                       n                       z                       )                                               P                                                   n                                                    (                           a                           ,                           β                           )                         −                       2                       (                       β                       +                       n                       )                                               P                                                   n                                                    (                           a                           ,                           β                           −                           1                           )                                              1                       +                       z                                                                                =                                                                             1                       −                       z                                            1                       +                       z                                      (                                       β                                           P                                               n                                                (                         a                         ,                         β                         )                       −                     (                     β                     +                     n                     )                                           P                                               n                                                (                         a                         +                         1                         ,                         β                         −                         1                         )                      )                                   .           { displaystyle { begin {aligned} (z-1) { frac {d} {dz}} P_ {n} ^ {( alpha,  beta)} (z) & = { frac {1} { 2}} (z-1) (1+  alfa +  beta + n) P_ {n-1} ^ {( alfa +1,  beta +1)}  & = nP_ {n} ^ {(  alfa,  beta)} - ( alfa + n) P_ {n-1} ^ {( alfa,  beta +1)}  & = (1+  alfa +  beta + n)  left ( P_ {n} ^ {( alfa,  beta +1)} - P_ {n} ^ {( alfa,  beta)}  right)  & = ( alfa + n) P_ {n} ^ { ( alfa -1,  beta +1)} -  alfa P_ {n} ^ {( alfa,  beta)}  & = { frac {2 (n + 1) P_ {n + 1} ^ {( alfa,  beta -1)} -  chap (z (1+  alfa +  beta + n) +  alfa + 1 + n-  beta  o'ng) P_ {n} ^ {( alfa,  beta)}} {1 + z}}  & = { frac {(2  beta + n + nz) P_ {n} ^ {( alfa,  beta)} - 2 ( beta + n) P_ {n} ^ {( alfa,  beta -1)}} {1 + z}}  & = { frac {1-z} {1 + z}}  chap ( beta P_ {n} ^ {( alfa,  beta)} - ((beta + n) P_ {n} ^ {( alfa +1,  beta -1)}  o'ng) ,.  end {hizalangan}}}   Yaratuvchi funktsiya The ishlab chiqarish funktsiyasi  Jacobi polinomlari tomonidan berilgan
                              ∑                       n             =             0                        ∞                     P                       n                        (             a             ,             β             )           (         z         )                   t                       n           =                   2                       a             +             β                     R                       −             1           (         1         −         t         +         R                   )                       −             a           (         1         +         t         +         R                   )                       −             β           ,       { displaystyle  sum _ {n = 0} ^ { infty} P_ {n} ^ {( alfa,  beta)} (z) t ^ {n} = 2 ^ { alfa +  beta} R ^ {-1} (1-t + R) ^ {-  alfa} (1 + t + R) ^ {-  beta},}   qayerda
                    R         =         R         (         z         ,         t         )         =                               (                           1               −               2               z               t               +                               t                                   2                )                                      1               2                      ,       { displaystyle R = R (z, t) =  chap (1-2zt + t ^ {2}  o'ng) ^ { frac {1} {2}} ~,}   va filial  kvadrat ildiz shunday tanlangan R (z , 0) = 1.[1] 
Jakobi polinomlarining asimptotikasi  
Uchun x  ning ichki qismida [−1, 1] , ning asimptotikasi P (a , β ) n   katta uchun n  Darbux formulasi bilan berilgan[1] 
                              P                       n                        (             a             ,             β             )           (         cos                  θ         )         =                   n                       −                                           1                 2             k         (         θ         )         cos                  (         N         θ         +         γ         )         +         O                   (                       n                           −                                                 3                   2               )          ,       { displaystyle P_ {n} ^ {( alfa,  beta)} ( cos  theta) = n ^ {- { frac {1} {2}}} k ( theta)  cos (N  theta) +  gamma) + O  chap (n ^ {- { frac {3} {2}}}  o'ng),}   qayerda
                                                                        k                 (                 θ                 )                                                 =                                   π                                       −                                                                   1                         2                                       gunoh                                       −                     a                     −                                                                   1                         2                                                                                                  θ                       2                                      cos                                       −                     β                     −                                                                   1                         2                                                                                                  θ                       2                    ,                                             N                                                 =                 n                 +                                                                             1                       2                    (                 a                 +                 β                 +                 1                 )                 ,                                             γ                                                 =                 −                                                                             π                       2                                      (                                       a                     +                                                                                             1                           2                       )                  ,           { displaystyle { begin {aligned} k ( theta) & =  pi ^ {- { frac {1} {2}}}  sin ^ {-  alpha - { frac {1} {2}} } { tfrac { theta} {2}}  cos ^ {-  beta - { frac {1} {2}}} { tfrac { theta} {2}},  N & = n + { tfrac {1} {2}} ( alfa +  beta +1),  gamma & = - { tfrac { pi} {2}}  left ( alpha + { tfrac {1} {2 }}  right),  end {hizalangan}}}   va "O "muddat [ε, π -ε] har ε> 0 uchun.
± 1 nuqtalari yaqinidagi Jakobi polinomlarining asimptotikasi Mehler-Geyn formulasi 
                                                                                          lim                                       n                     →                     ∞                                     n                                       −                     a                                     P                                       n                                        (                     a                     ,                     β                     )                                     (                                       cos                                                                (                                                                                                     z                             n                          )                     )                                                  =                                                       (                                                                                             z                           2                        )                                        −                     a                                     J                                       a                   (                 z                 )                                                               lim                                       n                     →                     ∞                                     n                                       −                     β                                     P                                       n                                        (                     a                     ,                     β                     )                                     (                                       cos                                                                (                                               π                         −                                                                                                             z                               n                           )                     )                                                  =                                                       (                                                                                             z                           2                        )                                        −                     β                                     J                                       β                   (                 z                 )           { displaystyle { begin {aligned}  lim _ {n  to  infty} n ^ {-  alpha} P_ {n} ^ {( alfa,  beta)}} chap ( cos  left ({ tfrac {z} {n}}  right)  right) & =  left ({ tfrac {z} {2}}  right) ^ {-  alpha} J _ { alpha} (z)  lim _ {n  to  infty} n ^ {-  beta} P_ {n} ^ {( alfa,  beta)}  chap ( cos  left ( pi - { tfrac {z} {n}}  o'ng)  o'ng) va =  chap ({ tfrac {z} {2}}  o'ng) ^ {-  beta} J _ { beta} (z)  end {hizalangan}}}   bu erda chegaralar bir xil z  chegaralangan holda domen .
Tashqaridagi asimptotiklar [−1, 1]  aniqroq emas.
Ilovalar  
Wigner d-matritsasi Ifoda (1  ) ning ifodalanishiga imkon beradi Wigner d-matritsasi  d j m ’,m  (φ) (0 ≤ φ ≤ 4 uchunπ ) jakobi polinomlari bo'yicha:[4] 
                              d                                     m               ′              m                        j           (         ϕ         )         =                               [                                                             (                   j                   +                   m                   )                   !                   (                   j                   −                   m                   )                   !                                    (                   j                   +                                       m                     ′                    )                   !                   (                   j                   −                                       m                     ′                    )                   !                ]                                      1               2                                  (                           gunoh                                                                                    ϕ                     2                 )                        m             −                           m               ′                                  (                           cos                                                                                    ϕ                     2                 )                        m             +                           m               ′                      P                       j             −             m                        (             m             −                           m               ′              ,             m             +                           m               ′              )           (         cos                  ϕ         )         .       { displaystyle d_ {m'm} ^ {j} ( phi) =  chap [{ frac {(j + m)! (jm)!} {(j + m ')! (j-m') !}}  o'ng] ^ { frac {1} {2}}  chap ( sin { tfrac { phi} {2}}  o'ng) ^ {m-m '}  chap ( cos { tfrac { phi} {2}}  o'ng) ^ {m + m '} P_ {jm} ^ {(m-m', m + m ')} ( cos  phi).}   Shuningdek qarang  
Izohlar  
^ a   b   v   d   e   f   Cheze, Gábor (1939). "IV. Jakobi polinomlari.". Ortogonal polinomlar  . Kollokvium nashrlari. XXIII . Amerika matematik jamiyati. ISBN  978-0-8218-1023-1  . JANOB  0372517 .   Ta'rif IV.1da; differentsial tenglama - IV.2 da; Rodrigesning formulasi IV.3da; ishlab chiqarish funktsiyasi IV.4da; takroriy munosabat IV.5da.^   Abramovits, Milton ; Stegun, Irene Ann , eds. (1983) [1964 yil iyun]. "22-bob" . Matematik funktsiyalar uchun formulalar, grafikalar va matematik jadvallar bilan qo'llanma  . Amaliy matematika seriyasi. 55  (To'qqizinchi o'ninchi asl nashrning tuzatishlar bilan qo'shimcha tuzatishlar bilan qayta nashr etilishi (1972 yil dekabr); birinchi nashr). Vashington Kolumbiyasi; Nyu-York: Amerika Qo'shma Shtatlari Savdo vazirligi, Milliy standartlar byurosi; Dover nashrlari. p. 561. ISBN  978-0-486-61272-0  . LCCN  64-60036 . JANOB  0167642 . LCCN  65-12253 .^   P.K. Suetin (2001) [1994], "Jacobi_polynomials" , Matematika entsiklopediyasi  , EMS Press  ^   Biedenharn, L.C .; Louck, JD (1981). Kvant fizikasidagi burchakli momentum . O'qish: Addison-Uesli. Qo'shimcha o'qish  
Endryus, Jorj E.; Askey, Richard; Roy, Ranjan (1999), Maxsus funktsiyalar , Matematika entsiklopediyasi va uning qo'llanilishi, 71 , Kembrij universiteti matbuoti , ISBN  978-0-521-62321-6  , JANOB  1688958 , ISBN  978-0-521-78988-2  Koornwinder, Tom X.; Vong, Roderik S. S.; Koekoek, Roelof; Svartov, René F. (2010), "Ortogonal polinomlar" , yilda Olver, Frank V. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Klark, Charlz V. (tahr.), NIST Matematik funktsiyalar bo'yicha qo'llanma  , Kembrij universiteti matbuoti, ISBN  978-0-521-19225-5  , JANOB  2723248  Tashqi havolalar