Vikipediya ro'yxatidagi maqola
Ushbu iboralarda,
                    ϕ         (         x         )         =                               1                           2               π                      e                       −                                           1                 2                             x                               2           { displaystyle  phi (x) = { frac {1} { sqrt {2  pi}}} e ^ {- { frac {1} {2}} x ^ {2}}}   bo'ladi standart normal  ehtimollik zichligi funktsiyasi,
                    Φ         (         x         )         =                   ∫                       −             ∞                        x           ϕ         (         t         )                  d         t         =                               1             2                     (                       1             +             erf                                        (                                                 x                                       2                  )             )        { displaystyle  Phi (x) =  int _ {-  infty} ^ {x}  phi (t) , dt = { frac {1} {2}}  left (1+  operator nomi {erf}  chap ({ frac {x} { sqrt {2}}}  o'ng)  o'ng)}   mos keladi kümülatif taqsimlash funktsiyasi  (qayerda erf  bo'ladi xato funktsiyasi ) va
                    T         (         h         ,         a         )         =         ϕ         (         h         )                   ∫                       0                        a                                               ϕ               (               h               x               )                            1               +                               x                                   2                       d         x       { displaystyle T (h, a) =  phi (h)  int _ {0} ^ {a} { frac { phi (hx)} {1 + x ^ {2}}} , dx}   bu Ouenning T funktsiyasi .
Ouen[nb 1]   Gauss tipidagi integrallarning keng ro'yxatiga ega; faqat quyi qism quyida keltirilgan.
Aniq bo'lmagan integrallar  
                    ∫         ϕ         (         x         )                  d         x         =         Φ         (         x         )         +         C       { displaystyle  int  phi (x) , dx =  Phi (x) + C}                       ∫         x         ϕ         (         x         )                  d         x         =         −         ϕ         (         x         )         +         C       { displaystyle  int x  phi (x) , dx = -  phi (x) + C}                       ∫                   x                       2           ϕ         (         x         )                  d         x         =         Φ         (         x         )         −         x         ϕ         (         x         )         +         C       { displaystyle  int x ^ {2}  phi (x) , dx =  Phi (x) -x  phi (x) + C}                       ∫                   x                       2             k             +             1           ϕ         (         x         )                  d         x         =         −         ϕ         (         x         )                   ∑                       j             =             0                        k                                               (               2               k               )               !               !                            (               2               j               )               !               !                      x                       2             j           +         C       { displaystyle  int x ^ {2k + 1}  phi (x) , dx = -  phi (x)  sum _ {j = 0} ^ {k} { frac {(2k) !!} { (2j) !!}} x ^ {2j} + C}   [nb 2]                     ∫                   x                       2             k             +             2           ϕ         (         x         )                  d         x         =         −         ϕ         (         x         )                   ∑                       j             =             0                        k                                               (               2               k               +               1               )               !               !                            (               2               j               +               1               )               !               !                      x                       2             j             +             1           +         (         2         k         +         1         )         !         !                  Φ         (         x         )         +         C       { displaystyle  int x ^ {2k + 2}  phi (x) , dx = -  phi (x)  sum _ {j = 0} ^ {k} { frac {(2k + 1) !! } {(2j + 1) !!}} x ^ {2j + 1} + (2k + 1) !! ,  Phi (x) + C}   Ushbu integrallarda, n !! bo'ladi ikki faktorial : hatto uchun n  u 2 dan to barcha juft sonlarning ko'paytmasiga teng n va g'alati uchun n  u 1dan to toqgacha bo'lgan barcha toq sonlarning ko'paytmasi n  ; qo'shimcha ravishda shunday deb taxmin qilinadi 0!! = (−1)!! = 1 .
                    ∫         ϕ         (         x                   )                       2                    d         x         =                               1                           2                                                 π              Φ                   (                       x                                           2              )          +         C       { displaystyle  int  phi (x) ^ {2} , dx = { frac {1} {2 { sqrt { pi}}}}  Phi  left (x { sqrt {2}} ) o‘ngda) + C}                       ∫         ϕ         (         x         )         ϕ         (         a         +         b         x         )                  d         x         =                               1             t           ϕ                   (                                     a               t             )          Φ                   (                       t             x             +                                                             a                   b                  t              )          +         C         ,                  t         =                               1             +                           b                               2           { displaystyle  int  phi (x)  phi (a + bx) , dx = { frac {1} {t}}  phi  left ({ frac {a} {t}}  right)  Phi  chap (tx + { frac {ab} {t}}  o'ng) + C,  qquad t = { sqrt {1 + b ^ {2}}}}   [nb 3]                     ∫         x         ϕ         (         a         +         b         x         )                  d         x         =         −                               1                           b                               2                       (                       ϕ             (             a             +             b             x             )             +             a             Φ             (             a             +             b             x             )            )          +         C       { displaystyle  int x  phi (a + bx) , dx = - { frac {1} {b ^ {2}}}  left ( phi (a + bx) + a  Phi (a + bx) )  o'ng) + C}                       ∫                   x                       2           ϕ         (         a         +         b         x         )                  d         x         =                               1                           b                               3                       (                       (                           a                               2               +             1             )             Φ             (             a             +             b             x             )             +             (             a             −             b             x             )             ϕ             (             a             +             b             x             )            )          +         C       { displaystyle  int x ^ {2}  phi (a + bx) , dx = { frac {1} {b ^ {3}}}  left ((a ^ {2} +1)  Phi ( a + bx) + (a-bx)  phi (a + bx)  right) + C}                       ∫         ϕ         (         a         +         b         x                   )                       n                    d         x         =                               1                           b                                                 n                   (                   2                   π                                       )                                           n                       −                       1                Φ                   (                                                     n               (             a             +             b             x             )            )          +         C       { displaystyle  int  phi (a + bx) ^ {n} , dx = { frac {1} {b { sqrt {n (2  pi) ^ {n-1}}}}}} Phi  chap ({ sqrt {n}} (a + bx)  o'ng) + C}                       ∫         Φ         (         a         +         b         x         )                  d         x         =                               1             b                     (                       (             a             +             b             x             )             Φ             (             a             +             b             x             )             +             ϕ             (             a             +             b             x             )            )          +         C       { displaystyle  int  Phi (a + bx) , dx = { frac {1} {b}}  chap ((a + bx)  Phi (a + bx) +  phi (a + bx)  o‘ngda) + C}                       ∫         x         Φ         (         a         +         b         x         )                  d         x         =                               1                           2                               b                                   2                        (                       (                           b                               2                             x                               2               −                           a                               2               −             1             )             Φ             (             a             +             b             x             )             +             (             b             x             −             a             )             ϕ             (             a             +             b             x             )            )          +         C       { displaystyle  int x  Phi (a + bx) , dx = { frac {1} {2b ^ {2}}}  left ((b ^ {2} x ^ {2} -a ^ {2 } -1)  Phi (a + bx) + (bx-a)  phi (a + bx)  o'ng) + C}                       ∫                   x                       2           Φ         (         a         +         b         x         )                  d         x         =                               1                           3                               b                                   3                        (                       (                           b                               3                             x                               3               +                           a                               3               +             3             a             )             Φ             (             a             +             b             x             )             +             (                           b                               2                             x                               2               −             a             b             x             +                           a                               2               +             2             )             ϕ             (             a             +             b             x             )            )          +         C       { displaystyle  int x ^ {2}  Phi (a + bx) , dx = { frac {1} {3b ^ {3}}}  left ((b ^ {3} x ^ {3} +) a ^ {3} + 3a)  Phi (a + bx) + (b ^ {2} x ^ {2} -abx + a ^ {2} +2)  phi (a + bx)  right) + C }                       ∫                   x                       n           Φ         (         x         )                  d         x         =                               1                           n               +               1                      (                                     (                                                 x                                       n                     +                     1                   −                 n                                   x                                       n                     −                     1                  )              Φ             (             x             )             +                           x                               n               ϕ             (             x             )             +             n             (             n             −             1             )             ∫                           x                               n                 −                 2               Φ             (             x             )                          d             x            )          +         C       { displaystyle  int x ^ {n}  Phi (x) , dx = { frac {1} {n + 1}}  left ( left (x ^ {n + 1} -nx ^ {n-) 1}  o'ng)  Phi (x) + x ^ {n}  phi (x) + n (n-1)  int x ^ {n-2}  Phi (x) , dx  right) + C }                       ∫         x         ϕ         (         x         )         Φ         (         a         +         b         x         )                  d         x         =                               b             t           ϕ                   (                                     a               t             )          Φ                   (                       x             t             +                                                             a                   b                  t              )          −         ϕ         (         x         )         Φ         (         a         +         b         x         )         +         C         ,                  t         =                               1             +                           b                               2           { displaystyle  int x  phi (x)  Phi (a + bx) , dx = { frac {b} {t}}  phi  left ({ frac {a} {t}}  right)  Phi  chap (xt + { frac {ab} {t}}  o'ng) -  phi (x)  Phi (a + bx) + C,  qquad t = { sqrt {1 + b ^ {2} }}}                       ∫         Φ         (         x                   )                       2                    d         x         =         x         Φ         (         x                   )                       2           +         2         Φ         (         x         )         ϕ         (         x         )         −                               1                           π            Φ                   (                       x                                           2              )          +         C       { displaystyle  int  Phi (x) ^ {2} , dx = x  Phi (x) ^ {2} +2  Phi (x)  phi (x) - { frac {1} { sqrt) { pi}}}  Phi  chap (x { sqrt {2}}  o'ng) + C}                       ∫                   e                       v             x           ϕ         (         b         x                   )                       n                    d         x         =                                             e                                                                     v                                           2                                         2                     n                                           b                                               2                                 b                                                 n                   (                   2                   π                                       )                                           n                       −                       1                Φ                   (                                                                       b                                       2                   x                 n                 −                 v                                b                                                       n                )          +         C         ,                  b         ≠         0         ,         n         >         0       { displaystyle  int e ^ {cx}  phi (bx) ^ {n} , dx = { frac {e ^ { frac {c ^ {2}} {2nb ^ {2}}}} {b { sqrt {n (2  pi) ^ {n-1}}}}}  Phi  left ({ frac {b ^ {2} xn-c} {b { sqrt {n}}}}  o'ng) + C,  qquad b  neq 0, n> 0}   Aniq integrallar  
                              ∫                       −             ∞                        ∞                     x                       2           ϕ         (         x                   )                       n                    d         x         =                               1                                           n                                   3                 (               2               π                               )                                   n                   −                   1            { displaystyle  int _ {-  infty} ^ { infty} x ^ {2}  phi (x) ^ {n} , dx = { frac {1} { sqrt {n ^ {3} ( 2  pi) ^ {n-1}}}}}                                 ∫                       −             ∞                        0           ϕ         (         a         x         )         Φ         (         b         x         )         d         x         =                               1                           2               π                               |                a                               |                       (                                                     π                 2               −             Arktan                                        (                                                 b                                                             |                      a                                           |                   )             )        { displaystyle  int _ {-  infty} ^ {0}  phi (ax)  Phi (bx) dx = { frac {1} {2  pi | a |}}  chap ({ frac {) pi} {2}} -  arctan  chap ({ frac {b} {| a |}}  o'ng)  o'ng)}                                 ∫                       0                        ∞           ϕ         (         a         x         )         Φ         (         b         x         )                  d         x         =                               1                           2               π                               |                a                               |                       (                                                     π                 2               +             Arktan                                        (                                                 b                                                             |                      a                                           |                   )             )        { displaystyle  int _ {0} ^ { infty}  phi (ax)  Phi (bx) , dx = { frac {1} {2  pi | a |}}  left ({ frac {)  pi} {2}} +  arctan  chap ({ frac {b} {| a |}}  o'ng)  o'ng)}                                 ∫                       0                        ∞           x         ϕ         (         x         )         Φ         (         b         x         )                  d         x         =                               1                           2                                                 2                   π                        (                       1             +                                           b                                   1                   +                                       b                                           2                 )        { displaystyle  int _ {0} ^ { infty} x  phi (x)  Phi (bx) , dx = { frac {1} {2 { sqrt {2  pi}}}}} chap (1 + { frac {b} { sqrt {1 + b ^ {2}}}}  o'ng)}                                 ∫                       0                        ∞                     x                       2           ϕ         (         x         )         Φ         (         b         x         )                  d         x         =                               1             4           +                               1                           2               π                      (                                                     b                                   1                   +                                       b                                           2                  +             Arktan                          (             b             )            )        { displaystyle  int _ {0} ^ { infty} x ^ {2}  phi (x)  Phi (bx) , dx = { frac {1} {4}} + { frac {1} {2  pi}}  chap ({ frac {b} {1 + b ^ {2}}} +  arctan (b)  right)}                                 ∫                       0                        ∞           x         ϕ         (         x                   )                       2           Φ         (         x         )                  d         x         =                               1                           4               π                                                 3            { displaystyle  int _ {0} ^ { infty} x  phi (x) ^ {2}  Phi (x) , dx = { frac {1} {4  pi { sqrt {3}} }}}                                 ∫                       0                        ∞           Φ         (         b         x                   )                       2           ϕ         (         x         )                  d         x         =                               1                           2               π                      (                       Arktan                          (             b             )             +             Arktan                                                        1                 +                 2                                   b                                       2                )        { displaystyle  int _ {0} ^ { infty}  Phi (bx) ^ {2}  phi (x) , dx = { frac {1} {2  pi}}  left ( arctan ( b) +  arctan { sqrt {1 + 2b ^ {2}}}  o'ng)}                                 ∫                       −             ∞                        ∞           Φ         (         a         +         b         x                   )                       2           ϕ         (         x         )                  d         x         =         Φ                   (                                     a                               1                 +                                   b                                       2                )          −         2         T                   (                                                     a                                   1                   +                                       b                                           2                  ,                                           1                                   1                   +                   2                                       b                                           2                 )        { displaystyle  int _ {-  infty} ^ { infty}  Phi (a + bx) ^ {2}  phi (x) , dx =  Phi  left ({ frac {a} { sqrt) {1 + b ^ {2}}}}  o'ng) -2T  chap ({ frac {a} { sqrt {1 + b ^ {2}}}}, { frac {1} { sqrt { 1 + 2b ^ {2}}}}  o'ng)}                                 ∫                       −             ∞                        ∞           x         Φ         (         a         +         b         x                   )                       2           ϕ         (         x         )                  d         x         =                                             2               b                            1               +                               b                                   2              ϕ                   (                                     a               t             )          Φ                   (                                     a                                                                     1                     +                                           b                                               2                                                           1                     +                     2                                           b                                               2                  )        { displaystyle  int _ {-  infty} ^ { infty} x  Phi (a + bx) ^ {2}  phi (x) , dx = { frac {2b} { sqrt {1 + b ^ {2}}}}  phi  chap ({ frac {a} {t}}  o'ng)  Phi  chap ({ frac {a} {{ sqrt {1 + b ^ {2}}} { sqrt {1 + 2b ^ {2}}}}}  o'ng)}   [nb 4]                               ∫                       −             ∞                        ∞           Φ         (         b         x                   )                       2           ϕ         (         x         )                  d         x         =                               1             π           Arktan                                        1             +             2                           b                               2           { displaystyle  int _ {-  infty} ^ { infty}  Phi (bx) ^ {2}  phi (x) , dx = { frac {1} { pi}}  arctan { sqrt {1 + 2b ^ {2}}}}                                 ∫                       −             ∞                        ∞           x         ϕ         (         x         )         Φ         (         b         x         )                  d         x         =                   ∫                       −             ∞                        ∞           x         ϕ         (         x         )         Φ         (         b         x                   )                       2                    d         x         =                               b                           2               π               (               1               +                               b                                   2                 )          { displaystyle  int _ {-  infty} ^ { infty} x  phi (x)  Phi (bx) , dx =  int _ {-  infty} ^ { infty} x  phi (x)  Phi (bx) ^ {2} , dx = { frac {b} { sqrt {2  pi (1 + b ^ {2})}}}}}                                 ∫                       −             ∞                        ∞           Φ         (         a         +         b         x         )         ϕ         (         x         )                  d         x         =         Φ                   (                                     a                               1                 +                                   b                                       2                )        { displaystyle  int _ {-  infty} ^ { infty}  Phi (a + bx)  phi (x) , dx =  Phi  left ({ frac {a} { sqrt {1 + b) ^ {2}}}}  o'ng)}                                 ∫                       −             ∞                        ∞           x         Φ         (         a         +         b         x         )         ϕ         (         x         )                  d         x         =                               b             t           ϕ                   (                                     a               t             )          ,                  t         =                               1             +                           b                               2           { displaystyle  int _ {-  infty} ^ { infty} x  Phi (a + bx)  phi (x) , dx = { frac {b} {t}}  phi  left ({ frac {a} {t}}  right),  qquad t = { sqrt {1 + b ^ {2}}}}                                 ∫                       0                        ∞           x         Φ         (         a         +         b         x         )         ϕ         (         x         )                  d         x         =                               b             t           ϕ                   (                                     a               t             )          Φ                   (                       −                                                             a                   b                  t              )          +                               1                           2               π            Φ         (         a         )         ,                  t         =                               1             +                           b                               2           { displaystyle  int _ {0} ^ { infty} x  Phi (a + bx)  phi (x) , dx = { frac {b} {t}}  phi  left ({ frac { a} {t}}  o'ng)  Phi  chap (- { frac {ab} {t}}  o'ng) + { frac {1} { sqrt {2  pi}}}  Phi (a) ,  qquad t = { sqrt {1 + b ^ {2}}}}                                 ∫                       −             ∞                        ∞           ln                  (                   x                       2           )                               1             σ           ϕ                   (                                     x               σ             )                   d         x         =         ln                  (                   σ                       2           )         −         γ         −         ln                  2         ≈         ln                  (                   σ                       2           )         −         1.27036       { displaystyle  int _ {-  infty} ^ { infty}  ln (x ^ {2}) { frac {1} { sigma}}  phi  left ({ frac {x} { sigma }}  o'ng) , dx =  ln ( sigma ^ {2}) -  gamma -  ln 2  taxminan  ln ( sigma ^ {2}) - 1.27036}   Adabiyotlar  
Patel, Jagdish K.; O'qing, Kempbell B. (1996). Oddiy tarqatish bo'yicha qo'llanma  (2-nashr). CRC Press. ISBN  0-8247-9342-0  . CS1 maint: ref = harv (havola ) Ouen, D. (1980). "Normal integrallar jadvali". Statistikadagi aloqa: simulyatsiya va hisoblash . B9 : 389–419. CS1 maint: ref = harv (havola )