Integral bilan aniqlangan maxsus funktsiya
   Si (x) (ko'k) va Ci (x) (yashil) bir xil uchastkada chizilgan.
Yilda matematika , trigonometrik integrallar  a oila  ning integrallar  jalb qilish trigonometrik funktsiyalar .
Sinus integral  
   Uchastka 
Si (x )  uchun 
0 ≤ x  ≤ 8 π  .
Turli xil sinus  ajralmas ta'riflar
                    Si                  (         x         )         =                   ∫                       0                        x                                               gunoh                              t              t                    d         t       { displaystyle  operator nomi {Si} (x) =  int _ {0} ^ {x} { frac { sin t} {t}} , dt}                       si                  (         x         )         =         −                   ∫                       x                        ∞                                               gunoh                              t              t                    d         t                   .       { displaystyle  operator nomi {si} (x) = -  int _ {x} ^ { infty} { frac { sin t} {t}} , dt ~.}   Integrand ekanligini unutmanggunoh x   ⁄ x    bo'ladi sinc funktsiyasi , shuningdek, nol sferik Bessel funktsiyasi .Bundan beri  samimiy  bu hatto  butun funktsiya  (holomorfik  butun murakkab tekislikda),  Si  butun, g'alati va uning ta'rifidagi integralni olish mumkin har qanday yo'l  so'nggi nuqtalarni ulash.
Ta'rifga ko'ra,  Si (x )  bo'ladi antivivativ  ning gunoh x  / x   uning qiymati nolga teng x  = 0 va si (x )  qiymati antidivivdir, uning qiymati nolga teng x  = ∞ . Ularning farqlari Dirichlet integrali ,
                    Si                  (         x         )         −         si                  (         x         )         =                   ∫                       0                        ∞                                               gunoh                              t              t                    d         t         =                               π             2                               yoki                   Si                  (         x         )         =                               π             2           +         si                  (         x         )                   .       { displaystyle  operator nomi {Si} (x) -  operator nomi {si} (x) =  int _ {0} ^ { infty} { frac { sin t} {t}} , dt = { frac { pi} {2}}  quad { text {or}}  quad  operatorname {Si} (x) = { frac { pi} {2}} +  operatorname {si} (x) ~ .}   Yilda signallarni qayta ishlash , sinus integral sababining tebranishlari overshoot  va qo'ng'iroq qilayotgan buyumlar  dan foydalanganda sinc filtri va chastota domeni  kesilgan sinc filtrini a sifatida ishlatsangiz qo'ng'iroq past o'tkazgichli filtr .
Bog'liq Gibbs hodisasi : Agar sinus integral integral sifatida qabul qilinsa konversiya  bilan sinc funksiyasining og'ir funksiya , bu qisqartirishga to'g'ri keladi Fourier seriyasi , bu Gibbs hodisasining sababi.
Kosinus integrali  
   Uchastka 
Ci (x )  uchun 
0 < x  ≤ 8π  . Turli xil kosinus  ajralmas ta'riflar
                    Cin                  (         x         )         =                   ∫                       0                        x                                               1               −               cos                              t              t           d                  t                   ,       { displaystyle  operator nomi {Cin} (x) =  int _ {0} ^ {x} { frac {1-  cos t} {t}}  operator nomi {d} t ~,}                       Salom                  (         x         )         =         −                   ∫                       x                        ∞                                               cos                              t              t           d                  t         =         γ         +         ln                  x         −                   ∫                       0                        x                                               1               −               cos                              t              t           d                  t                                       uchun                              |                       Arg                          (             x             )            |          <         π                   ,       { displaystyle  operator nomi {Ci} (x) = -  int _ {x} ^ { infty} { frac { cos t} {t}}  operator nomi {d} t =  gamma +  ln x-  int _ {0} ^ {x} { frac {1-  cos t} {t}}  operatorname {d} t  qquad ~ { text {for}} ~  left |  operatorname {Arg} ( x)  right | < pi ~,}   qayerda γ  ≈ 0.57721566 ... bu Eyler-Maskeroni doimiysi . Ba'zi matnlardan foydalaniladi ci  o'rniga Salom .
 Ci (x )  ning antiderivatividir cos x  / x   (bu yo'qoladi                     x         →         ∞       { displaystyle x  to  infty}    ). Ikki ta'rif bir-biriga bog'liqdir
                    Salom                  (         x         )         =         γ         +         ln                  x         −         Cin                  (         x         )                   .       { displaystyle  operator nomi {Ci} (x) =  gamma +  ln x-  operator nomi {Cin} (x) ~.}   Cin  bu hatto , butun funktsiya . Shu sababli, ba'zi matnlarda muomala qilinadi Cin  asosiy funktsiya sifatida va hosil qiladi Salom  xususida Cin .
Giperbolik sinus integral  
The giperbolik sinus  integral sifatida belgilanadi
                    Shi                  (         x         )         =                   ∫                       0                        x                                               sinx                              (               t               )              t                    d         t         .       { displaystyle  operator nomi {Shi} (x) =  int _ {0} ^ {x} { frac { sinh (t)} {t}} , dt.}   Bu oddiy sinus integral bilan bog'liq
                    Si                  (         men         x         )         =         men         Shi                  (         x         )         .       { displaystyle  operator nomi {Si} (ix) = i  operator nomi {Shi} (x).}   Giperbolik kosinus integrali  
The giperbolik kosinus  ajralmas hisoblanadi
                    Chi                  (         x         )         =         γ         +         ln                  x         +                   ∫                       0                        x                                                              xushchaqchaq                              t               −               1                            t           d                  t                                       uchun                              |                       Arg                          (             x             )            |          <         π                   ,       { displaystyle  operator nomi {Chi} (x) =  gamma +  ln x +  int _ {0} ^ {x} { frac {;  cosh t-1 ;} {t}}  operator nomi {d } t  qquad ~ { text {for}} ~  left |  operatorname {Arg} (x)  right | < pi ~,}   qayerda                     γ       { displaystyle  gamma}     bo'ladi Eyler-Maskeroni doimiysi .
Uning ketma-ket kengayishi bor
                    Chi                  (         x         )         =         γ         +         ln                  (         x         )         +                                             x                               2               4           +                                             x                               4               96           +                                             x                               6               4320           +                                             x                               8               322560           +                                             x                               10               36288000           +         O         (                   x                       12           )         .       { displaystyle  operator nomi {Chi} (x) =  gamma +  ln (x) + { frac {x ^ {2}} {4}} + { frac {x ^ {4}} {96}} + { frac {x ^ {6}} {4320}} + { frac {x ^ {8}} {322560}} + { frac {x ^ {10}} {36288000}} + O (x ^ {12}).}   Yordamchi funktsiyalar  
Trigonometrik integrallarni "yordamchi funktsiyalar" deb atash mumkin
                                                                        f                 (                 x                 )                                ≡                                                  ∫                                       0                                        ∞                                                                               gunoh                                              (                       t                       )                                            t                       +                       x                                      d                  t                                =                                                  ∫                                       0                                        ∞                                                                               e                                               −                         x                         t                                                                     t                                                   2                         +                       1                                      d                  t                                =                                                 Salom                                  (                 x                 )                 gunoh                                  (                 x                 )                 +                                   [                                                                                     π                         2                       −                     Si                                          (                     x                     )                    ]                  cos                                  (                 x                 )                                   ,                                                     va                                              g                 (                 x                 )                                ≡                                                  ∫                                       0                                        ∞                                                                               cos                                              (                       t                       )                                            t                       +                       x                                      d                  t                                =                                                  ∫                                       0                                        ∞                                                                               t                                               e                                                   −                           x                           t                                                                      t                                                   2                         +                       1                                      d                  t                                =                                −                 Salom                                  (                 x                 )                 cos                                  (                 x                 )                 +                                   [                                                                                     π                         2                       −                     Si                                          (                     x                     )                    ]                  gunoh                                  (                 x                 )                                   .           { displaystyle { begin {array} {rcl} f (x) &  equiv &  int _ {0} ^ { infty} { frac { sin (t)} {t + x}}  mathrm { d} t & = &  int _ {0} ^ { infty} { frac {e ^ {- xt}} {t ^ {2} +1}}  mathrm {d} t & = &  quad  operatorname { Ci} (x)  sin (x) +  chap [{ frac { pi} {2}} -  operatorname {Si} (x)  right]  cos (x) ~,  qquad { text { va}}  g (x) &  equiv &  int _ {0} ^ { infty} { frac { cos (t)} {t + x}}  mathrm {d} t & = &  int _ {0} ^ { infty} { frac {te ^ {- xt}} {t ^ {2} +1}}  mathrm {d} t & = & -  operator nomi {Ci} (x)  cos ( x) +  left [{ frac { pi} {2}} -  operatorname {Si} (x)  right]  sin (x) ~.  end {array}}}   Ushbu funktsiyalar yordamida trigonometrik integrallar qayta ifodalanishi mumkin (qarang: Abramovits va Shtegun, p. 232 )
                                                                                                              π                     2                   −                 Si                                  (                 x                 )                 =                 −                 si                                  (                 x                 )                                =                                f                 (                 x                 )                 cos                                  (                 x                 )                 +                 g                 (                 x                 )                 gunoh                                  (                 x                 )                                   ,                                                     va                                              Salom                                  (                 x                 )                                =                                f                 (                 x                 )                 gunoh                                  (                 x                 )                 −                 g                 (                 x                 )                 cos                                  (                 x                 )                                   .           { displaystyle { begin {array} {rcl} { frac { pi} {2}} -  operatorname {Si} (x) = -  operatorname {si} (x) & = & f (x)  cos (x) + g (x)  sin (x) ~,  qquad { text {and}}  operatorname {Ci} (x) & = & f (x)  sin (x) -g (x))  cos (x) ~.  end {massiv}}}   Nilsen spirali  
The spiral  ning parametrik chizmasi bilan hosil qilingan si, ci  Nilsen spirali sifatida tanilgan.
                    x         (         t         )         =         a         ×         ci                  (         t         )       { displaystyle x (t) = a  times  operatorname {ci} (t)}                         y         (         t         )         =         a         ×         si                  (         t         )       { displaystyle y (t) = a  times  operatorname {si} (t)}   Spiral bilan chambarchas bog'liq Frenel integrallari  va Eyler spirali . Nilsen spirali ko'rishni qayta ishlash, yo'l va yo'l qurilishida va boshqa sohalarda qo'llaniladigan dasturlarga ega.[iqtibos kerak  ] 
Kengayish  
Trigonometrik integrallarni baholash uchun argument doirasiga qarab har xil kengayishlardan foydalanish mumkin.
Asimptotik seriya (katta argument uchun)                     Si                  (         x         )         ∼                               π             2           −                                             cos                              x              x                     (                       1             −                                                             2                   !                                    x                                       2                 +                                                             4                   !                                    x                                       4                 −                                                             6                   !                                    x                                       6                 ⋯            )          −                                             gunoh                              x              x                     (                                                     1                 x               −                                                             3                   !                                    x                                       3                 +                                                             5                   !                                    x                                       5                 −                                                             7                   !                                    x                                       7                 ⋯            )        { displaystyle  operator nomi {Si} (x)  sim { frac { pi} {2}} - { frac { cos x} {x}}  chap (1 - { frac {2!} { x ^ {2}}} + { frac {4!} {x ^ {4}}} - { frac {6!} {x ^ {6}}}  cdots  right) - { frac { sin x} {x}}  left ({ frac {1} {x}} - { frac {3!} {x ^ {3}}} + { frac {5!} {x ^ {5} }} - { frac {7!} {x ^ {7}}}  cdots  right)}                       Salom                  (         x         )         ∼                                             gunoh                              x              x                     (                       1             −                                                             2                   !                                    x                                       2                 +                                                             4                   !                                    x                                       4                 −                                                             6                   !                                    x                                       6                 ⋯            )          −                                             cos                              x              x                     (                                                     1                 x               −                                                             3                   !                                    x                                       3                 +                                                             5                   !                                    x                                       5                 −                                                             7                   !                                    x                                       7                 ⋯            )                    .       { displaystyle  operator nomi {Ci} (x)  sim { frac { sin x} {x}}  left (1 - { frac {2!} {x ^ {2}}} + { frac { 4!} {X ^ {4}}} - { frac {6!} {X ^ {6}}}  cdots  right) - { frac { cos x} {x}}  chap ({ frac {1} {x}} - { frac {3!} {x ^ {3}}} + { frac {5!} {x ^ {5}}} - { frac {7!} {x ^ {7}}}  cdots  o'ng) ~.}   Ushbu seriyalar asimptotik  va turlicha, ammo taxmin qilish va hatto aniq baholash uchun ishlatilishi mumkin ℜ (x ) ≫ 1 .
Konvergent seriyali                     Si                  (         x         )         =                   ∑                       n             =             0                        ∞                                               (               −               1                               )                                   n                                 x                                   2                   n                   +                   1                              (               2               n               +               1               )               (               2               n               +               1               )               !            =         x         −                                             x                               3                             3               !               ⋅               3            +                                             x                               5                             5               !               ⋅               5            −                                             x                               7                             7               !               ⋅               7            ±         ⋯       { displaystyle  operator nomi {Si} (x) =  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n} x ^ {2n + 1}} {(2n + 1) ) (2n + 1)!}} = X - { frac {x ^ {3}} {3!  Cdot 3}} + { frac {x ^ {5}} {5!  Cdot 5}} - { frac {x ^ {7}} {7!  cdot 7}}  pm  cdots}                       Salom                  (         x         )         =         γ         +         ln                  x         +                   ∑                       n             =             1                        ∞                                               (               −               1                               )                                   n                                 x                                   2                   n                              2               n               (               2               n               )               !            =         γ         +         ln                  x         −                                             x                               2                             2               !               ⋅               2            +                                             x                               4                             4               !               ⋅               4            ∓         ⋯       { displaystyle  operator nomi {Ci} (x) =  gamma +  ln x +  sum _ {n = 1} ^ { infty} { frac {(-1) ^ {n} x ^ {2n}} { 2n (2n)!}} =  Gamma +  ln x - { frac {x ^ {2}} {2!  Cdot 2}} + { frac {x ^ {4}} {4!  Cdot 4 }}  mp  cdots}   Ushbu ketma-ketliklar har qanday kompleksda yaqinlashadi x , garchi uchun |x  | ≫ 1 , ketma-ketlik dastlab asta sekin birlashadi va yuqori aniqlik uchun ko'p shartlarni talab qiladi.
Ketma-ket kengayishni keltirib chiqarish                     gunoh                  x         =         x         −                                             x                               3                             3               !            +                                             x                               5                             5               !            −                                             x                               7                             7               !            +                                             x                               9                             9               !            −                                             x                               11                             11               !            +                  .         .         .       { displaystyle  sin , x = x - { frac {x ^ {3}} {3!}} + { frac {x ^ {5}} {5!}} - { frac {x ^ { 7}} {7!}} + { Frac {x ^ {9}} {9!}} - { frac {x ^ {11}} {11!}} + , ...}    (Maclaurin seriyasining kengayishi)
                                                        gunoh                              x              x           =         1         −                                             x                               2                             3               !            +                                             x                               4                             5               !            −                                             x                               6                             7               !            +                                             x                               8                             9               !            −                                             x                               10                             11               !            +                  .         .         .       { displaystyle { frac { sin , x} {x}} = 1 - { frac {x ^ {2}} {3!}} + { frac {x ^ {4}} {5!} } - { frac {x ^ {6}} {7!}} + { frac {x ^ {8}} {9!}} - { frac {x ^ {10}} {11!}} + , ...}   
                    ∴         ∫                                             gunoh                              x              x           d         x         =         x         −                                             x                               3                             3               !               ⋅               3            +                                             x                               5                             5               !               ⋅               5            −                                             x                               7                             7               !               ⋅               7            +                                             x                               9                             9               !               ⋅               9            −                                             x                               11                             11               !               ⋅               11            +                  .         .         .       { displaystyle  Shuning  int { frac { sin , x} {x}} dx = x - { frac {x ^ {3}} {3!  cdot 3}} + { frac {x ^ {5}} {5!  Cdot 5}} - { frac {x ^ {7}} {7!  Cdot 7}} + { frac {x ^ {9}} {9!  Cdot 9}} - { frac {x ^ {11}} {11!  cdot 11}} + , ...}   
Xayoliy argumentning eksponent integrali bilan bog'liqligi  
Funktsiya
                              E                       1                    (         z         )         =                   ∫                       1                        ∞                                               tugatish                              (               −               z               t               )              t                    d         t                                       uchun                    ℜ         (         z         )         ≥         0       { displaystyle  operator nomi {E} _ {1} (z) =  int _ {1} ^ { infty} { frac { exp (-zt)} {t}} , dt  qquad ~ { matn {for}} ~ ~ Re (z)  geq 0}   deyiladi eksponent integral . Bu bilan chambarchas bog'liq Si  va Salom ,
                              E                       1                    (         men         x         )         =         men                   (                       −                                           π                 2               +             Si                          (             x             )            )          −         Salom                  (         x         )         =         men         si                  (         x         )         −         ci                  (         x         )                                       uchun                    x         >         0                   .       { displaystyle  operator nomi {E} _ {1} (ix) = i  chap (- { frac { pi} {2}} +  operator nomi {Si} (x)  o'ng) -  operator nomi {Ci} (x) = i  operator nomi {si} (x) -  operator nomi {ci} (x)  qquad ~ { text {for}} ~ x> 0 ~.}   Har bir tegishli funktsiya argumentning salbiy qiymatlari kesimidan tashqari analitik bo'lgani uchun, munosabatlarning amal qilish doirasi (Ushbu diapazondan tashqari, butun son omillari bo'lgan qo'shimcha atamalar) ga kengaytirilishi kerak. π   ifodada paydo bo'ladi.)
Umumlashtirilgan integral-eksponent funktsiyani xayoliy argumentlari holatlari
                              ∫                       1                        ∞           cos                  (         a         x         )                                             ln                              x              x                    d         x         =         −                                             π                               2               24           +         γ                   (                                                     γ                 2               +             ln                          a            )          +                                                             ln                                   2                                a              2           +                   ∑                       n             ≥             1                                               (               −                               a                                   2                                 )                                   n                              (               2               n               )               !               (               2               n                               )                                   2                        ,       { displaystyle  int _ {1} ^ { infty}  cos (ax) { frac { ln x} {x}} , dx = - { frac { pi ^ {2}} {24} } +  gamma  chap ({ frac { gamma} {2}} +  ln a  o'ng) + { frac { ln ^ {2} a} {2}} +  sum _ {n  geq 1} { frac {(-a ^ {2}) ^ {n}} {(2n)! (2n) ^ {2}}} ~,}   bu haqiqiy qismi
                              ∫                       1                        ∞                     e                       men             a             x                                               ln                              x              x                    d                  x         =         −                                             π                               2               24           +         γ                   (                                                     γ                 2               +             ln                          a            )          +                                                             ln                                   2                                a              2           −                               π             2           men                   (                       γ             +             ln                          a            )          +                   ∑                       n             ≥             1                                               (               men               a                               )                                   n                              n               !                               n                                   2                        .       { displaystyle  int _ {1} ^ { infty} e ^ {iax} { frac { ln x} {x}} ,  operator nomi {d} x = - { frac { pi ^ {2 }} {24}} +  gamma  chap ({ frac { gamma} {2}} +  ln a  o'ng) + { frac { ln ^ {2} a} {2}} - { frac { pi} {2}} i  chap ( gamma +  ln a  right) +  sum _ {n  geq 1} { frac {(ia) ^ {n}} {n! n ^ { 2}}} ~.}   Xuddi shunday
                              ∫                       1                        ∞                     e                       men             a             x                                               ln                              x                            x                               2                      d                  x         =         1         +         men         a                   [                       −                                                                                                    π                                           2                    24               +             γ                           (                                                                     γ                     2                   +                 ln                                  a                 −                 1                )              +                                                                                 ln                                           2                                        a                  2               −             ln                          a             +             1            ]          +                                             π               a              2                                 (           γ         +         ln                  a         −         1                               )           +                   ∑                       n             ≥             1                                               (               men               a                               )                                   n                   +                   1                              (               n               +               1               )               !                               n                                   2                        .       { displaystyle  int _ {1} ^ { infty} e ^ {iax} { frac { ln x} {x ^ {2}}} ,  operatorname {d} x = 1 + ia  left [ - { frac {;  pi ^ {2}} {24}} +  gamma  chap ({ frac { gamma} {2}} +  ln a-1  o'ng) + { frac { ln ^ {2} a} {2}} -  ln a + 1  right] + { frac { pi a} {2}} { Bigl (}  gamma +  ln a-1 { Bigr) } +  sum _ {n  geq 1} { frac {(ia) ^ {n + 1}} {(n + 1)! n ^ {2}}} ~.}   Samarali baholash  
Padé taxminiy vositalari  konvergent Teylor qatori kichik argumentlar uchun funktsiyalarni baholashning samarali usulini beradi. Rowe va boshqalar tomonidan berilgan quyidagi formulalar. (2015),[1]   ga nisbatan aniqroq 10−16   uchun 0 ≤ x  ≤ 4 ,
                                                                        Si                                  (                 x                 )                                ≈                                x                 ⋅                                   (                                                                                                                                           1                             −                             4.54393409816329991                             ⋅                                                           10                                                               −                                 2                               ⋅                                                           x                                                               2                               +                             1.15457225751016682                             ⋅                                                           10                                                               −                                 3                               ⋅                                                           x                                                               4                               −                             1.41018536821330254                             ⋅                                                           10                                                               −                                 5                               ⋅                                                           x                                                               6                                                                                                                                                                             +                             9.43280809438713025                             ⋅                                                           10                                                               −                                 8                               ⋅                                                           x                                                               8                               −                             3.53201978997168357                             ⋅                                                           10                                                               −                                 10                               ⋅                                                           x                                                               10                               +                             7.08240282274875911                             ⋅                                                           10                                                               −                                 13                               ⋅                                                           x                                                               12                                                                                                                                                                             −                             6.05338212010422477                             ⋅                                                           10                                                               −                                 16                               ⋅                                                           x                                                               14                                                                                                          1                             +                             1.01162145739225565                             ⋅                                                           10                                                               −                                 2                               ⋅                                                           x                                                               2                               +                             4.99175116169755106                             ⋅                                                           10                                                               −                                 5                               ⋅                                                           x                                                               4                               +                             1.55654986308745614                             ⋅                                                           10                                                               −                                 7                               ⋅                                                           x                                                               6                                                                                                                                                                             +                             3.28067571055789734                             ⋅                                                           10                                                               −                                 10                               ⋅                                                           x                                                               8                               +                             4.5049097575386581                             ⋅                                                           10                                                               −                                 13                               ⋅                                                           x                                                               10                               +                             3.21107051193712168                             ⋅                                                           10                                                               −                                 16                               ⋅                                                           x                                                               12                          )                                                                                                                         Salom                                  (                 x                 )                                ≈                                γ                 +                 ln                                  (                 x                 )                 +                                                                                             x                                       2                   ⋅                                   (                                                                                                                                           −                             0.25                             +                             7.51851524438898291                             ⋅                                                           10                                                               −                                 3                               ⋅                                                           x                                                               2                               −                             1.27528342240267686                             ⋅                                                           10                                                               −                                 4                               ⋅                                                           x                                                               4                               +                             1.05297363846239184                             ⋅                                                           10                                                               −                                 6                               ⋅                                                           x                                                               6                                                                                                                                                                             −                             4.68889508144848019                             ⋅                                                           10                                                               −                                 9                               ⋅                                                           x                                                               8                               +                             1.06480802891189243                             ⋅                                                           10                                                               −                                 11                               ⋅                                                           x                                                               10                               −                             9.93728488857585407                             ⋅                                                           10                                                               −                                 15                               ⋅                                                           x                                                               12                                                                                                          1                             +                             1.1592605689110735                             ⋅                                                           10                                                               −                                 2                               ⋅                                                           x                                                               2                               +                             6.72126800814254432                             ⋅                                                           10                                                               −                                 5                               ⋅                                                           x                                                               4                               +                             2.55533277086129636                             ⋅                                                           10                                                               −                                 7                               ⋅                                                           x                                                               6                                                                                                                                                                             +                             6.97071295760958946                             ⋅                                                           10                                                               −                                 10                               ⋅                                                           x                                                               8                               +                             1.38536352772778619                             ⋅                                                           10                                                               −                                 12                               ⋅                                                           x                                                               10                               +                             1.89106054713059759                             ⋅                                                           10                                                               −                                 15                               ⋅                                                           x                                                               12                                                                                                                                                                             +                             1.39759616731376855                             ⋅                                                           10                                                               −                                 18                               ⋅                                                           x                                                               14                          )            { displaystyle { begin {array} {rcl}  operatorname {Si} (x) &  approx & x  cdot  left ({ frac { begin {array} {l} 1-4.54393409816329991  cdot 10 ^ {- 2}  cdot x ^ {2} +1.15457225751016682  cdot 10 ^ {- 3}  cdot x ^ {4} -1.41018536821330254  cdot 10 ^ {- 5}  cdot x ^ {6}  ~~~ + 9.43280809438713025  cdot 10 ^ {- 8}  cdot x ^ {8} -3.53201978997168357  cdot 10 ^ {- 10}  cdot x ^ {10} +7.08240282274875911  cdot 10 ^ {- 13}  cdot x ^ {12}   ~~~ -6.05338212010422477  cdot 10 ^ {- 16}  cdot x ^ {14}  end {array}} { begin {array} {l} 1 + 1.01162145739225565  cdot 10 ^ {- 2}  cdot x ^ {2} +4.99175116169755106  cdot 10 ^ {- 5}  cdot x ^ {4} +1.55654986308745614  cdot 10 ^ {- 7}  cdot x ^ {6}  ~~~ + 3.28067571055789734  cdot 10 ^ { -10}  cdot x ^ {8} +4.5049097575386581  cdot 10 ^ {- 13}  cdot x ^ {10} +3.21107051193712168  cdot 10 ^ {- 16}  cdot x ^ {12}  end {array}} }  o'ng)  & ~ &  operator nomi {Ci} (x) &  approx &  gamma +  ln (x) +  && x ^ {2}  cdot  chap ({ frac { begin) {array} {l} -0.25 + 7.51851524438898291  cdot 10 ^ {- 3}  cdot x ^ {2} -1.27528342240267686  cdot 10 ^ {- 4}  cdot x ^ {4} +1.05297363846239184  cdot 10 ^ {- 6}  cdot x ^ {6}  ~~~ -4.68889 508144848019  cdot 10 ^ {- 9}  cdot x ^ {8} +1.06480802891189243  cdot 10 ^ {- 11}  cdot x ^ {10} -9.93728488857585407  cdot 10 ^ {- 15}  cdot x ^ {12}  end {array}} { begin {array} {l} 1 + 1.1592605689110735  cdot 10 ^ {- 2}  cdot x ^ {2} +6.72126800814254432  cdot 10 ^ {- 5}  cdot x ^ { 4} +2.55533277086129636  cdot 10 ^ {- 7}  cdot x ^ {6}  ~~~ + 6.97071295760958946  cdot 10 ^ {- 10}  cdot x ^ {8} +1.38536352772778619  cdot 10 ^ {- 12 }  cdot x ^ {10} +1.89106054713059759  cdot 10 ^ {- 15}  cdot x ^ {12}  ~~~ + 1.39759616731376855  cdot 10 ^ {- 18}  cdot x ^ {14}  end {array}}}  right)  end {array}}}   Integrallarni bilvosita yordamchi funktsiyalar orqali baholash mumkin                     f         (         x         )       { displaystyle f (x)}      va                     g         (         x         )       { displaystyle g (x)}    tomonidan belgilanadigan
                    Si                  (         x         )         =                               π             2           −         f         (         x         )         cos                  (         x         )         −         g         (         x         )         gunoh                  (         x         )       { displaystyle  operator nomi {Si} (x) = { frac { pi} {2}} - f (x)  cos (x) -g (x)  sin (x)}                           Salom                  (         x         )         =         f         (         x         )         gunoh                  (         x         )         −         g         (         x         )         cos                  (         x         )       { displaystyle  operator nomi {Ci} (x) = f (x)  sin (x) -g (x)  cos (x)}   yoki unga teng ravishda                     f         (         x         )         ≡                   [                                                     π                 2               −             Si                          (             x             )            ]          cos                  (         x         )         +         Salom                  (         x         )         gunoh                  (         x         )       { displaystyle f (x)  equiv  left [{ frac { pi} {2}} -  operatorname {Si} (x)  right]  cos (x) +  operatorname {Ci} (x)  gunoh (x)}                           g         (         x         )         ≡                   [                                                     π                 2               −             Si                          (             x             )            ]          gunoh                  (         x         )         −         Salom                  (         x         )         cos                  (         x         )       { displaystyle g (x)  equiv  left [{ frac { pi} {2}} -  operatorname {Si} (x)  right]  sin (x) -  operatorname {Ci} (x)  cos (x)}   
 Uchun                     x         ≥         4       { displaystyle x  geq 4}      The Padening ratsional funktsiyalari  taxminan quyida keltirilgan                     f         (         x         )       { displaystyle f (x)}      va                     g         (         x         )       { displaystyle g (x)}      10 dan kam xato bilan−16 :[1] 
                                                                        f                 (                 x                 )                                ≈                                                                                            1                       x                    ⋅                                   (                                                                                                                                           1                             +                             7.44437068161936700618                             ⋅                                                           10                                                               2                               ⋅                                                           x                                                               −                                 2                               +                             1.96396372895146869801                             ⋅                                                           10                                                               5                               ⋅                                                           x                                                               −                                 4                               +                             2.37750310125431834034                             ⋅                                                           10                                                               7                               ⋅                                                           x                                                               −                                 6                                                                                                                                                                             +                             1.43073403821274636888                             ⋅                                                           10                                                               9                               ⋅                                                           x                                                               −                                 8                               +                             4.33736238870432522765                             ⋅                                                           10                                                               10                               ⋅                                                           x                                                               −                                 10                               +                             6.40533830574022022911                             ⋅                                                           10                                                               11                               ⋅                                                           x                                                               −                                 12                                                                                                                                                                             +                             4.20968180571076940208                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 14                               +                             1.00795182980368574617                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 16                               +                             4.94816688199951963482                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 18                                                                                                                                                                             −                             4.94701168645415959931                             ⋅                                                           10                                                               11                               ⋅                                                           x                                                               −                                 20                                                                                                          1                             +                             7.46437068161927678031                             ⋅                                                           10                                                               2                               ⋅                                                           x                                                               −                                 2                               +                             1.97865247031583951450                             ⋅                                                           10                                                               5                               ⋅                                                           x                                                               −                                 4                               +                             2.41535670165126845144                             ⋅                                                           10                                                               7                               ⋅                                                           x                                                               −                                 6                                                                                                                                                                             +                             1.47478952192985464958                             ⋅                                                           10                                                               9                               ⋅                                                           x                                                               −                                 8                               +                             4.58595115847765779830                             ⋅                                                           10                                                               10                               ⋅                                                           x                                                               −                                 10                               +                             7.08501308149515401563                             ⋅                                                           10                                                               11                               ⋅                                                           x                                                               −                                 12                                                                                                                                                                             +                             5.06084464593475076774                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 14                               +                             1.43468549171581016479                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 16                               +                             1.11535493509914254097                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 18                          )                                                                                                       g                 (                 x                 )                                ≈                                                                                            1                                               x                                                   2                      ⋅                                   (                                                                                                                                           1                             +                             8.1359520115168615                             ⋅                                                           10                                                               2                               ⋅                                                           x                                                               −                                 2                               +                             2.35239181626478200                             ⋅                                                           10                                                               5                               ⋅                                                           x                                                               −                                 4                               +                             3.12557570795778731                             ⋅                                                           10                                                               7                               ⋅                                                           x                                                               −                                 6                                                                                                                                                                             +                             2.06297595146763354                             ⋅                                                           10                                                               9                               ⋅                                                           x                                                               −                                 8                               +                             6.83052205423625007                             ⋅                                                           10                                                               10                               ⋅                                                           x                                                               −                                 10                               +                             1.09049528450362786                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 12                                                                                                                                                                             +                             7.57664583257834349                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 14                               +                             1.81004487464664575                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 16                               +                             6.43291613143049485                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 18                                                                                                                                                                             −                             1.36517137670871689                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 20                                                                                                          1                             +                             8.19595201151451564                             ⋅                                                           10                                                               2                               ⋅                                                           x                                                               −                                 2                               +                             2.40036752835578777                             ⋅                                                           10                                                               5                               ⋅                                                           x                                                               −                                 4                               +                             3.26026661647090822                             ⋅                                                           10                                                               7                               ⋅                                                           x                                                               −                                 6                                                                                                                                                                             +                             2.23355543278099360                             ⋅                                                           10                                                               9                               ⋅                                                           x                                                               −                                 8                               +                             7.87465017341829930                             ⋅                                                           10                                                               10                               ⋅                                                           x                                                               −                                 10                               +                             1.39866710696414565                             ⋅                                                           10                                                               12                               ⋅                                                           x                                                               −                                 12                                                                                                                                                                             +                             1.17164723371736605                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 14                               +                             4.01839087307656620                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 16                               +                             3.99653257887490811                             ⋅                                                           10                                                               13                               ⋅                                                           x                                                               −                                 18                          )            { displaystyle { begin {array} {rcl} f (x) &  approx & { dfrac {1} {x}}  cdot  left ({ frac { begin {array} {l} 1 + 7.44437068161936700618  cdot 10 ^ {2}  cdot x ^ {- 2} +1.96396372895146869801  cdot 10 ^ {5}  cdot x ^ {- 4} +2.37750310125431834034  cdot 10 ^ {7}  cdot x ^ {- 6}   ~~~ + 1.43073403821274636888  cdot 10 ^ {9}  cdot x ^ {- 8} +4.33736238870432522765  cdot 10 ^ {10}  cdot x ^ {- 10} +6.40533830574022022911  cdot 10 ^ {11} d ^ {- 12}  ~~~ + 4.20968180571076940208  cdot 10 ^ {12}  cdot x ^ {- 14} +1.00795182980368574617  cdot 10 ^ {13}  cdot x ^ {- 16} +4.94816688199951963482  cdot 10 ^ {12}  cdot x ^ {- 18}  ~~~ -4.94701168645415959931  cdot 10 ^ {11}  cdot x ^ {- 20}  end {array}} { begin {array} {l} 1+ 7.46437068161927678031  cdot 10 ^ {2}  cdot x ^ {- 2} +1.97865247031583951450  cdot 10 ^ {5}  cdot x ^ {- 4} +2.41535670165126845144  cdot 10 ^ {7}  cdot x ^ {- 6}  ~~~ + 1.47478952192985464958  cdot 10 ^ {9}  cdot x ^ {- 8} +4.58595115847765779830  cdot 10 ^ {10}  cdot x ^ {- 10} +7.08501308149515401563  cdot 10 ^ {11}  cdot x ^ {- 12}  ~~~ + 5.06084464593475076774  cdot 10 ^ {12}  cdot x ^ {- 14} +1.43468549171581016479  cdot 10 ^ {13}  cdot x ^ {- 16} +1.11535493509914254097  cdot 10 ^ {13}  cdot x ^ {- 18}  end {array}}}  right)  &&  g (x) &  approx & { dfrac {1} {x ^ {2}}}  cdot  left ({ frac { begin {array} {l} 1 + 8.1359520115168615  cdot 10 ^ {2}  cdot x ^ {- 2} +2.35239181626478200  cdot 10 ^ {5}  cdot x ^ {- 4} +3.12557570795778731  cdot 10 ^ {7}  cdot x ^ {- 6}  ~~~ + 2.06297595146763354  cdot 10 ^ {9}  cdot x ^ {- 8} +6.83052205423625007  cdot 10 ^ {10}  cdot x ^ {- 10} +1.09049528450362786  cdot 10 ^ {12}  cdot x ^ {- 12}  ~~~ + 7.57664583257834349  cdot 10 ^ {12}  cdot x ^ {- 14} +1.81004487464664575  cdot 10 ^ {13}  cdot x ^ {- 16} +6.43291613143049485  cdot 10 ^ {12}  cdot x ^ {- 18}  ~~~ -1.36517137670871689  cdot 10 ^ {12}  cdot x ^ {- 20}  end {array}} { begin {array} {l} 1 + 8.19595201151451564  cdot 10 ^ {2}  cdot x ^ { -2} +2.40036752835578777  cdot 10 ^ {5}  cdot x ^ {- 4} +3.26026661647090822  cdot 10 ^ {7}  cdot x ^ {- 6}  ~~~ + 2.23355543278099360  cdot 10 ^ {9 }  cdot x ^ {- 8} +7.87465017341829930  cdot 10 ^ {10}  cdot x ^ {- 10} +1.39866710696414565  cdot 10 ^ {12}  cdot x ^ {- 12}  ~~~ + 1.17164723371736605  cdot 10 ^ {13}  cdot x ^ {- 14} +4.01839087307 656620  cdot 10 ^ {13}  cdot x ^ {- 16} +3.99653257887490811  cdot 10 ^ {13}  cdot x ^ {- 18}  end {array}}}  right)  end {array} }}   Shuningdek qarang  
Adabiyotlar  
Qo'shimcha o'qish  
Mathar, R.J. (2009). "Tebranuvchi integralni exp ustidan sonli baholash (menπ x )·x 1/x   1 dan ∞ gacha ". B ilova. arXiv :0912.3844   [math.CA ]. Press, W.H .; Teukolskiy, S.A .; Vetterling, Vt .; Flannery, B.P. (2007). "6.8.2-bo'lim - kosinus va sinus integrallari" . Raqamli retseptlar: Ilmiy hisoblash san'ati  (3-nashr). Nyu-York: Kembrij universiteti matbuoti. ISBN  978-0-521-88068-8  . Qichqiriq, Dan. "Sine Integral Taylor seriyasining isboti"  (PDF) . Differentsial tenglamalardan farqli tenglamalar . Temme, NM (2010), "Eksponensial, logaritmik, sinusli va kosinaviy integrallar" , yilda Olver, Frank V. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Klark, Charlz V. (tahr.), NIST Matematik funktsiyalar bo'yicha qo'llanma  , Kembrij universiteti matbuoti, ISBN  978-0-521-19225-5  , JANOB  2723248  Tashqi havolalar