WikiDer > Serresning modullik gumoni - Vikipediya
Maydon | Algebraik sonlar nazariyasi |
---|---|
Gumon qilingan | Jan-Per Ser |
Gumon qilingan | 1975 |
Birinchi dalil | Chandrashekhar Khare Jan-Per Vintenberger |
Birinchi dalil | 2008 |
Yilda matematika, Serrening modullik gumonitomonidan kiritilgan Jan-Per Ser (1975, 1987), g'alati, kamaytirilmaydigan, ikki o'lchovli ekanligini bildiradi Galois vakili ustidan cheklangan maydon modulli shakldan kelib chiqadi. Ushbu taxminning yanada kuchli versiyasi modulli shaklning og'irligi va darajasini belgilaydi. 1-darajadagi gipoteza isbotlandi Chandrashekhar Khare 2005 yilda,[1] va to'liq taxminning isboti Xare va Jan-Per Vintenberger 2008 yilda.[2]
Formulyatsiya
Gumon quyidagilarga tegishli mutlaq Galois guruhi ning ratsional son maydoni .
Ruxsat bering bo'lish mutlaqo qisqartirilmaydi, ning doimiy, ikki o'lchovli tasviri cheklangan maydon ustida .
Bundan tashqari, taxmin qiling g'alati, ya'ni murakkab konjugatsiya tasviri -1 determinantiga ega.
Har qanday normallashtirilgan modulli o'ziga xos shakl
ning Daraja , vazn va ba'zilari Nebentype belgisi
- ,
Shimura, Deligne va Serre-Deligne tomonidan berilgan teorema vakillik
qayerda ning cheklangan kengaytmasidagi butun sonlarning halqasi . Ushbu vakillik barcha tub sonlar uchun shart bilan tavsiflanadi , koprime ga bizda ... bor
va
Ushbu namoyish modulini kamaytirish maksimal ideal tartibini beradi vakillik ning .
Serrening gumoni shuni ta'kidlaydiki, har qanday vakil uchun yuqoridagi kabi, modulli o'ziga xos shakl mavjud shu kabi
- .
Gumon shaklining darajasi va vazni Serening maqolasida aniq gumon qilingan. Bundan tashqari, u ushbu gumondan qator natijalarni keltirib chiqaradi Fermaning so'nggi teoremasi va hozirda isbotlangan Taniyama-Vayl (yoki Taniyama-Shimura) gumoni, endi modullik teoremasi (garchi bu Fermaning so'nggi teoremasini nazarda tutsa-da, Serre buni to'g'ridan-to'g'ri o'z taxminidan tasdiqlaydi).
Optimal daraja va vazn
Serrning gumonining kuchli shakli modulli shaklning darajasi va vaznini tavsiflaydi.
Eng maqbul daraja Artin dirijyori ning kuchi bilan vakolatxonaning olib tashlandi.
Isbot
Gipotezaning 1-darajali va kichik vaznli holatlarining isboti 2004 yilda olingan Chandrashekhar Khare va Jan-Per Vintenberger,[3] va tomonidan Luis Dieulefait,[4] mustaqil ravishda.
2005 yilda Chandrashekhar Khare Serre gumonining 1-darajali holatini isbotladi,[5] va 2008 yilda Jan-Per Vintenberger bilan hamkorlikda to'liq gumonning isboti.[6]
Izohlar
- ^ Khare, Chandrashekhar (2006), "Serrening modullik gumoni: Birinchi darajadagi holat", Dyuk Matematik jurnali, 134 (3): 557–589, doi:10.1215 / S0012-7094-06-13434-8.
- ^ Xare, Chandrashexar; Vintenberger, Jan-Per (2009), "Serrning modullik gumoni (I)", Mathematicae ixtirolari, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007 / s00222-009-0205-7 va Xare, Chandrashexar; Vintenberger, Jan-Per (2009), "Serrning modullik gumoni (II)", Mathematicae ixtirolari, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007 / s00222-009-0206-6.
- ^ Xare, Chandrashexar; Vintenberger, Jan-Per (2009), "Gal (Q / Q) ning ikki o'lchovli mod p tasvirlari uchun Serrening o'zaro gumoni to'g'risida", Matematika yilnomalari, 169 (1): 229–253, doi:10.4007 / annals.2009.169.229.
- ^ Dieulefait, Luis (2007), "Serre gumonining 2-darajali og'irligi", Revista Matemática Iberoamericana, 23 (3): 1115–1124, arXiv:matematika / 0412099, doi:10.4171 / rmi / 525.
- ^ Khare, Chandrashekhar (2006), "Serrening modullik gumoni: Birinchi darajali voqea", Dyuk Matematik jurnali, 134 (3): 557–589, doi:10.1215 / S0012-7094-06-13434-8.
- ^ Xare, Chandrashexar; Vintenberger, Jan-Per (2009), "Serrning modullik gumoni (I)", Mathematicae ixtirolari, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX 10.1.1.518.4611, doi:10.1007 / s00222-009-0205-7 va Xare, Chandrashexar; Vintenberger, Jan-Per (2009), "Serrning modullik gumoni (II)", Mathematicae ixtirolari, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX 10.1.1.228.8022, doi:10.1007 / s00222-009-0206-6.
Adabiyotlar
- Serre, Jan-Per (1975), "Valeurs propres des opérateurs de Hecke modulo l", Journées Arithmétiques de Bordo (Konf., Univ. Bordo, 1974), Asterisk, 24–25: 109–117, ISSN 0303-1179, JANOB 0382173
- Serre, Jan-Per (1987), "Sur les représentations modulaires de degré 2 de Gal (Q/ Q) ", Dyuk Matematik jurnali, 54 (1): 179–230, doi:10.1215 / S0012-7094-87-05413-5, ISSN 0012-7094, JANOB 0885783
- Shteyn, Uilyam A .; Ribet, Kennet A. (2001), "Serrning taxminlari bo'yicha ma'ruzalar", Konradda, Brayan; Rubin, Karl (tahrir), Arifmetik algebraik geometriya (Park City, UT, 1999), IAS / Park City Math. Ser., 9, Providence, R.I .: Amerika matematik jamiyati, 143–232 betlar, ISBN 978-0-8218-2173-2, JANOB 1860042
Tashqi havolalar
- Serrening modullik gumoni Tomonidan 50 daqiqalik ma'ruza Ken Ribet 2007 yil 25 oktyabrda berilgan ( slaydlar PDF, slaydlarning boshqa versiyasi PDF)
- Serrning taxminlari bo'yicha ma'ruzalar