Yilda matematika, a kvazi-Frobenius yolg'on algebra
![(mathfrak {g}, [,,,,,,,]] va boshqalar)](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8997357d58354e97fdc54f19ed28ca05198eef8)
maydon ustida 
 a Yolg'on algebra
![(mathfrak {g}, [,,,,,,,]])](https://wikimedia.org/api/rest_v1/media/math/render/svg/007a3516c1d50e9723cc7ebb671c165cc9458ade)
bilan jihozlangan noaniq nosimmetrik bilinear shakl
Lie algebra 2-velosiped ning 
 qiymatlari bilan 
. Boshqa so'zlar bilan aytganda,
![eta chap (chap [X, Yight], Zight) + eta chap (chap [Z, Xight], Yight) + eta chap (chap [Y, Zight], Xight) = 0](https://wikimedia.org/api/rest_v1/media/math/render/svg/b23be708e4579afbecba44d2d4d9db61ac80d1db)
Barcha uchun 
, 
, 
 yilda 
.
Agar 
 bu chegara, ya'ni chiziqli shakl mavjudligini anglatadi 
 shu kabi
![eta (X, Y) = f (chap [X, Yight]),](https://wikimedia.org/api/rest_v1/media/math/render/svg/7a38800adb937135bd582aaccc0abe763739be7f)
keyin
![(mathfrak {g}, [,,,,,,,]] va boshqalar)](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8997357d58354e97fdc54f19ed28ca05198eef8)
deyiladi a Frobenius Lie algebra.
Yalang'ochgacha algebralar bilan ekvivalentlik noaniq o'zgarmas skew-nosimmetrik bilinear shaklga ega
Agar 
 kvazi-Frobenius yolg'on algebrasi, uni aniqlash mumkin 
 boshqa bilinear mahsulot 
 formula bo'yicha
.
Keyin bittasi bor
 va 

a Yolg'ondan oldingi algebra.
Shuningdek qarang
Adabiyotlar
- Jeykobson, Natan, Yolg'on algebralar, 1962 yilgi asl nusxaning respublikasi. Dover Publications, Inc., Nyu-York, 1979 yil. ISBN 0-486-63832-4
 - Vyjayanthi Chari va Endryu Pressli, Kvant guruhlari uchun qo'llanma, (1994), Kembrij universiteti matbuoti, Kembrij ISBN 0-521-55884-0.