WikiDer > Bir xil 8-politop
Yilda sakkiz o'lchovli geometriya, an sakkiz o'lchovli politop yoki 8-politop a politop tarkibida 7-politop qirralari mavjud. Har biri 6-politop tizma roppa-rosa ikkitasi bo'lishgan 7-politop qirralar.
A bir xil 8-politop bu bitta vertex-tranzitivva dan qurilgan bir xil 7-politop qirralar.
Muntazam 8-politoplar
Muntazam 8-politoplar bilan ifodalanishi mumkin Schläfli belgisi {p, q, r, s, t, u, v}, bilan v {p, q, r, s, t, u} 7-politop qirralar har birining atrofida tepalik.
To'liq uchta qavariq muntazam 8-politoplar:
- {3,3,3,3,3,3,3} - 8-oddiy
 - {4,3,3,3,3,3,3} - 8-kub
 - {3,3,3,3,3,3,4} - 8-ortoppleks
 
Qavariq bo'lmagan oddiy 8-politoplar mavjud emas.
Xususiyatlari
Har qanday berilgan 8-politopning topologiyasi u bilan belgilanadi Betti raqamlari va burilish koeffitsientlari.[1]
Ning qiymati Eyler xarakteristikasi polyhedrani tavsiflash uchun foydalaniladigan yuqori o'lchovlar uchun foydali emas va barcha 8-politoplar uchun ularning topologiyasidan qat'iy nazar nolga teng. Eylerning o'ziga xos yuqori darajadagi har xil topologiyalarni bir-biridan ishonchli ajratib turishi bu notekisligi yanada murakkab Betti sonlarini kashf etishga olib keldi.[1]
Xuddi shunday, ko'pburchakning yo'naltirilganligi tushunchasi toroidal politoplarning sirt burilishini tavsiflash uchun etarli emas va bu buralish koeffitsientlaridan foydalanishga olib keldi.[1]
Asosiy Kokseter guruhlari bo'yicha yagona 8-politoplar
Yansıtıcı simmetriyaga ega bo'lgan bir xil 8-politoplarni halqalarning permütasyonları bilan ifodalangan to'rtta Kokseter guruhi yaratishi mumkin. Kokseter-Dinkin diagrammalari:
| # | Kokseter guruhi | Shakllar | ||
|---|---|---|---|---|
| 1 | A8 | [37] | 135 | |
| 2 | Miloddan avvalgi8 | [4,36] | 255 | |
| 3 | D.8 | [35,1,1] | 191 (64 noyob) | |
| 4 | E8 | [34,2,1] | 255 | |
Har bir oiladan tanlangan muntazam va bir xil 8-politoplarga quyidagilar kiradi:
- Simpleks oila: A8 [37] - 















- Guruh diagrammasidagi halqalarni almashtirish sifatida 135 ta bir xil 8-politop, shu jumladan bitta oddiy:
- {37} - 8-oddiy yoki ennea-9-tope yoki enneazetton - 















 
 - {37} - 8-oddiy yoki ennea-9-tope yoki enneazetton - 
 
 - Guruh diagrammasidagi halqalarni almashtirish sifatida 135 ta bir xil 8-politop, shu jumladan bitta oddiy:
 - Hypercube/ortoppleks oila: B8 [4,36] - 















- Guruh diagrammasidagi halqalarni almashtirish sifatida 255 ta bir xil 8-politop, shu jumladan ikkita odatiy:
- {4,36} - 8-kub yoki okterakt- 















 - {36,4} - 8-ortoppleks yoki oktakros - 















 
 - {4,36} - 8-kub yoki okterakt- 
 
 - Guruh diagrammasidagi halqalarni almashtirish sifatida 255 ta bir xil 8-politop, shu jumladan ikkita odatiy:
 - Demihypercube D.8 oila: [35,1,1] - 













- Guruh diagrammasidagi halqalarni almashtirish sifatida 191 ta bir xil 8-politop, shu jumladan:
- {3,35,1} - 8-demikub yoki demioterakt, 151 - 












; shuningdek h {4,36} 













. - {3,3,3,3,3,31,1} - 8-ortoppleks, 511 - 













 
 - {3,35,1} - 8-demikub yoki demioterakt, 151 - 
 
 - Guruh diagrammasidagi halqalarni almashtirish sifatida 191 ta bir xil 8-politop, shu jumladan:
 - Elektron politoplar oilasi E8 oila: [34,1,1] - 













- Guruh diagrammasidagi halqalarni almashtirish sifatida 255 ta bir xil 8-politop, shu jumladan:
- {3,3,3,3,32,1} - Thorold Gossetsemiregular 421, 













 - {3,34,2} - forma 142, 












, - {3,3,34,1} - forma 241, 













 
 - {3,3,3,3,32,1} - Thorold Gossetsemiregular 421, 
 
 - Guruh diagrammasidagi halqalarni almashtirish sifatida 255 ta bir xil 8-politop, shu jumladan:
 
Yagona prizmatik shakllar
Juda ko'p .. lar bor bir xil prizmatik oilalar, shu jumladan:
| Yagona 8-politopli prizma oilalari | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Kokseter guruhi | Kokseter-Dinkin diagrammasi | |||||||||
| 7+1 | |||||||||||
| 1 | A7A1 | [3,3,3,3,3,3]×[ ] | |||||||||
| 2 | B7A1 | [4,3,3,3,3,3]×[ ] | |||||||||
| 3 | D.7A1 | [34,1,1]×[ ] | |||||||||
| 4 | E7A1 | [33,2,1]×[ ] | |||||||||
| 6+2 | |||||||||||
| 1 | A6Men2(p) | [3,3,3,3,3] × [p] | |||||||||
| 2 | B6Men2(p) | [4,3,3,3,3] × [p] | |||||||||
| 3 | D.6Men2(p) | [33,1,1] × [p] | |||||||||
| 4 | E6Men2(p) | [3,3,3,3,3] × [p] | |||||||||
| 6+1+1 | |||||||||||
| 1 | A6A1A1 | [3,3,3,3,3] × [] x [] | |||||||||
| 2 | B6A1A1 | [4,3,3,3,3] × [] x [] | |||||||||
| 3 | D.6A1A1 | [33,1,1] × [] x [] | |||||||||
| 4 | E6A1A1 | [3,3,3,3,3] × [] x [] | |||||||||
| 5+3 | |||||||||||
| 1 | A5A3 | [34]×[3,3] | |||||||||
| 2 | B5A3 | [4,33]×[3,3] | |||||||||
| 3 | D.5A3 | [32,1,1]×[3,3] | |||||||||
| 4 | A5B3 | [34]×[4,3] | |||||||||
| 5 | B5B3 | [4,33]×[4,3] | |||||||||
| 6 | D.5B3 | [32,1,1]×[4,3] | |||||||||
| 7 | A5H3 | [34]×[5,3] | |||||||||
| 8 | B5H3 | [4,33]×[5,3] | |||||||||
| 9 | D.5H3 | [32,1,1]×[5,3] | |||||||||
| 5+2+1 | |||||||||||
| 1 | A5Men2(p) A1 | [3,3,3] × [p] × [] | |||||||||
| 2 | B5Men2(p) A1 | [4,3,3] × [p] × [] | |||||||||
| 3 | D.5Men2(p) A1 | [32,1,1] × [p] × [] | |||||||||
| 5+1+1+1 | |||||||||||
| 1 | A5A1A1A1 | [3,3,3]×[ ]×[ ]×[ ] | |||||||||
| 2 | B5A1A1A1 | [4,3,3]×[ ]×[ ]×[ ] | |||||||||
| 3 | D.5A1A1A1 | [32,1,1]×[ ]×[ ]×[ ] | |||||||||
| 4+4 | |||||||||||
| 1 | A4A4 | [3,3,3]×[3,3,3] | |||||||||
| 2 | B4A4 | [4,3,3]×[3,3,3] | |||||||||
| 3 | D.4A4 | [31,1,1]×[3,3,3] | |||||||||
| 4 | F4A4 | [3,4,3]×[3,3,3] | |||||||||
| 5 | H4A4 | [5,3,3]×[3,3,3] | |||||||||
| 6 | B4B4 | [4,3,3]×[4,3,3] | |||||||||
| 7 | D.4B4 | [31,1,1]×[4,3,3] | |||||||||
| 8 | F4B4 | [3,4,3]×[4,3,3] | |||||||||
| 9 | H4B4 | [5,3,3]×[4,3,3] | |||||||||
| 10 | D.4D.4 | [31,1,1]×[31,1,1] | |||||||||
| 11 | F4D.4 | [3,4,3]×[31,1,1] | |||||||||
| 12 | H4D.4 | [5,3,3]×[31,1,1] | |||||||||
| 13 | F4× F4 | [3,4,3]×[3,4,3] | |||||||||
| 14 | H4× F4 | [5,3,3]×[3,4,3] | |||||||||
| 15 | H4H4 | [5,3,3]×[5,3,3] | |||||||||
| 4+3+1 | |||||||||||
| 1 | A4A3A1 | [3,3,3]×[3,3]×[ ] | |||||||||
| 2 | A4B3A1 | [3,3,3]×[4,3]×[ ] | |||||||||
| 3 | A4H3A1 | [3,3,3]×[5,3]×[ ] | |||||||||
| 4 | B4A3A1 | [4,3,3]×[3,3]×[ ] | |||||||||
| 5 | B4B3A1 | [4,3,3]×[4,3]×[ ] | |||||||||
| 6 | B4H3A1 | [4,3,3]×[5,3]×[ ] | |||||||||
| 7 | H4A3A1 | [5,3,3]×[3,3]×[ ] | |||||||||
| 8 | H4B3A1 | [5,3,3]×[4,3]×[ ] | |||||||||
| 9 | H4H3A1 | [5,3,3]×[5,3]×[ ] | |||||||||
| 10 | F4A3A1 | [3,4,3]×[3,3]×[ ] | |||||||||
| 11 | F4B3A1 | [3,4,3]×[4,3]×[ ] | |||||||||
| 12 | F4H3A1 | [3,4,3]×[5,3]×[ ] | |||||||||
| 13 | D.4A3A1 | [31,1,1]×[3,3]×[ ] | |||||||||
| 14 | D.4B3A1 | [31,1,1]×[4,3]×[ ] | |||||||||
| 15 | D.4H3A1 | [31,1,1]×[5,3]×[ ] | |||||||||
| 4+2+2 | |||||||||||
| ... | |||||||||||
| 4+2+1+1 | |||||||||||
| ... | |||||||||||
| 4+1+1+1+1 | |||||||||||
| ... | |||||||||||
| 3+3+2 | |||||||||||
| 1 | A3A3Men2(p) | [3,3] × [3,3] × [p] | |||||||||
| 2 | B3A3Men2(p) | [4,3] × [3,3] × [p] | |||||||||
| 3 | H3A3Men2(p) | [5,3] × [3,3] × [p] | |||||||||
| 4 | B3B3Men2(p) | [4,3] × [4,3] × [p] | |||||||||
| 5 | H3B3Men2(p) | [5,3] × [4,3] × [p] | |||||||||
| 6 | H3H3Men2(p) | [5,3] × [5,3] × [p] | |||||||||
| 3+3+1+1 | |||||||||||
| 1 | A32A12 | [3,3]×[3,3]×[ ]×[ ] | |||||||||
| 2 | B3A3A12 | [4,3]×[3,3]×[ ]×[ ] | |||||||||
| 3 | H3A3A12 | [5,3]×[3,3]×[ ]×[ ] | |||||||||
| 4 | B3B3A12 | [4,3]×[4,3]×[ ]×[ ] | |||||||||
| 5 | H3B3A12 | [5,3]×[4,3]×[ ]×[ ] | |||||||||
| 6 | H3H3A12 | [5,3]×[5,3]×[ ]×[ ] | |||||||||
| 3+2+2+1 | |||||||||||
| 1 | A3Men2(p) men2(q) A1 | [3,3] × [p] × [q] × [] | |||||||||
| 2 | B3Men2(p) men2(q) A1 | [4,3] × [p] × [q] × [] | |||||||||
| 3 | H3Men2(p) men2(q) A1 | [5,3] × [p] × [q] × [] | |||||||||
| 3+2+1+1+1 | |||||||||||
| 1 | A3Men2(p) A13 | [3,3] × [p] × [] x [] × [] | |||||||||
| 2 | B3Men2(p) A13 | [4,3] × [p] × [] x [] × [] | |||||||||
| 3 | H3Men2(p) A13 | [5,3] × [p] × [] x [] × [] | |||||||||
| 3+1+1+1+1+1 | |||||||||||
| 1 | A3A15 | [3,3] × [] x [] × [] x [] × [] | |||||||||
| 2 | B3A15 | [4,3] × [] x [] × [] x [] × [] | |||||||||
| 3 | H3A15 | [5,3] × [] x [] × [] x [] × [] | |||||||||
| 2+2+2+2 | |||||||||||
| 1 | Men2(p) men2(q) I2(r) men2(lar) | [p] × [q] × [r] × [s] | |||||||||
| 2+2+2+1+1 | |||||||||||
| 1 | Men2(p) men2(q) I2(r) A12 | [p] × [q] × [r] × [] × [] | |||||||||
| 2+2+1+1+1+1 | |||||||||||
| 2 | Men2(p) men2(q) A14 | [p] × [q] × [] × [] × [] × [] | |||||||||
| 2+1+1+1+1+1+1 | |||||||||||
| 1 | Men2(p) A16 | [p] × [] × [] × [] × [] × [] × [] | |||||||||
| 1+1+1+1+1+1+1+1 | |||||||||||
| 1 | A18 | [ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ]×[ ] | |||||||||
A8 oila
A8 oila 362880 (9) tartibli simmetriyasiga ega faktorial).
Ning barcha almashtirishlariga asoslangan 135 shakl mavjud Kokseter-Dinkin diagrammalari bir yoki bir nechta halqalar bilan. (128 + 8-1 holat) Bularning barchasi quyida keltirilgan. Bowers uslubidagi qisqartma nomlari o'zaro bog'liqlik uchun qavs ichida berilgan.
Shuningdek qarang: a 8-simpleks polytoplar ro'yxati nosimmetrik uchun Kokseter tekisligi ushbu polipoplarning grafikalari.
| A8 bir xil politoplar | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Kokseter-Dinkin diagrammasi | Qisqartirish indekslar  | Jonson nomi | Asosiy nuqta | Element hisobga olinadi | |||||||
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | 
  | t0 | 8-oddiy (ene) | (0,0,0,0,0,0,0,0,1) | 9 | 36 | 84 | 126 | 126 | 84 | 36 | 9 | 
| 2 | 
  | t1 | Rektifikatsiyalangan 8-simpleks (rene) | (0,0,0,0,0,0,0,1,1) | 18 | 108 | 336 | 630 | 576 | 588 | 252 | 36 | 
| 3 | 
  | t2 | Birlashtirilgan 8-simpleks (bene) | (0,0,0,0,0,0,1,1,1) | 18 | 144 | 588 | 1386 | 2016 | 1764 | 756 | 84 | 
| 4 | 
  | t3 | Uch yo'naltirilgan simpleks (trene) | (0,0,0,0,0,1,1,1,1) | 1260 | 126 | ||||||
| 5 | 
  | t0,1 | Qisqartirilgan 8-simpleks (tene) | (0,0,0,0,0,0,0,1,2) | 288 | 72 | ||||||
| 6 | 
  | t0,2 | 8-sodda soddalashtirilgan | (0,0,0,0,0,0,1,1,2) | 1764 | 252 | ||||||
| 7 | 
  | t1,2 | Bitruncated 8-simpleks | (0,0,0,0,0,0,1,2,2) | 1008 | 252 | ||||||
| 8 | 
  | t0,3 | 8-simpleks ishga tushirildi | (0,0,0,0,0,1,1,1,2) | 4536 | 504 | ||||||
| 9 | 
  | t1,3 | Bicantellated 8-simpleks | (0,0,0,0,0,1,1,2,2) | 5292 | 756 | ||||||
| 10 | 
  | t2,3 | Uchburchak 8-simpleks | (0,0,0,0,0,1,2,2,2) | 2016 | 504 | ||||||
| 11 | 
  | t0,4 | Sterilizatsiya qilingan 8-simpleks | (0,0,0,0,1,1,1,1,2) | 6300 | 630 | ||||||
| 12 | 
  | t1,4 | Biruncined 8-simpleks | (0,0,0,0,1,1,1,2,2) | 11340 | 1260 | ||||||
| 13 | 
  | t2,4 | Trikantellatlangan 8-simpleks | (0,0,0,0,1,1,2,2,2) | 8820 | 1260 | ||||||
| 14 | 
  | t3,4 | To'rt qirrali 8-simpleks | (0,0,0,0,1,2,2,2,2) | 2520 | 630 | ||||||
| 15 | 
  | t0,5 | Pentellated 8-simpleks | (0,0,0,1,1,1,1,1,2) | 5040 | 504 | ||||||
| 16 | 
  | t1,5 | Ikki tomonlama simpleks | (0,0,0,1,1,1,1,2,2) | 12600 | 1260 | ||||||
| 17 | 
  | t2,5 | Trirunkatsiyalangan 8-simpleks | (0,0,0,1,1,1,2,2,2) | 15120 | 1680 | ||||||
| 18 | 
  | t0,6 | Zaharlangan 8-simpleks | (0,0,1,1,1,1,1,1,2) | 2268 | 252 | ||||||
| 19 | 
  | t1,6 | Bipentellated 8-simpleks | (0,0,1,1,1,1,1,2,2) | 7560 | 756 | ||||||
| 20 | 
  | t0,7 | Heptellated 8-simpleks | (0,1,1,1,1,1,1,1,2) | 504 | 72 | ||||||
| 21 | 
  | t0,1,2 | Kantritratsiyalangan 8-simpleks | (0,0,0,0,0,0,1,2,3) | 2016 | 504 | ||||||
| 22 | 
  | t0,1,3 | Runcitruncated 8-simpleks | (0,0,0,0,0,1,1,2,3) | 9828 | 1512 | ||||||
| 23 | 
  | t0,2,3 | Runcicantellated 8-simpleks | (0,0,0,0,0,1,2,2,3) | 6804 | 1512 | ||||||
| 24 | 
  | t1,2,3 | Bikantitruncated 8-simpleks | (0,0,0,0,0,1,2,3,3) | 6048 | 1512 | ||||||
| 25 | 
  | t0,1,4 | Steritratsiyalangan 8-simpleks | (0,0,0,0,1,1,1,2,3) | 20160 | 2520 | ||||||
| 26 | 
  | t0,2,4 | Sterilizatsiya qilingan 8-simpleks | (0,0,0,0,1,1,2,2,3) | 26460 | 3780 | ||||||
| 27 | 
  | t1,2,4 | Biruncitruncated 8-simpleks | (0,0,0,0,1,1,2,3,3) | 22680 | 3780 | ||||||
| 28 | 
  | t0,3,4 | Sterilizatsiyalangan 8-simpleks | (0,0,0,0,1,2,2,2,3) | 12600 | 2520 | ||||||
| 29 | 
  | t1,3,4 | Biruncicantellated 8-simpleks | (0,0,0,0,1,2,2,3,3) | 18900 | 3780 | ||||||
| 30 | 
  | t2,3,4 | Trikantitratsiyalangan 8-oddiy | (0,0,0,0,1,2,3,3,3) | 10080 | 2520 | ||||||
| 31 | 
  | t0,1,5 | Pentitruncated 8-simpleks | (0,0,0,1,1,1,1,2,3) | 21420 | 2520 | ||||||
| 32 | 
  | t0,2,5 | Pentikantellated 8-simpleks | (0,0,0,1,1,1,2,2,3) | 42840 | 5040 | ||||||
| 33 | 
  | t1,2,5 | Bisteritratsiyalangan 8-simpleks | (0,0,0,1,1,1,2,3,3) | 35280 | 5040 | ||||||
| 34 | 
  | t0,3,5 | Pentiruntsinatsiyalangan 8-simpleks | (0,0,0,1,1,2,2,2,3) | 37800 | 5040 | ||||||
| 35 | 
  | t1,3,5 | Bisterikantellated 8-simpleks | (0,0,0,1,1,2,2,3,3) | 52920 | 7560 | ||||||
| 36 | 
  | t2,3,5 | Triruncitruncated 8-simpleks | (0,0,0,1,1,2,3,3,3) | 27720 | 5040 | ||||||
| 37 | 
  | t0,4,5 | Pentisteratsiya qilingan 8-simpleks | (0,0,0,1,2,2,2,2,3) | 13860 | 2520 | ||||||
| 38 | 
  | t1,4,5 | Bisterinatsiyalangan 8-simpleks | (0,0,0,1,2,2,2,3,3) | 30240 | 5040 | ||||||
| 39 | 
  | t0,1,6 | Hexitruncated 8-simpleks | (0,0,1,1,1,1,1,2,3) | 12096 | 1512 | ||||||
| 40 | 
  | t0,2,6 | Hexicantellated 8-simpleks | (0,0,1,1,1,1,2,2,3) | 34020 | 3780 | ||||||
| 41 | 
  | t1,2,6 | Bipentitruncated 8-simpleks | (0,0,1,1,1,1,2,3,3) | 26460 | 3780 | ||||||
| 42 | 
  | t0,3,6 | Hexiruncinated 8-simpleks | (0,0,1,1,1,2,2,2,3) | 45360 | 5040 | ||||||
| 43 | 
  | t1,3,6 | Bipentikantellated 8-simpleks | (0,0,1,1,1,2,2,3,3) | 60480 | 7560 | ||||||
| 44 | 
  | t0,4,6 | Hexisterised 8-simpleks | (0,0,1,1,2,2,2,2,3) | 30240 | 3780 | ||||||
| 45 | 
  | t0,5,6 | Hexipentellated 8-simpleks | (0,0,1,2,2,2,2,2,3) | 9072 | 1512 | ||||||
| 46 | 
  | t0,1,7 | Geptitratsiyalangan 8-simpleks | (0,1,1,1,1,1,1,2,3) | 3276 | 504 | ||||||
| 47 | 
  | t0,2,7 | Geptikantellatlangan 8-simpleks | (0,1,1,1,1,1,2,2,3) | 12852 | 1512 | ||||||
| 48 | 
  | t0,3,7 | Geptiruncinatsiyalangan 8-simpleks | (0,1,1,1,1,2,2,2,3) | 23940 | 2520 | ||||||
| 49 | 
  | t0,1,2,3 | Runcicantitruncated 8-simpleks | (0,0,0,0,0,1,2,3,4) | 12096 | 3024 | ||||||
| 50 | 
  | t0,1,2,4 | Sterikantritratsiyalangan 8-oddiy | (0,0,0,0,1,1,2,3,4) | 45360 | 7560 | ||||||
| 51 | 
  | t0,1,3,4 | Steriruntsitratsiyalangan 8-simpleks | (0,0,0,0,1,2,2,3,4) | 34020 | 7560 | ||||||
| 52 | 
  | t0,2,3,4 | Steriluncicantellated 8-simpleks | (0,0,0,0,1,2,3,3,4) | 34020 | 7560 | ||||||
| 53 | 
  | t1,2,3,4 | Biruncicantitruncated 8-simpleks | (0,0,0,0,1,2,3,4,4) | 30240 | 7560 | ||||||
| 54 | 
  | t0,1,2,5 | Pentikantitratsiyalangan 8-simpleks | (0,0,0,1,1,1,2,3,4) | 70560 | 10080 | ||||||
| 55 | 
  | t0,1,3,5 | Pentiruncitruncated 8-simpleks | (0,0,0,1,1,2,2,3,4) | 98280 | 15120 | ||||||
| 56 | 
  | t0,2,3,5 | Pentiruncicantellated 8-simpleks | (0,0,0,1,1,2,3,3,4) | 90720 | 15120 | ||||||
| 57 | 
  | t1,2,3,5 | Bisterikanitruncated 8-simpleks | (0,0,0,1,1,2,3,4,4) | 83160 | 15120 | ||||||
| 58 | 
  | t0,1,4,5 | Pentisteritratsiyalangan 8-simpleks | (0,0,0,1,2,2,2,3,4) | 50400 | 10080 | ||||||
| 59 | 
  | t0,2,4,5 | Pentistericantellated 8-simpleks | (0,0,0,1,2,2,3,3,4) | 83160 | 15120 | ||||||
| 60 | 
  | t1,2,4,5 | Bisterunitsitruktsiya qilingan 8-simpleks | (0,0,0,1,2,2,3,4,4) | 68040 | 15120 | ||||||
| 61 | 
  | t0,3,4,5 | Pentisterinatsiyalangan 8-simpleks | (0,0,0,1,2,3,3,3,4) | 50400 | 10080 | ||||||
| 62 | 
  | t1,3,4,5 | Bisteriruncicantellated 8-simpleks | (0,0,0,1,2,3,3,4,4) | 75600 | 15120 | ||||||
| 63 | 
  | t2,3,4,5 | Triruncicantitruncated 8-simpleks | (0,0,0,1,2,3,4,4,4) | 40320 | 10080 | ||||||
| 64 | 
  | t0,1,2,6 | Geksikantitruncated 8-simpleks | (0,0,1,1,1,1,2,3,4) | 52920 | 7560 | ||||||
| 65 | 
  | t0,1,3,6 | Hexiruncitruncated 8-simpleks | (0,0,1,1,1,2,2,3,4) | 113400 | 15120 | ||||||
| 66 | 
  | t0,2,3,6 | Hexiruncicantellated 8-simpleks | (0,0,1,1,1,2,3,3,4) | 98280 | 15120 | ||||||
| 67 | 
  | t1,2,3,6 | Bipentikantitruncated 8-simpleks | (0,0,1,1,1,2,3,4,4) | 90720 | 15120 | ||||||
| 68 | 
  | t0,1,4,6 | Hexisteritruncated 8-simpleks | (0,0,1,1,2,2,2,3,4) | 105840 | 15120 | ||||||
| 69 | 
  | t0,2,4,6 | Hexistericantellated 8-simpleks | (0,0,1,1,2,2,3,3,4) | 158760 | 22680 | ||||||
| 70 | 
  | t1,2,4,6 | Bipentiruncitruncated 8-simpleks | (0,0,1,1,2,2,3,4,4) | 136080 | 22680 | ||||||
| 71 | 
  | t0,3,4,6 | Geksisterinatsiyalangan 8-simpleks | (0,0,1,1,2,3,3,3,4) | 90720 | 15120 | ||||||
| 72 | 
  | t1,3,4,6 | Bipentiruncicantellated 8-simpleks | (0,0,1,1,2,3,3,4,4) | 136080 | 22680 | ||||||
| 73 | 
  | t0,1,5,6 | Hexipentitruncated 8-simpleks | (0,0,1,2,2,2,2,3,4) | 41580 | 7560 | ||||||
| 74 | 
  | t0,2,5,6 | Hexipenticantellated 8-simpleks | (0,0,1,2,2,2,3,3,4) | 98280 | 15120 | ||||||
| 75 | 
  | t1,2,5,6 | Bipentisteritratsiya qilingan 8-simpleks | (0,0,1,2,2,2,3,4,4) | 75600 | 15120 | ||||||
| 76 | 
  | t0,3,5,6 | Hexipentiruncinated 8-simpleks | (0,0,1,2,2,3,3,3,4) | 98280 | 15120 | ||||||
| 77 | 
  | t0,4,5,6 | Geksipentisteratsiya qilingan 8-simpleks | (0,0,1,2,3,3,3,3,4) | 41580 | 7560 | ||||||
| 78 | 
  | t0,1,2,7 | Geptikantritratsiyalangan 8-simpleks | (0,1,1,1,1,1,2,3,4) | 18144 | 3024 | ||||||
| 79 | 
  | t0,1,3,7 | Geptiruntsitratsiyalangan 8-simpleks | (0,1,1,1,1,2,2,3,4) | 56700 | 7560 | ||||||
| 80 | 
  | t0,2,3,7 | Geptiruncicantellated 8-simpleks | (0,1,1,1,1,2,3,3,4) | 45360 | 7560 | ||||||
| 81 | 
  | t0,1,4,7 | Geptisteritratsiyalangan 8-simpleks | (0,1,1,1,2,2,2,3,4) | 80640 | 10080 | ||||||
| 82 | 
  | t0,2,4,7 | Geptisterikantellated 8-simpleks | (0,1,1,1,2,2,3,3,4) | 113400 | 15120 | ||||||
| 83 | 
  | t0,3,4,7 | Geptisterinatsiyalangan 8-simpleks | (0,1,1,1,2,3,3,3,4) | 60480 | 10080 | ||||||
| 84 | 
  | t0,1,5,7 | Geptipentritratsiyalangan 8-oddiy | (0,1,1,2,2,2,2,3,4) | 56700 | 7560 | ||||||
| 85 | 
  | t0,2,5,7 | Geptipentikantellated 8-sodda | (0,1,1,2,2,2,3,3,4) | 120960 | 15120 | ||||||
| 86 | 
  | t0,1,6,7 | Geptixeksitruktsiya qilingan 8-simpleks | (0,1,2,2,2,2,2,3,4) | 18144 | 3024 | ||||||
| 87 | 
  | t0,1,2,3,4 | Steriluncikantitruncated 8-simpleks | (0,0,0,0,1,2,3,4,5) | 60480 | 15120 | ||||||
| 88 | 
  | t0,1,2,3,5 | Pentiruncicantitruncated 8-simplex | (0,0,0,1,1,2,3,4,5) | 166320 | 30240 | ||||||
| 89 | 
  | t0,1,2,4,5 | Pentisterikantruncated 8-simpleks | (0,0,0,1,2,2,3,4,5) | 136080 | 30240 | ||||||
| 90 | 
  | t0,1,3,4,5 | Pentisteriruncitruncated 8-simplex | (0,0,0,1,2,3,3,4,5) | 136080 | 30240 | ||||||
| 91 | 
  | t0,2,3,4,5 | Pentisteriruncicantellated 8-simpleks | (0,0,0,1,2,3,4,4,5) | 136080 | 30240 | ||||||
| 92 | 
  | t1,2,3,4,5 | Bisterunkikantitruncated 8-simpleks | (0,0,0,1,2,3,4,5,5) | 120960 | 30240 | ||||||
| 93 | 
  | t0,1,2,3,6 | Hexiruncicantitruncated 8-simpleks | (0,0,1,1,1,2,3,4,5) | 181440 | 30240 | ||||||
| 94 | 
  | t0,1,2,4,6 | Hexistericantitruncated 8-simpleks | (0,0,1,1,2,2,3,4,5) | 272160 | 45360 | ||||||
| 95 | 
  | t0,1,3,4,6 | Hexisteriruncitruncated 8-simpleks | (0,0,1,1,2,3,3,4,5) | 249480 | 45360 | ||||||
| 96 | 
  | t0,2,3,4,6 | Hexisteriruncicantellated 8-simpleks | (0,0,1,1,2,3,4,4,5) | 249480 | 45360 | ||||||
| 97 | 
  | t1,2,3,4,6 | Bipentiruncicantitruncated 8-simpleks | (0,0,1,1,2,3,4,5,5) | 226800 | 45360 | ||||||
| 98 | 
  | t0,1,2,5,6 | Hexipenticantitruncated 8-simpleks | (0,0,1,2,2,2,3,4,5) | 151200 | 30240 | ||||||
| 99 | 
  | t0,1,3,5,6 | Hexipentiruncitruncated 8-simpleks | (0,0,1,2,2,3,3,4,5) | 249480 | 45360 | ||||||
| 100 | 
  | t0,2,3,5,6 | Hexipentiruncicantellated 8-simpleks | (0,0,1,2,2,3,4,4,5) | 226800 | 45360 | ||||||
| 101 | 
  | t1,2,3,5,6 | Bipentisterikantitruncated 8-simpleks | (0,0,1,2,2,3,4,5,5) | 204120 | 45360 | ||||||
| 102 | 
  | t0,1,4,5,6 | Geksipentisteritratsiya qilingan 8-simpleks | (0,0,1,2,3,3,3,4,5) | 151200 | 30240 | ||||||
| 103 | 
  | t0,2,4,5,6 | Hexipentistericantellated 8-simpleks | (0,0,1,2,3,3,4,4,5) | 249480 | 45360 | ||||||
| 104 | 
  | t0,3,4,5,6 | Geksipentistiruncinatsiyalangan 8-simpleks | (0,0,1,2,3,4,4,4,5) | 151200 | 30240 | ||||||
| 105 | 
  | t0,1,2,3,7 | Geptiruncikantitruncated 8-simpleks | (0,1,1,1,1,2,3,4,5) | 83160 | 15120 | ||||||
| 106 | 
  | t0,1,2,4,7 | Geptisterikantraktatsiya qilingan 8-simpleks | (0,1,1,1,2,2,3,4,5) | 196560 | 30240 | ||||||
| 107 | 
  | t0,1,3,4,7 | Geptisterirunitsitruktsiya qilingan 8-simpleks | (0,1,1,1,2,3,3,4,5) | 166320 | 30240 | ||||||
| 108 | 
  | t0,2,3,4,7 | Geptisteriruncicantellated 8-simpleks | (0,1,1,1,2,3,4,4,5) | 166320 | 30240 | ||||||
| 109 | 
  | t0,1,2,5,7 | Geptipentikantitruncated 8-simpleks | (0,1,1,2,2,2,3,4,5) | 196560 | 30240 | ||||||
| 110 | 
  | t0,1,3,5,7 | Geptipentiruncitruncated 8-simpleks | (0,1,1,2,2,3,3,4,5) | 294840 | 45360 | ||||||
| 111 | 
  | t0,2,3,5,7 | Geptipentiruncicantellated 8-simpleks | (0,1,1,2,2,3,4,4,5) | 272160 | 45360 | ||||||
| 112 | 
  | t0,1,4,5,7 | Geptipentisteritratsiya qilingan 8-simpleks | (0,1,1,2,3,3,3,4,5) | 166320 | 30240 | ||||||
| 113 | 
  | t0,1,2,6,7 | Geptikeksikantitratsiyalangan 8-simpleks | (0,1,2,2,2,2,3,4,5) | 83160 | 15120 | ||||||
| 114 | 
  | t0,1,3,6,7 | Geptixeksirunitsitratsiyalangan 8-simpleks | (0,1,2,2,2,3,3,4,5) | 196560 | 30240 | ||||||
| 115 | 
  | t0,1,2,3,4,5 | Pentisteriruncikantitruncated 8-simpleks | (0,0,0,1,2,3,4,5,6) | 241920 | 60480 | ||||||
| 116 | 
  | t0,1,2,3,4,6 | Hexisteriruncicantitruncated 8-simpleks | (0,0,1,1,2,3,4,5,6) | 453600 | 90720 | ||||||
| 117 | 
  | t0,1,2,3,5,6 | Hexipentiruncicantitruncated 8-simpleks | (0,0,1,2,2,3,4,5,6) | 408240 | 90720 | ||||||
| 118 | 
  | t0,1,2,4,5,6 | Geksipentisterikantritratsiya qilingan 8-simpleks | (0,0,1,2,3,3,4,5,6) | 408240 | 90720 | ||||||
| 119 | 
  | t0,1,3,4,5,6 | Geksipentisterunitsitruktsiya qilingan 8-simpleks | (0,0,1,2,3,4,4,5,6) | 408240 | 90720 | ||||||
| 120 | 
  | t0,2,3,4,5,6 | Hexipentisteriruncicantellated 8-simpleks | (0,0,1,2,3,4,5,5,6) | 408240 | 90720 | ||||||
| 121 | 
  | t1,2,3,4,5,6 | Bipentisteriruncikantitruncated 8-simpleks | (0,0,1,2,3,4,5,6,6) | 362880 | 90720 | ||||||
| 122 | 
  | t0,1,2,3,4,7 | Geptisteriruncikantitruncated 8-simpleks | (0,1,1,1,2,3,4,5,6) | 302400 | 60480 | ||||||
| 123 | 
  | t0,1,2,3,5,7 | Geptipentiruncicantitruncated 8-simpleks | (0,1,1,2,2,3,4,5,6) | 498960 | 90720 | ||||||
| 124 | 
  | t0,1,2,4,5,7 | Geptipentisterikantritratsiyalangan 8-simpleks | (0,1,1,2,3,3,4,5,6) | 453600 | 90720 | ||||||
| 125 | 
  | t0,1,3,4,5,7 | Geptipentisterunitsitruktsiya qilingan 8-simpleks | (0,1,1,2,3,4,4,5,6) | 453600 | 90720 | ||||||
| 126 | 
  | t0,2,3,4,5,7 | Geptipentisteriruncicantellated 8-simpleks | (0,1,1,2,3,4,5,5,6) | 453600 | 90720 | ||||||
| 127 | 
  | t0,1,2,3,6,7 | Geptixeksiruntsikantitratsiyalangan 8-simpleks | (0,1,2,2,2,3,4,5,6) | 302400 | 60480 | ||||||
| 128 | 
  | t0,1,2,4,6,7 | Geptixeksisterikantraktatsiya qilingan 8-simpleks | (0,1,2,2,3,3,4,5,6) | 498960 | 90720 | ||||||
| 129 | 
  | t0,1,3,4,6,7 | Geptixeksisterunitsitruktsiya qilingan 8-simpleks | (0,1,2,2,3,4,4,5,6) | 453600 | 90720 | ||||||
| 130 | 
  | t0,1,2,5,6,7 | Geptigeksipentikantitratsiyalangan 8-simpleks | (0,1,2,3,3,3,4,5,6) | 302400 | 60480 | ||||||
| 131 | 
  | t0,1,2,3,4,5,6 | Hexipentisteriruncicantitruncated 8-simpleks | (0,0,1,2,3,4,5,6,7) | 725760 | 181440 | ||||||
| 132 | 
  | t0,1,2,3,4,5,7 | Geptipentisteriruncikantitratsiyalangan 8-simpleks | (0,1,1,2,3,4,5,6,7) | 816480 | 181440 | ||||||
| 133 | 
  | t0,1,2,3,4,6,7 | Geptixeksisteriruncikantitratsiyalangan 8-simpleks | (0,1,2,2,3,4,5,6,7) | 816480 | 181440 | ||||||
| 134 | 
  | t0,1,2,3,5,6,7 | Geptixeksipentiruncikantitratsiyalangan 8-simpleks | (0,1,2,3,3,4,5,6,7) | 816480 | 181440 | ||||||
| 135 | 
  | t0,1,2,3,4,5,6,7 | Omnitruncated 8-simplex | (0,1,2,3,4,5,6,7,8) | 1451520 | 362880 | ||||||
B8 oila
B8 oila 10321920 (8) tartibli simmetriyasiga ega faktorial x 28). Ning barcha almashtirishlariga asoslangan 255 shakl mavjud Kokseter-Dinkin diagrammalari bir yoki bir nechta halqalar bilan.
Shuningdek qarang: a B8 polytopes ro'yxati nosimmetrik uchun Kokseter tekisligi ushbu polipoplarning grafikalari.
| B8 bir xil politoplar | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Kokseter-Dinkin diagrammasi | Schläfli belgi  | Ism | Element hisobga olinadi | ||||||||
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||
| 1 | t0{36,4} | 8-ortoppleks Diakosipentakontaheksazetton (ek)  | 256 | 1024 | 1792 | 1792 | 1120 | 448 | 112 | 16 | ||
| 2 | t1{36,4} | Rektifikatsiyalangan 8-ortoppleks Rektifikatsiyalangan diakosipentakontaheksazetton (rek)  | 272 | 3072 | 8960 | 12544 | 10080 | 4928 | 1344 | 112 | ||
| 3 | t2{36,4} | Birlashtirilgan 8-ortoppleks Birrektifikatsiyalangan diakosipentakontaheksazetton (po'stloq)  | 272 | 3184 | 16128 | 34048 | 36960 | 22400 | 6720 | 448 | ||
| 4 | t3{36,4} | Uch yo'naltirilgan 8-ortoppleks Uch yo'naltirilgan diakosipentakontaheksazetton (tark)  | 272 | 3184 | 16576 | 48384 | 71680 | 53760 | 17920 | 1120 | ||
| 5 | t3{4,36} | 8-kubik yo'naltirilgan Uch yo'naltirilgan okterakt (tro)  | 272 | 3184 | 16576 | 47712 | 80640 | 71680 | 26880 | 1792 | ||
| 6 | t2{4,36} | Birlashtirilgan 8-kub Birektifikatsiyalangan okterakt (aka)  | 272 | 3184 | 14784 | 36960 | 55552 | 50176 | 21504 | 1792 | ||
| 7 | t1{4,36} | Rektifikatsiyalangan 8-kub Rektifikatsiyalangan okterakt (rekto)  | 272 | 2160 | 7616 | 15456 | 19712 | 16128 | 7168 | 1024 | ||
| 8 | t0{4,36} | 8-kub Okterakt (okto)  | 16 | 112 | 448 | 1120 | 1792 | 1792 | 1024 | 256 | ||
| 9 | t0,1{36,4} | Qisqartirilgan 8-ortoppleks Kesilgan diakosipentakontaheksazetton (tek)  | 1456 | 224 | ||||||||
| 10 | t0,2{36,4} | Kantel qilingan 8-ortoppleks Kichik rombalangan diakosipentakontaheksazetton (srek)  | 14784 | 1344 | ||||||||
| 11 | t1,2{36,4} | Bitruncated 8-ortoppleks Bitruncated diacosipentacontahexazetton (batek)  | 8064 | 1344 | ||||||||
| 12 | t0,3{36,4} | Runched 8-ortoppleks Kichik prizmatik diakosipentakontaheksazetton (spek)  | 60480 | 4480 | ||||||||
| 13 | t1,3{36,4} | Bicantellated 8-ortoppleks Kichik birombozalangan diakosipentakontaheksazetton (sabork)  | 67200 | 6720 | ||||||||
| 14 | t2,3{36,4} | Uch marta kesilgan 8-ortoppleks Uch marta kesilgan diakosipentakontaheksazetton (tatek)  | 24640 | 4480 | ||||||||
| 15 | t0,4{36,4} | Sterilizatsiya qilingan 8-ortoppleks Kichik hujayrali diakosipentakontaheksazetton (scak)  | 125440 | 8960 | ||||||||
| 16 | t1,4{36,4} | Biruncined 8-ortoppleks Kichik biprizmali diakosipentakontaheksazetton (sabpek)  | 215040 | 17920 | ||||||||
| 17 | t2,4{36,4} | Uch qavatli 8-ortoppleks Kichik trombozlangan diakosipentakontaheksazetton (satrek)  | 161280 | 17920 | ||||||||
| 18 | t3,4{4,36} | To'rt qirrali 8 kub Octeractidiacosipentacontahexazetton (oke)  | 44800 | 8960 | ||||||||
| 19 | t0,5{36,4} | Pentellated 8-ortoppleks Kichkina terak diakosipentakontaheksazetton (setek)  | 134400 | 10752 | ||||||||
| 20 | t1,5{36,4} | Ikki tomonlama ortoppleks Kichik bisellali diakosipentakontaheksazetton (sibcak)  | 322560 | 26880 | ||||||||
| 21 | t2,5{4,36} | 8 kubik trirunkulyatsiya qilingan Kichik triprismato-okteractidiacosipentacontahexazetton (sitpoke)  | 376320 | 35840 | ||||||||
| 22 | t2,4{4,36} | Trikantellatlangan 8 kub Kichik trombomblangan okterakt (satro)  | 215040 | 26880 | ||||||||
| 23 | t2,3{4,36} | Uchburchak kesilgan 8 kub Uchburchak okterakt (tatuirovka)  | 48384 | 10752 | ||||||||
| 24 | t0,6{36,4} | Goksiklangan 8-ortoppleks Kichkina kichkina diakosipentakontaheksazetton (supek)  | 64512 | 7168 | ||||||||
| 25 | t1,6{4,36} | Bipentellated 8-kub Kichik biteri-okteraktidiakosipentakontaheksazetton (sabtoke)  | 215040 | 21504 | ||||||||
| 26 | t1,5{4,36} | Ikki kubik Kichik bisellali okterakt (sobko)  | 358400 | 35840 | ||||||||
| 27 | t1,4{4,36} | Bir kubikli 8 kub Kichik biprizmli okterakt (sabepo)  | 322560 | 35840 | ||||||||
| 28 | t1,3{4,36} | Ikki qavatli 8 kub Kichik birombambli okterakt (subro)  | 150528 | 21504 | ||||||||
| 29 | t1,2{4,36} | Bitruncated 8-kub Bitruncated okteract (bato)  | 28672 | 7168 | ||||||||
| 30 | t0,7{4,36} | Yulduzli 8-kub Kichik exi-okteraktidiakosipentakontaheksazetton (saksok)  | 14336 | 2048 | ||||||||
| 31 | t0,6{4,36} | 8-kubik mast Kichik kichkina okterakt (supo)  | 64512 | 7168 | ||||||||
| 32 | t0,5{4,36} | Pentellated 8-kub Kichik g'azablangan okterakt (soto)  | 143360 | 14336 | ||||||||
| 33 | t0,4{4,36} | Sterilizatsiya qilingan 8 kub Kichik hujayrali okterakt (soco)  | 179200 | 17920 | ||||||||
| 34 | t0,3{4,36} | 8 kubdan ishlangan Kichik prizmatik okterakt (sopo)  | 129024 | 14336 | ||||||||
| 35 | t0,2{4,36} | Cantellated 8-kub Kichik rombalangan okterakt (soro)  | 50176 | 7168 | ||||||||
| 36 | t0,1{4,36} | Kesilgan 8 kub Qisqartirilgan okterakt (tokto)  | 8192 | 2048 | ||||||||
| 37 | t0,1,2{36,4} | Kantritratsiyalangan 8-ortoppleks Ajoyib romblangan diakosipentakontaheksazetton  | 16128 | 2688 | ||||||||
| 38 | t0,1,3{36,4} | Runcitruncated 8-ortoppleks Prizmatik ajratilgan diakosipentakontaheksazetton  | 127680 | 13440 | ||||||||
| 39 | t0,2,3{36,4} | Runcicantellated 8-ortoppleks Prismatorhombated diakosipentakontaheksazetton  | 80640 | 13440 | ||||||||
| 40 | t1,2,3{36,4} | Bicantitruncated 8-ortoppleks Birhombated diakosipentakontaheksazetton  | 73920 | 13440 | ||||||||
| 41 | t0,1,4{36,4} | Steritratsiyalangan 8-ortoppleks Selitratsiyalangan diakosipentakontaheksazetton  | 394240 | 35840 | ||||||||
| 42 | t0,2,4{36,4} | Sterikantellatsiyalangan 8-ortoppleks Selliromblangan diakosipentakontaheksazetton  | 483840 | 53760 | ||||||||
| 43 | t1,2,4{36,4} | Biruncitruncated 8-ortoppleks Biprizma bilan kesilgan diakosipentakontaheksazetton  | 430080 | 53760 | ||||||||
| 44 | t0,3,4{36,4} | Sterilinatsiyalangan 8-ortoppleks Celliprismated diacosipentacontahexazetton  | 215040 | 35840 | ||||||||
| 45 | t1,3,4{36,4} | Biruncicantellated 8-ortoppleks Biprizmatommbatsiya qilingan diakosipentakontaheksazetton  | 322560 | 53760 | ||||||||
| 46 | t2,3,4{36,4} | Trikantitratsiyalangan 8-ortoppleks Katta trombomblangan diakosipentakontaheksazetton  | 179200 | 35840 | ||||||||
| 47 | t0,1,5{36,4} | Pentitruncated 8-ortoppleks Teritratsiyalangan diakosipentakontaheksazetton  | 564480 | 53760 | ||||||||
| 48 | t0,2,5{36,4} | Pentikantellated 8-ortoppleks Teriromblangan diakosipentakontaheksazetton  | 1075200 | 107520 | ||||||||
| 49 | t1,2,5{36,4} | Bisteritratsiyalangan 8-ortoppleks Bicellitruncated diacosipentacontahexazetton  | 913920 | 107520 | ||||||||
| 50 | t0,3,5{36,4} | Pentiruntsinatsiyalangan 8-ortoppleks Teriprizmalangan diakosipentakontaheksazetton  | 913920 | 107520 | ||||||||
| 51 | t1,3,5{36,4} | Bisterikantellatsiyalangan 8-ortoppleks Biselliromblangan diakosipentakontaheksazetton  | 1290240 | 161280 | ||||||||
| 52 | t2,3,5{36,4} | Triruncitruncated 8-ortoppleks Triprizma bilan kesilgan diakosipentakontaheksazetton  | 698880 | 107520 | ||||||||
| 53 | t0,4,5{36,4} | Pentisterikatsiya qilingan 8-ortoppleks Teracellated diacosipentacontahexazetton  | 322560 | 53760 | ||||||||
| 54 | t1,4,5{36,4} | Bisterinatsiyalangan 8-ortoppleks Bicelliprismated diacosipentacontahexazetton  | 698880 | 107520 | ||||||||
| 55 | t2,3,5{4,36} | Triruncitruncated 8-kub Triprismatotruncated okteract  | 645120 | 107520 | ||||||||
| 56 | t2,3,4{4,36} | Trikantitratsiyalangan 8 kub Ajoyib tromboblangan okterakt  | 241920 | 53760 | ||||||||
| 57 | t0,1,6{36,4} | Hexitruncated 8-ortoppleks Petitruncated diacosipentacontahexazetton  | 344064 | 43008 | ||||||||
| 58 | t0,2,6{36,4} | Hexicantellated 8-ortoppleks Petiromblangan diakosipentakontaheksazetton  | 967680 | 107520 | ||||||||
| 59 | t1,2,6{36,4} | Bipentritratsiyalangan 8-ortoppleks Biteritratsiyalangan diakosipentakontaheksazetton  | 752640 | 107520 | ||||||||
| 60 | t0,3,6{36,4} | Hexirunculated 8-ortoppleks Petiprizma qilingan diakosipentakontaheksazetton  | 1290240 | 143360 | ||||||||
| 61 | t1,3,6{36,4} | Bipentikantellated 8-ortoppleks Biteriromblangan diakosipentakontaheksazetton  | 1720320 | 215040 | ||||||||
| 62 | t1,4,5{4,36} | Bisterinatsiyalangan 8 kub Bicelliprismated okteract  | 860160 | 143360 | ||||||||
| 63 | t0,4,6{36,4} | Hexisterised 8-ortoppleks Peticellated diakosipentakontaheksazetton  | 860160 | 107520 | ||||||||
| 64 | t1,3,6{4,36} | Bipentikantellatlangan 8 kub Biterirombalangan okterakt  | 1720320 | 215040 | ||||||||
| 65 | t1,3,5{4,36} | Bistericantellated 8-kub Biselliromblangan okterakt  | 1505280 | 215040 | ||||||||
| 66 | t1,3,4{4,36} | Biruncicantellated 8-kub Biprizmatombratlangan okterakt  | 537600 | 107520 | ||||||||
| 67 | t0,5,6{36,4} | Hexipentellated 8-ortoppleks Petitatsiya qilingan diakosipentakontaheksazetton  | 258048 | 43008 | ||||||||
| 68 | t1,2,6{4,36} | Bipentritratsiya qilingan 8 kub Biteritratsiyalangan okterakt  | 752640 | 107520 | ||||||||
| 69 | t1,2,5{4,36} | Bisterritratsiya qilingan 8 kub Bitsellitratsiyalangan okterakt  | 1003520 | 143360 | ||||||||
| 70 | t1,2,4{4,36} | Bir kubikli 8 kub Biprismatotruncated okterakt  | 645120 | 107520 | ||||||||
| 71 | t1,2,3{4,36} | Bicantitruncated 8-kub Ajoyib bir oktaktakt  | 172032 | 43008 | ||||||||
| 72 | t0,1,7{36,4} | Gipertratsiyalangan 8-ortoppleks Chiqib ketgan diakosipentakontaheksazetton  | 93184 | 14336 | ||||||||
| 73 | t0,2,7{36,4} | Geptikantellatlangan 8-ortoppleks Eksirombalangan diakosipentakontaheksazetton  | 365568 | 43008 | ||||||||
| 74 | t0,5,6{4,36} | Olti burchakli 8 kub Petiteratsiya qilingan okterakt  | 258048 | 43008 | ||||||||
| 75 | t0,3,7{36,4} | Geptiruntsinatsiyalangan 8-ortoppleks Ekziprizma qilingan diakosipentakontaheksazetton  | 680960 | 71680 | ||||||||
| 76 | t0,4,6{4,36} | Olti o'lchovli 8 kub Peticellated okteract  | 860160 | 107520 | ||||||||
| 77 | t0,4,5{4,36} | Pentisterikatsiya qilingan 8 kub Terisellatlangan okterakt  | 394240 | 71680 | ||||||||
| 78 | t0,3,7{4,36} | Geptiruncinatsiyalangan 8 kub Eksprizma qilingan okterakt  | 680960 | 71680 | ||||||||
| 79 | t0,3,6{4,36} | Hexiruncinated 8-kub Petiprizma qilingan okterakt  | 1290240 | 143360 | ||||||||
| 80 | t0,3,5{4,36} | Pentiruncinatsiyalangan 8 kub Teriprizatsiyalangan okterakt  | 1075200 | 143360 | ||||||||
| 81 | t0,3,4{4,36} | Sterilizatsiyalangan 8 kub Celliprismated okteract  | 358400 | 71680 | ||||||||
| 82 | t0,2,7{4,36} | Geptikantellatlangan 8 kub Exirhombated okteract  | 365568 | 43008 | ||||||||
| 83 | t0,2,6{4,36} | Geksikantellatlangan 8 kub Petiromblangan okterakt  | 967680 | 107520 | ||||||||
| 84 | t0,2,5{4,36} | Pentikantellatlangan 8 kub Terirombalangan okterakt  | 1218560 | 143360 | ||||||||
| 85 | t0,2,4{4,36} | Sterilizatsiya qilingan 8 kub Cellirhombated okteract  | 752640 | 107520 | ||||||||
| 86 | t0,2,3{4,36} | Runcicantellated 8-kub Prizmathombated okterakt  | 193536 | 43008 | ||||||||
| 87 | t0,1,7{4,36} | Geptitratsiyalangan 8 kub Exitruncated okteract  | 93184 | 14336 | ||||||||
| 88 | t0,1,6{4,36} | Hexitruncated 8-kub Petritratsiyalangan okterakt  | 344064 | 43008 | ||||||||
| 89 | t0,1,5{4,36} | Besh marta kesilgan 8 kub Teritratsiyalangan okterakt  | 609280 | 71680 | ||||||||
| 90 | t0,1,4{4,36} | Sterilizatsiya qilingan 8 kub Selitratsiyalangan okterakt  | 573440 | 71680 | ||||||||
| 91 | t0,1,3{4,36} | Runcitruncated 8-kub Prizmatik kesilgan okterakt  | 279552 | 43008 | ||||||||
| 92 | t0,1,2{4,36} | Kantritratsiya qilingan 8 kub Ajoyib romblangan okterakt  | 57344 | 14336 | ||||||||
| 93 | t0,1,2,3{36,4} | Runcicantitruncated 8-ortoppleks Katta prizmatik diakosipentakontaheksazetton  | 147840 | 26880 | ||||||||
| 94 | t0,1,2,4{36,4} | Sterikantritratsiyalangan 8-ortoppleks Creatreatorhombated diacosipentacontahexazetton  | 860160 | 107520 | ||||||||
| 95 | t0,1,3,4{36,4} | Steriruntsitratsiyalangan 8-ortoppleks Celliprismatotruncated diacosipentacontahexazetton  | 591360 | 107520 | ||||||||
| 96 | t0,2,3,4{36,4} | Steriluncicantellated 8-ortoppleks Celliprismatorhombated diacosipentacontahexazetton  | 591360 | 107520 | ||||||||
| 97 | t1,2,3,4{36,4} | Biruncicantitruncated 8-ortoppleks Katta biprizma qilingan diakosipentakontaheksazetton  | 537600 | 107520 | ||||||||
| 98 | t0,1,2,5{36,4} | Pentikantitratsiyalangan 8-ortoppleks Terigreatorhombated diakosipentakontaheksazetton  | 1827840 | 215040 | ||||||||
| 99 | t0,1,3,5{36,4} | Pentiruncitruncated 8-ortoppleks Teriprizma bilan kesilgan diakosipentakontaheksazetton  | 2419200 | 322560 | ||||||||
| 100 | t0,2,3,5{36,4} | Pentiruncicantellated 8-ortoppleks Teriprizmatorli diakosipentakontaheksazetton  | 2257920 | 322560 | ||||||||
| 101 | t1,2,3,5{36,4} | Bisterikantitratsiyalangan 8-ortoppleks Ikki tomonlama aqlli diakosipentakontaheksazetton  | 2096640 | 322560 | ||||||||
| 102 | t0,1,4,5{36,4} | Pentisterritratsiya qilingan 8-ortoppleks Terisellitratsiyalangan diakosipentakontaheksazetton  | 1182720 | 215040 | ||||||||
| 103 | t0,2,4,5{36,4} | Pentisterikantellated 8-ortoppleks Teriselliromblangan diakosipentakontaheksazetton  | 1935360 | 322560 | ||||||||
| 104 | t1,2,4,5{36,4} | Bisterunitsitratsiyalangan 8-ortoppleks Bicelliprismatotruncated diacosipentacontahexazetton  | 1612800 | 322560 | ||||||||
| 105 | t0,3,4,5{36,4} | Pentisterinatsiyalangan 8-ortoppleks Teriselliprrizatsiyalangan diakosipentakontaheksazetton  | 1182720 | 215040 | ||||||||
| 106 | t1,3,4,5{36,4} | Bisteriruncikantellated 8-ortoppleks Bicelliprismatorhombated diacosipentacontahexazetton  | 1774080 | 322560 | ||||||||
| 107 | t2,3,4,5{4,36} | Triruncicantitruncated 8-kub Ajoyib triprismato-okteractidiacosipentacontahexazetton  | 967680 | 215040 | ||||||||
| 108 | t0,1,2,6{36,4} | Geksikantitratsiyalangan 8-ortoppleks Petigreatorhombated diakosipentakontaheksazetton  | 1505280 | 215040 | ||||||||
| 109 | t0,1,3,6{36,4} | Hexiruncitruncated 8-ortoppleks Petiprizma bilan kesilgan diakosipentakontaheksazetton  | 3225600 | 430080 | ||||||||
| 110 | t0,2,3,6{36,4} | Hexiruncicantellated 8-ortoppleks Petiprizmatorli diakosipentakontaheksazetton  | 2795520 | 430080 | ||||||||
| 111 | t1,2,3,6{36,4} | Bipentikantitruncated 8-ortoppleks Biterigreatorhombated diakosipentakontaheksazetton  | 2580480 | 430080 | ||||||||
| 112 | t0,1,4,6{36,4} | Hexisteritruncated 8-ortoppleks Petitsellitratsiyalangan diakosipentakontaheksazetton  | 3010560 | 430080 | ||||||||
| 113 | t0,2,4,6{36,4} | Hexistericantellated 8-ortoppleks Petitselliromblangan diakosipentakontaheksazetton  | 4515840 | 645120 | ||||||||
| 114 | t1,2,4,6{36,4} | Bipentiruncitruncated 8-ortoppleks Biteriprizma bilan kesilgan diakosipentakontaheksazetton  | 3870720 | 645120 | ||||||||
| 115 | t0,3,4,6{36,4} | Hexisteriruncinated 8-ortoppleks Peticelliprismated diacosipentacontahexazetton  | 2580480 | 430080 | ||||||||
| 116 | t1,3,4,6{4,36} | Bipentiruncicantellated 8-kub Biteriprismatorhombi-okteraktidiakosipentakontaheksazetton  | 3870720 | 645120 | ||||||||
| 117 | t1,3,4,5{4,36} | Bisteriruncicantellated 8-kub Bicelliprismatorhombated okteract  | 2150400 | 430080 | ||||||||
| 118 | t0,1,5,6{36,4} | Hexipentitruncated 8-ortoppleks Petiteritratsiyalangan diakosipentakontaheksazetton  | 1182720 | 215040 | ||||||||
| 119 | t0,2,5,6{36,4} | Hexipenticantellated 8-ortoppleks Petiteriromblangan diakosipentakontaheksazetton  | 2795520 | 430080 | ||||||||
| 120 | t1,2,5,6{4,36} | Bipentisteritratsiya qilingan 8 kub Biterisellitrunki-okteraktidiakosipentakontaheksazetton  | 2150400 | 430080 | ||||||||
| 121 | t0,3,5,6{36,4} | Geksipentiruncinatsiyalangan 8-ortoppleks Petiteriprizma qilingan diakosipentakontaheksazetton  | 2795520 | 430080 | ||||||||
| 122 | t1,2,4,6{4,36} | Bipentiruncitruncated 8-kub Biteriprizma bilan kesilgan okterakt  | 3870720 | 645120 | ||||||||
| 123 | t1,2,4,5{4,36} | Bisterunitsitruktsiya qilingan 8 kub Bicelliprismatotruncated okteract  | 1935360 | 430080 | ||||||||
| 124 | t0,4,5,6{36,4} | Hexipentisterised 8-ortoppleks Petiteritellangan diakosipentakontaheksazetton  | 1182720 | 215040 | ||||||||
| 125 | t1,2,3,6{4,36} | Bipentikantitruncated 8-kub Biterigreatorhombated okteract  | 2580480 | 430080 | ||||||||
| 126 | t1,2,3,5{4,36} | Bisterikantitraktsiya qilingan 8 kub Ikki tomonlama aqlli oktterakt  | 2365440 | 430080 | ||||||||
| 127 | t1,2,3,4{4,36} | Biruncicantitruncated 8-kub Ajoyib biprizmli okterakt  | 860160 | 215040 | ||||||||
| 128 | t0,1,2,7{36,4} | Geptikantritratsiyalangan 8-ortoppleks Exigreatorhombated diakosipentakontaheksazetton  | 516096 | 86016 | ||||||||
| 129 | t0,1,3,7{36,4} | Geptiruntsitratsiyalangan 8-ortoppleks Ekziprizma bilan kesilgan diakosipentakontaheksazetton  | 1612800 | 215040 | ||||||||
| 130 | t0,2,3,7{36,4} | Geptiruncikantellatsiyalangan 8-ortoppleks Ekziprizmatomombalangan diakosipentakontaheksazetton  | 1290240 | 215040 | ||||||||
| 131 | t0,4,5,6{4,36} | Hexipentisterised 8-kub Petiteritsellated okterakt  | 1182720 | 215040 | ||||||||
| 132 | t0,1,4,7{36,4} | Geptisteritratsiyalangan 8-ortoppleks Exicellitruncated diacosipentacontahexazetton  | 2293760 | 286720 | ||||||||
| 133 | t0,2,4,7{36,4} | Geptisterikantellatsiyalangan 8-ortoppleks Exitselliromblangan diakosipentakontaheksazetton  | 3225600 | 430080 | ||||||||
| 134 | t0,3,5,6{4,36} | Geksipentiruncinatsiyalangan 8 kub Petiteriprizma qilingan okterakt  | 2795520 | 430080 | ||||||||
| 135 | t0,3,4,7{4,36} | Geptisterinatsiyalangan 8 kub Exicelliprismato-okteractidiacosipentacontahexazetton  | 1720320 | 286720 | ||||||||
| 136 | t0,3,4,6{4,36} | Hexisteruncinatsiyalangan 8 kub Peticelliprismated okteract  | 2580480 | 430080 | ||||||||
| 137 | t0,3,4,5{4,36} | Pentisterinatsiyalangan 8 kub Teriselliprrizatsiyalangan okterakt  | 1433600 | 286720 | ||||||||
| 138 | t0,1,5,7{36,4} | Geptipentritratsiyalangan 8-ortoppleks Ekziteritratsiyalangan diakosipentakontaheksazetton  | 1612800 | 215040 | ||||||||
| 139 | t0,2,5,7{4,36} | Geptipentikantellatlangan 8 kub Exiterirhombi-okteractidiacosipentacontahexazetton  | 3440640 | 430080 | ||||||||
| 140 | t0,2,5,6{4,36} | Hexipenticantellated 8-kub Petiteriromblangan okterakt  | 2795520 | 430080 | ||||||||
| 141 | t0,2,4,7{4,36} | Geptisterikantellatlangan 8 kub Exitselliromblangan okterakt  | 3225600 | 430080 | ||||||||
| 142 | t0,2,4,6{4,36} | Hexistericantellated 8-kub Petitselliromblangan okterakt  | 4515840 | 645120 | ||||||||
| 143 | t0,2,4,5{4,36} | Pentistericantellated 8-kub Teritselliromblangan okterakt  | 2365440 | 430080 | ||||||||
| 144 | t0,2,3,7{4,36} | Geptiruncicantellated 8-kub Ekziprizmatombatsiya qilingan okterakt  | 1290240 | 215040 | ||||||||
| 145 | t0,2,3,6{4,36} | Hexiruncicantellated 8-kub Petiprizmatorli oktterakt  | 2795520 | 430080 | ||||||||
| 146 | t0,2,3,5{4,36} | Pentiruncicantellated 8-kub Teriprizmatombatsiya qilingan okterakt  | 2580480 | 430080 | ||||||||
| 147 | t0,2,3,4{4,36} | Steriluncicantellated 8 kub Celliprismatorhombated okteract  | 967680 | 215040 | ||||||||
| 148 | t0,1,6,7{4,36} | Geptixeksitruktsiya qilingan 8 kub Exipetitrunki-okteraktidiakosipentakontaheksazetton  | 516096 | 86016 | ||||||||
| 149 | t0,1,5,7{4,36} | Geptipentritratsiya qilingan 8 kub Exiteritruncated okteract  | 1612800 | 215040 | ||||||||
| 150 | t0,1,5,6{4,36} | Hexipentitruncated 8-kub Petiteritratsiyalangan okterakt  | 1182720 | 215040 | ||||||||
| 151 | t0,1,4,7{4,36} | Geptisteritratsiya qilingan 8 kub Exitsellitruncated okteract  | 2293760 | 286720 | ||||||||
| 152 | t0,1,4,6{4,36} | Hexisteritruncated 8-kub Petitsellitratsiyalangan okterakt  | 3010560 | 430080 | ||||||||
| 153 | t0,1,4,5{4,36} | Pentisteritratsiya qilingan 8 kub Teritsellitratsiyalangan okterakt  | 1433600 | 286720 | ||||||||
| 154 | t0,1,3,7{4,36} | Geptiruntsitratsiyalangan 8 kub Ekziprizmatatsiya qilingan okterakt  | 1612800 | 215040 | ||||||||
| 155 | t0,1,3,6{4,36} | Hexiruncitruncated 8-kub Petiprizma bilan kesilgan okterakt  | 3225600 | 430080 | ||||||||
| 156 | t0,1,3,5{4,36} | Pentiruncitruncated 8-kub Teriprizma bilan kesilgan okterakt  | 2795520 | 430080 | ||||||||
| 157 | t0,1,3,4{4,36} | Sterilizatsiyalangan 8 kub Celliprismatotruncated okteract  | 967680 | 215040 | ||||||||
| 158 | t0,1,2,7{4,36} | Geptikantritratsiya qilingan 8 kub Exigreatorhombated okteract  | 516096 | 86016 | ||||||||
| 159 | t0,1,2,6{4,36} | 8-kubik heksikantitruncated Petigreatorhombated okterakt  | 1505280 | 215040 | ||||||||
| 160 | t0,1,2,5{4,36} | Pentikantritratsiya qilingan 8 kub Terigreatorhombated okterakt  | 2007040 | 286720 | ||||||||
| 161 | t0,1,2,4{4,36} | Sterikantritratsiyalangan 8 kub Aql-idrokli oktterakt  | 1290240 | 215040 | ||||||||
| 162 | t0,1,2,3{4,36} | Runcicantitruncated 8-kub Buyuk prizmatik okterakt  | 344064 | 86016 | ||||||||
| 163 | t0,1,2,3,4{36,4} | Steriluncikantitruncated 8-ortoppleks Ajoyib hujayrali diakosipentakontaheksazetton  | 1075200 | 215040 | ||||||||
| 164 | t0,1,2,3,5{36,4} | Pentiruncicantitruncated 8-ortoppleks Terigreatoprizma qilingan diakosipentakontaheksazetton  | 4193280 | 645120 | ||||||||
| 165 | t0,1,2,4,5{36,4} | Pentisterikantruncated 8-ortoppleks Tericelligreatorhombated diakosipentakontaheksazetton  | 3225600 | 645120 | ||||||||
| 166 | t0,1,3,4,5{36,4} | Pentisteriruncitruncated 8-ortoppleks Teriselliprismatotrik diakosipentakontaheksazetton  | 3225600 | 645120 | ||||||||
| 167 | t0,2,3,4,5{36,4} | Pentisteriruncicantellated 8-ortoppleks Tericelliprismatorhombated diacosipentacontahexazetton  | 3225600 | 645120 | ||||||||
| 168 | t1,2,3,4,5{36,4} | Bisterirunikantitruncated 8-ortoppleks Ajoyib bisellated diakosipentakontaheksazetton  | 2903040 | 645120 | ||||||||
| 169 | t0,1,2,3,6{36,4} | Hexiruncicantitruncated 8-ortoppleks Petigreatoprizma qilingan diakosipentakontaheksazetton  | 5160960 | 860160 | ||||||||
| 170 | t0,1,2,4,6{36,4} | Hexistericantitruncated 8-ortoppleks Peticelligreatorhombated diakosipentakontaheksazetton  | 7741440 | 1290240 | ||||||||
| 171 | t0,1,3,4,6{36,4} | Hexisteriruncitruncated 8-ortoppleks Peticelliprismatotruncated diacosipentacontahexazetton  | 7096320 | 1290240 | ||||||||
| 172 | t0,2,3,4,6{36,4} | Hexisteriruncicantellated 8-ortoppleks Peticelliprismatorhombated diacosipentacontahexazetton  | 7096320 | 1290240 | ||||||||
| 173 | t1,2,3,4,6{36,4} | Bipentiruncicantitruncated 8-ortoppleks Biterigreatoprizma qilingan diakosipentakontaheksazetton  | 6451200 | 1290240 | ||||||||
| 174 | t0,1,2,5,6{36,4} | Hexipenticantitruncated 8-ortoppleks Petiterigreatorhombated diakosipentakontaheksazetton  | 4300800 | 860160 | ||||||||
| 175 | t0,1,3,5,6{36,4} | Hexipentiruncitruncated 8-ortoppleks Petiteriprizma bilan kesilgan diakosipentakontaheksazetton  | 7096320 | 1290240 | ||||||||
| 176 | t0,2,3,5,6{36,4} | Hexipentiruncicantellated 8-ortoppleks Petiteriprizma bilan biriktirilgan diakosipentakontaheksazetton  | 6451200 | 1290240 | ||||||||
| 177 | t1,2,3,5,6{36,4} | Bipentisterikantritratsiyalangan 8-ortoppleks Bitericelligreatorhombated diakosipentakontaheksazetton  | 5806080 | 1290240 | ||||||||
| 178 | t0,1,4,5,6{36,4} | Geksipentisteritratsiya qilingan 8-ortoppleks Petiterisellitratsiyalangan diakosipentakontaheksazetton  | 4300800 | 860160 | ||||||||
| 179 | t0,2,4,5,6{36,4} | Hexipentistericantellated 8-ortoppleks Petiteriselliromblangan diakosipentakontaheksazetton  | 7096320 | 1290240 | ||||||||
| 180 | t1,2,3,5,6{4,36} | Bipentisterikantitraktsiya qilingan 8 kub Bitericelligreatorhombated okteract  | 5806080 | 1290240 | ||||||||
| 181 | t0,3,4,5,6{36,4} | Geksipentistiruncinatsiyalangan 8-ortoppleks Petiteriselli, prizma qilingan diakosipentakontaheksazetton  | 4300800 | 860160 | ||||||||
| 182 | t1,2,3,4,6{4,36} | Bipentiruncicantitruncated 8-kub Biterigreatoprizma qilingan okterakt  | 6451200 | 1290240 | ||||||||
| 183 | t1,2,3,4,5{4,36} | Bisterunkikantitratsiyalangan 8 kub Katta bisellated okterakt  | 3440640 | 860160 | ||||||||
| 184 | t0,1,2,3,7{36,4} | Geptiruncikantitruncated 8-ortoppleks Ekzigreatoprizma qilingan diakosipentakontaheksazetton  | 2365440 | 430080 | ||||||||
| 185 | t0,1,2,4,7{36,4} | Geptisterikantritratsiyalangan 8-ortoppleks Exicelligreatorhombated diakosipentakontaheksazetton  | 5591040 | 860160 | ||||||||
| 186 | t0,1,3,4,7{36,4} | Geptisterunitsitruktsiya qilingan 8-ortopleks Exicelliprismatotruncated diacosipentacontahexazetton  | 4730880 | 860160 | ||||||||
| 187 | t0,2,3,4,7{36,4} | Geptisteriruncikantellated 8-ortoppleks Exicelliprismatorhombated diacosipentacontahexazetton  | 4730880 | 860160 | ||||||||
| 188 | t0,3,4,5,6{4,36} | Hexipentistiruncinatsiyalangan 8 kub Petiteriselli prrizatsiyalangan okterakt  | 4300800 | 860160 | ||||||||
| 189 | t0,1,2,5,7{36,4} | Geptipentikantritratsiyalangan 8-ortoppleks Exiterigreatorhombated diakosipentakontaheksazetton  | 5591040 | 860160 | ||||||||
| 190 | t0,1,3,5,7{36,4} | Geptipentiruncitruncated 8-ortoppleks Ekziteriprizma bilan kesilgan diakosipentakontaheksazetton  | 8386560 | 1290240 | ||||||||
| 191 | t0,2,3,5,7{36,4} | Geptipentiruncicantellated 8-ortoppleks Ekziteriprizmatomb diakosipentakontaheksazetton  | 7741440 | 1290240 | ||||||||
| 192 | t0,2,4,5,6{4,36} | Hexipentistericantellated 8-kub Petiterisellirombalangan okterakt  | 7096320 | 1290240 | ||||||||
| 193 | t0,1,4,5,7{36,4} | Geptipentisteritratsiya qilingan 8-ortoppleks Ekzitserisellitratsiyalangan diakosipentakontaheksazetton  | 4730880 | 860160 | ||||||||
| 194 | t0,2,3,5,7{4,36} | Geptipentiruncicantellated 8-kub Ekziteriprizma bilan biriktirilgan okterakt  | 7741440 | 1290240 | ||||||||
| 195 | t0,2,3,5,6{4,36} | Hexipentiruncicantellated 8-kub Petiteriprizmatorli oktterakt  | 6451200 | 1290240 | ||||||||
| 196 | t0,2,3,4,7{4,36} | Geptisteriruncicantellated 8-kub Exicelliprismatorhombated okteract  | 4730880 | 860160 | ||||||||
| 197 | t0,2,3,4,6{4,36} | Hexisteriruncicantellated 8-kub Peticelliprismatorhombated okteract  | 7096320 | 1290240 | ||||||||
| 198 | t0,2,3,4,5{4,36} | Pentisteriruncicantellated 8-kub Tericelliprismatorhombated okteract  | 3870720 | 860160 | ||||||||
| 199 | t0,1,2,6,7{36,4} | Geptikeksikantitratsiyalangan 8-ortoppleks Exipetigreatorhombated diakosipentakontaheksazetton  | 2365440 | 430080 | ||||||||
| 200 | t0,1,3,6,7{36,4} | Geptixeksirunitsitratsiyalangan 8-ortoppleks Ekzipetrizma bilan kesilgan diakosipentakontaheksazetton  | 5591040 | 860160 | ||||||||
| 201 | t0,1,4,5,7{4,36} | Geptipentisteritratsiya qilingan 8 kub Ekzitseritsellitratsiyalangan okterakt  | 4730880 | 860160 | ||||||||
| 202 | t0,1,4,5,6{4,36} | Geksipentisteritratsiya qilingan 8 kub Petiteritsellitratsiyalangan okterakt  | 4300800 | 860160 | ||||||||
| 203 | t0,1,3,6,7{4,36} | Geptixeksiruncitrunced 8 kub Exipetiprizma bilan kesilgan okterakt  | 5591040 | 860160 | ||||||||
| 204 | t0,1,3,5,7{4,36} | Geptipentiruncitruncated 8-kub Ekziteriprizma bilan kesilgan okterakt  | 8386560 | 1290240 | ||||||||
| 205 | t0,1,3,5,6{4,36} | Hexipentiruncitruncated 8-kub Petiteriprizma bilan kesilgan okterakt  | 7096320 | 1290240 | ||||||||
| 206 | t0,1,3,4,7{4,36} | Geptisterirunitruncatlangan 8 kub Exicelliprismatotruncated okteract  | 4730880 | 860160 | ||||||||
| 207 | t0,1,3,4,6{4,36} | Hexisteriruncitruncated 8-kub Peticelliprismatotruncated okteract  | 7096320 | 1290240 | ||||||||
| 208 | t0,1,3,4,5{4,36} | Pentisteriruncitruncated 8-kub Tericelliprismatotruncated okteract  | 3870720 | 860160 | ||||||||
| 209 | t0,1,2,6,7{4,36} | Geptigeksikantitraktsiya qilingan 8 kub Exipetigreatorhombated okteract  | 2365440 | 430080 | ||||||||
| 210 | t0,1,2,5,7{4,36} | Geptipentikantritratsiyalangan 8 kub Exiterigreatorhombated okteract  | 5591040 | 860160 | ||||||||
| 211 | t0,1,2,5,6{4,36} | Hexipenticantitruncated 8-kub Petiterigreatorhombated okteract  | 4300800 | 860160 | ||||||||
| 212 | t0,1,2,4,7{4,36} | Geptisterikantraktatsiya qilingan 8 kub Exicelligreatorhombated okteract  | 5591040 | 860160 | ||||||||
| 213 | t0,1,2,4,6{4,36} | Hexistericantitruncated 8-kub Peticelligreatorhombated okteract  | 7741440 | 1290240 | ||||||||
| 214 | t0,1,2,4,5{4,36} | Pentisterikantruncated 8-kub Tericelligreatorhombated okteract  | 3870720 | 860160 | ||||||||
| 215 | t0,1,2,3,7{4,36} | Geptiruncikantitruncated 8 kub Ekzigreatoprizma qilingan okterakt  | 2365440 | 430080 | ||||||||
| 216 | t0,1,2,3,6{4,36} | Hexiruncicantitruncated 8-kub Petigreatoprizma qilingan okterakt  | 5160960 | 860160 | ||||||||
| 217 | t0,1,2,3,5{4,36} | Pentiruncicantitruncated 8-kub Terigreatoprizma qilingan okterakt  | 4730880 | 860160 | ||||||||
| 218 | t0,1,2,3,4{4,36} | Steriluncikantritraktsiya qilingan 8 kub Katta hujayrali okterakt  | 1720320 | 430080 | ||||||||
| 219 | t0,1,2,3,4,5{36,4} | Pentisteriruncikantitruncated 8-ortoppleks Ajoyib terak diakosipentakontaheksazetton  | 5806080 | 1290240 | ||||||||
| 220 | t0,1,2,3,4,6{36,4} | Hexisteriruncicantitruncated 8-ortoppleks Petigreatotsellated diacosipentacontahexazetton  | 12902400 | 2580480 | ||||||||
| 221 | t0,1,2,3,5,6{36,4} | Hexipentiruncicantitruncated 8-ortoppleks Petiterigreatoprizma qilingan diakosipentakontaheksazetton  | 11612160 | 2580480 | ||||||||
| 222 | t0,1,2,4,5,6{36,4} | Geksipentisterikantritratsiyalangan 8-ortoppleks Petiteriselligreatorhombated diacosipentacontahexazetton  | 11612160 | 2580480 | ||||||||
| 223 | t0,1,3,4,5,6{36,4} | Geksipentisterunitsitruktsiya qilingan 8-ortoppleks Petiteriselliprismatotrunced diakosipentakontaheksazetton  | 11612160 | 2580480 | ||||||||
| 224 | t0,2,3,4,5,6{36,4} | Hexipentisteriruncicantellated 8-ortoppleks Petiteriselliprismator bilan diakosipentakontaheksazetton  | 11612160 | 2580480 | ||||||||
| 225 | t1,2,3,4,5,6{4,36} | Bipentisteriruncikantitraktsiya qilingan 8 kub Ajoyib biteri-okteraktidiakosipentakontaheksazetton  | 10321920 | 2580480 | ||||||||
| 226 | t0,1,2,3,4,7{36,4} | Geptisteriruncikantitruncated 8-ortoppleks Exigreatotsellated diacosipentacontahexazetton  | 8601600 | 1720320 | ||||||||
| 227 | t0,1,2,3,5,7{36,4} | Geptipentiruncicantitruncated 8-ortoppleks Ekziterigreatoprizma qilingan diakosipentakontaheksazetton  | 14192640 | 2580480 | ||||||||
| 228 | t0,1,2,4,5,7{36,4} | Geptipentisterikantritratsiyalangan 8-ortoppleks Exitericelligreatorhombated diacosipentacontahexazetton  | 12902400 | 2580480 | ||||||||
| 229 | t0,1,3,4,5,7{36,4} | Geptipentisterunitsitruktsiya qilingan 8-ortoppleks Ekziteriselliprismatotrik diakosipentakontaheksazetton  | 12902400 | 2580480 | ||||||||
| 230 | t0,2,3,4,5,7{4,36} | Geptipentisteriruncicantellated 8-kub Exitericelliprismatorhombi-okteractidiacosipentacontahexazetton  | 12902400 | 2580480 | ||||||||
| 231 | t0,2,3,4,5,6{4,36} | Hexipentisteriruncicantellated 8-kub Petitericelliprismatorhombated okteract  | 11612160 | 2580480 | ||||||||
| 232 | t0,1,2,3,6,7{36,4} | Geptixeksirunsikantitratsiyalangan 8-ortoppleks Ekzipetigreatoprizma qilingan diakosipentakontaheksazetton  | 8601600 | 1720320 | ||||||||
| 233 | t0,1,2,4,6,7{36,4} | Geptigeksisterikantritratsiyalangan 8-ortoppleks Exipeticelligreatorhombated diakosipentakontaheksazetton  | 14192640 | 2580480 | ||||||||
| 234 | t0,1,3,4,6,7{4,36} | Geptixeksisteriritsitrunatsiyalangan 8 kub Exipeticelliprismatotrunki-okteractidiacosipentacontahexazetton  | 12902400 | 2580480 | ||||||||
| 235 | t0,1,3,4,5,7{4,36} | Geptipentisterunitsitruktsiya qilingan 8 kub Exitericelliprismatotruncated okteract  | 12902400 | 2580480 | ||||||||
| 236 | t0,1,3,4,5,6{4,36} | Geksipentisterunitsitruktsiya qilingan 8 kub Petiteriselliprismatotruncated okteract  | 11612160 | 2580480 | ||||||||
| 237 | t0,1,2,5,6,7{4,36} | Geptigeksipentikantritratsiya qilingan 8 kub Exipetiterigreatorhombi-okteractidiacosipentacontahexazetton  | 8601600 | 1720320 | ||||||||
| 238 | t0,1,2,4,6,7{4,36} | Geptixeksisterikantraktatsiya qilingan 8 kub Exipeticelligreatorhombated okteract  | 14192640 | 2580480 | ||||||||
| 239 | t0,1,2,4,5,7{4,36} | Geptipentisterikantritratsiya qilingan 8 kub Exitericelligreatorhombated okteract  | 12902400 | 2580480 | ||||||||
| 240 | t0,1,2,4,5,6{4,36} | Hexipentistericantitruncated 8-kub Petitericelligreatorhombated okteract  | 11612160 | 2580480 | ||||||||
| 241 | t0,1,2,3,6,7{4,36} | Geptixeksirunsikantitratsiyalangan 8 kub Ekzipetigreatoprizma qilingan okterakt  | 8601600 | 1720320 | ||||||||
| 242 | t0,1,2,3,5,7{4,36} | Geptipentiruncicantitruncated 8-kub Ekziterigreatoprizma qilingan okterakt  | 14192640 | 2580480 | ||||||||
| 243 | t0,1,2,3,5,6{4,36} | Hexipentiruncicantitruncated 8-kub Petiterigreatoprizma qilingan okterakt  | 11612160 | 2580480 | ||||||||
| 244 | t0,1,2,3,4,7{4,36} | Geptisteriruncikantitratsiyalangan 8 kub Exigreatocellated okterakt  | 8601600 | 1720320 | ||||||||
| 245 | t0,1,2,3,4,6{4,36} | Hexisteriruncicantitruncated 8-kub Petigreatotsellated okterakt  | 12902400 | 2580480 | ||||||||
| 246 | t0,1,2,3,4,5{4,36} | Pentisterirunikantitraktsiya qilingan 8 kub Ajoyib dahshatli okterakt  | 6881280 | 1720320 | ||||||||
| 247 | t0,1,2,3,4,5,6{36,4} | Hexipentisteriruncicantitruncated 8-ortoppleks Ajoyib petated diakosipentakontaheksazetton  | 20643840 | 5160960 | ||||||||
| 248 | t0,1,2,3,4,5,7{36,4} | Geptipentisteriruncikantitratsiyalangan 8-ortoppleks Exigreatoterated diakosipentakontaheksazetton  | 23224320 | 5160960 | ||||||||
| 249 | t0,1,2,3,4,6,7{36,4} | Geptixeksisteriruncikantitratsiyalangan 8-ortoppleks Exipetigreatocellated diacosipentacontahexazetton  | 23224320 | 5160960 | ||||||||
| 250 | t0,1,2,3,5,6,7{36,4} | Geptixeksipentiruncikantitratsiyalangan 8-ortoppleks Ekzipetiterigreatoprizma qilingan diakosipentakontaheksazetton  | 23224320 | 5160960 | ||||||||
| 251 | t0,1,2,3,5,6,7{4,36} | Geptixeksipentiruncikantitratsiyalangan 8 kub Ekzipetiterigreatoprizma qilingan okterakt  | 23224320 | 5160960 | ||||||||
| 252 | t0,1,2,3,4,6,7{4,36} | Geptixeksisteriruncikantriktsiya qilingan 8 kub Exipetigreatocellated okterakt  | 23224320 | 5160960 | ||||||||
| 253 | t0,1,2,3,4,5,7{4,36} | Geptipentisteriruncikantitratsiyalangan 8 kub Exigreatoterated okterakt  | 23224320 | 5160960 | ||||||||
| 254 | t0,1,2,3,4,5,6{4,36} | Hexipentisteriruncicantitruncated 8-kub Buyuk petated okteract  | 20643840 | 5160960 | ||||||||
| 255 | t0,1,2,3,4,5,6,7{4,36} | Omnitruncated 8-kub Ajoyib exi-okteraktidiakosipentakontaheksazetton  | 41287680 | 10321920 | ||||||||
D8 oila
D8 oila 5,160,960 tartibli simmetriyasiga ega (8 faktorial x 27).
Ushbu oilada 191 ta Vifofian formali polipopi, dan 3x64-1 D.ning o'zgarishi8 Kokseter-Dinkin diagrammasi bir yoki bir nechta halqalar bilan. 127 (2x64-1) B dan takrorlanadi8 oila va 64 bu oilaga xosdir, barchasi quyida keltirilgan.
Qarang D8 polytopes ro'yxati ushbu polipoplarning Kokseter tekislik grafikalari uchun.
| D.8 bir xil politoplar | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Kokseter-Dinkin diagrammasi | Ism | Asosiy nuqta (Muqobil ravishda imzolangan)  | Element hisobga olinadi | Sirkumrad | |||||||||
| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | |||||||
| 1 | =  | 8-demikub h {4,3,3,3,3,3,3}  | (1,1,1,1,1,1,1,1) | 144 | 1136 | 4032 | 8288 | 10752 | 7168 | 1792 | 128 | 1.0000000 | ||
| 2 | =  | 8-kubik h2{4,3,3,3,3,3,3}  | (1,1,3,3,3,3,3,3) | 23296 | 3584 | 2.6457512 | ||||||||
| 3 | =  | runcic 8-kub h3{4,3,3,3,3,3,3}  | (1,1,1,3,3,3,3,3) | 64512 | 7168 | 2.4494896 | ||||||||
| 4 | =  | sterik 8 kub h4{4,3,3,3,3,3,3}  | (1,1,1,1,3,3,3,3) | 98560 | 8960 | 2.2360678 | ||||||||
| 5 | =  | pentik 8-kub h5{4,3,3,3,3,3,3}  | (1,1,1,1,1,3,3,3) | 89600 | 7168 | 1.9999999 | ||||||||
| 6 | =  | heksik 8-kub h6{4,3,3,3,3,3,3}  | (1,1,1,1,1,1,3,3) | 48384 | 3584 | 1.7320508 | ||||||||
| 7 | =  | geptik 8-kub h7{4,3,3,3,3,3,3}  | (1,1,1,1,1,1,1,3) | 14336 | 1024 | 1.4142135 | ||||||||
| 8 | =  | runcicantic 8-kub h2,3{4,3,3,3,3,3,3}  | (1,1,3,5,5,5,5,5) | 86016 | 21504 | 4.1231055 | ||||||||
| 9 | =  | sterikantik 8-kub h2,4{4,3,3,3,3,3,3}  | (1,1,3,3,5,5,5,5) | 349440 | 53760 | 3.8729835 | ||||||||
| 10 | =  | steriluncik 8-kub h3,4{4,3,3,3,3,3,3}  | (1,1,1,3,5,5,5,5) | 179200 | 35840 | 3.7416575 | ||||||||
| 11 | =  | pentikantik 8-kub h2,5{4,3,3,3,3,3,3}  | (1,1,3,3,3,5,5,5) | 573440 | 71680 | 3.6055512 | ||||||||
| 12 | =  | pentirunkik 8-kub h3,5{4,3,3,3,3,3,3}  | (1,1,1,3,3,5,5,5) | 537600 | 71680 | 3.4641016 | ||||||||
| 13 | =  | pentisterik 8-kub h4,5{4,3,3,3,3,3,3}  | (1,1,1,1,3,5,5,5) | 232960 | 35840 | 3.3166249 | ||||||||
| 14 | =  | hexicantic 8-kub h2,6{4,3,3,3,3,3,3}  | (1,1,3,3,3,3,5,5) | 456960 | 53760 | 3.3166249 | ||||||||
| 15 | =  | geksikrunkik 8-kub h3,6{4,3,3,3,3,3,3}  | (1,1,1,3,3,3,5,5) | 645120 | 71680 | 3.1622777 | ||||||||
| 16 | =  | hexisteric 8-kub h4,6{4,3,3,3,3,3,3}  | (1,1,1,1,3,3,5,5) | 483840 | 53760 | 3 | ||||||||
| 17 | =  | geksipentik 8-kub h5,6{4,3,3,3,3,3,3}  | (1,1,1,1,1,3,5,5) | 182784 | 21504 | 2.8284271 | ||||||||
| 18 | =  | heptikantik 8-kub h2,7{4,3,3,3,3,3,3}  | (1,1,3,3,3,3,3,5) | 172032 | 21504 | 3 | ||||||||
| 19 | =  | geptiruncik 8-kub h3,7{4,3,3,3,3,3,3}  | (1,1,1,3,3,3,3,5) | 340480 | 35840 | 2.8284271 | ||||||||
| 20 | =  | heptsterik 8-kub h4,7{4,3,3,3,3,3,3}  | (1,1,1,1,3,3,3,5) | 376320 | 35840 | 2.6457512 | ||||||||
| 21 | =  | geptipentik 8-kub h5,7{4,3,3,3,3,3,3}  | (1,1,1,1,1,3,3,5) | 236544 | 21504 | 2.4494898 | ||||||||
| 22 | =  | geptiheksik 8-kub h6,7{4,3,3,3,3,3,3}  | (1,1,1,1,1,1,3,5) | 78848 | 7168 | 2.236068 | ||||||||
| 23 | =  | steriluncikantik 8-kub h2,3,4{4,36}  | (1,1,3,5,7,7,7,7) | 430080 | 107520 | 5.3851647 | ||||||||
| 24 | =  | pentiruncicantic 8-kub h2,3,5{4,36}  | (1,1,3,5,5,7,7,7) | 1182720 | 215040 | 5.0990195 | ||||||||
| 25 | =  | pentisterik 8-kub h2,4,5{4,36}  | (1,1,3,3,5,7,7,7) | 1075200 | 215040 | 4.8989797 | ||||||||
| 26 | =  | pentisterirunik 8-kub h3,4,5{4,36}  | (1,1,1,3,5,7,7,7) | 716800 | 143360 | 4.7958317 | ||||||||
| 27 | =  | hexiruncicantic 8-kub h2,3,6{4,36}  | (1,1,3,5,5,5,7,7) | 1290240 | 215040 | 4.7958317 | ||||||||
| 28 | =  | hexistericantic 8-kub h2,4,6{4,36}  | (1,1,3,3,5,5,7,7) | 2096640 | 322560 | 4.5825758 | ||||||||
| 29 | =  | geksisterirunik 8-kub h3,4,6{4,36}  | (1,1,1,3,5,5,7,7) | 1290240 | 215040 | 4.472136 | ||||||||
| 30 | =  | hexipenticantic 8-kub h2,5,6{4,36}  | (1,1,3,3,3,5,7,7) | 1290240 | 215040 | 4.3588991 | ||||||||
| 31 | =  | hexipentirunik 8-kub h3,5,6{4,36}  | (1,1,1,3,3,5,7,7) | 1397760 | 215040 | 4.2426405 | ||||||||
| 32 | =  | geksipentisterik 8-kub h4,5,6{4,36}  | (1,1,1,1,3,5,7,7) | 698880 | 107520 | 4.1231055 | ||||||||
| 33 | =  | heptiruncicantic 8-kub h2,3,7{4,36}  | (1,1,3,5,5,5,5,7) | 591360 | 107520 | 4.472136 | ||||||||
| 34 | =  | heptisterik 8-kub h2,4,7{4,36}  | (1,1,3,3,5,5,5,7) | 1505280 | 215040 | 4.2426405 | ||||||||
| 35 | =  | heptisterruncic 8-kub h3,4,7{4,36}  | (1,1,1,3,5,5,5,7) | 860160 | 143360 | 4.1231055 | ||||||||
| 36 | =  | heptipentikantik 8-kub h2,5,7{4,36}  | (1,1,3,3,3,5,5,7) | 1612800 | 215040 | 4 | ||||||||
| 37 | =  | heptipentiruncic 8-kub h3,5,7{4,36}  | (1,1,1,3,3,5,5,7) | 1612800 | 215040 | 3.8729835 | ||||||||
| 38 | =  | heptipentisterik 8-kub h4,5,7{4,36}  | (1,1,1,1,3,5,5,7) | 752640 | 107520 | 3.7416575 | ||||||||
| 39 | =  | heptieksikantik 8-kub h2,6,7{4,36}  | (1,1,3,3,3,3,5,7) | 752640 | 107520 | 3.7416575 | ||||||||
| 40 | =  | geptieksiruncik 8-kub h3,6,7{4,36}  | (1,1,1,3,3,3,5,7) | 1146880 | 143360 | 3.6055512 | ||||||||
| 41 | =  | heptieksisterik 8-kub h4,6,7{4,36}  | (1,1,1,1,3,3,5,7) | 913920 | 107520 | 3.4641016 | ||||||||
| 42 | =  | geptiheksipentik 8-kub h5,6,7{4,36}  | (1,1,1,1,1,3,5,7) | 365568 | 43008 | 3.3166249 | ||||||||
| 43 | =  | pentisteriruncicantic 8-kub h2,3,4,5{4,36}  | (1,1,3,5,7,9,9,9) | 1720320 | 430080 | 6.4031243 | ||||||||
| 44 | =  | hexisteriruncicantic 8-kub h2,3,4,6{4,36}  | (1,1,3,5,7,7,9,9) | 3225600 | 645120 | 6.0827627 | ||||||||
| 45 | =  | hexipentiruncicantic 8-kub h2,3,5,6{4,36}  | (1,1,3,5,5,7,9,9) | 2903040 | 645120 | 5.8309517 | ||||||||
| 46 | =  | hexipentistericantic 8-kub h2,4,5,6{4,36}  | (1,1,3,3,5,7,9,9) | 3225600 | 645120 | 5.6568542 | ||||||||
| 47 | =  | hexipentisteriruncic 8-kub h3,4,5,6{4,36}  | (1,1,1,3,5,7,9,9) | 2150400 | 430080 | 5.5677648 | ||||||||
| 48 | =  | heptsteriruncicantic 8-kub h2,3,4,7{4,36}  | (1,1,3,5,7,7,7,9) | 2150400 | 430080 | 5.7445626 | ||||||||
| 49 | =  | heptipentiruncicantic 8-kub h2,3,5,7{4,36}  | (1,1,3,5,5,7,7,9) | 3548160 | 645120 | 5.4772258 | ||||||||
| 50 | =  | heptipentisterik 8-kub h2,4,5,7{4,36}  | (1,1,3,3,5,7,7,9) | 3548160 | 645120 | 5.291503 | ||||||||
| 51 | =  | heptipentisteriruncik 8-kub h3,4,5,7{4,36}  | (1,1,1,3,5,7,7,9) | 2365440 | 430080 | 5.1961527 | ||||||||
| 52 | =  | geptiheksiruncicantic 8-kub h2,3,6,7{4,36}  | (1,1,3,5,5,5,7,9) | 2150400 | 430080 | 5.1961527 | ||||||||
| 53 | =  | heptixistericantic 8-kub h2,4,6,7{4,36}  | (1,1,3,3,5,5,7,9) | 3870720 | 645120 | 5 | ||||||||
| 54 | =  | heptihexisteriruncic 8-kub h3,4,6,7{4,36}  | (1,1,1,3,5,5,7,9) | 2365440 | 430080 | 4.8989797 | ||||||||
| 55 | =  | geptiheksipentikantik 8-kub h2,5,6,7{4,36}  | (1,1,3,3,3,5,7,9) | 2580480 | 430080 | 4.7958317 | ||||||||
| 56 | =  | geptiheksipentiruncik 8-kub h3,5,6,7{4,36}  | (1,1,1,3,3,5,7,9) | 2795520 | 430080 | 4.6904159 | ||||||||
| 57 | =  | geptiheksipentisterik 8-kub h4,5,6,7{4,36}  | (1,1,1,1,3,5,7,9) | 1397760 | 215040 | 4.5825758 | ||||||||
| 58 | =  | geksipentisterunktsikantik 8-kub h2,3,4,5,6{4,36}  | (1,1,3,5,7,9,11,11) | 5160960 | 1290240 | 7.1414285 | ||||||||
| 59 | =  | heptipentisterunktsikantik 8-kub h2,3,4,5,7{4,36}  | (1,1,3,5,7,9,9,11) | 5806080 | 1290240 | 6.78233 | ||||||||
| 60 | =  | heptihexisteriruncicantic 8-kub h2,3,4,6,7{4,36}  | (1,1,3,5,7,7,9,11) | 5806080 | 1290240 | 6.480741 | ||||||||
| 61 | =  | geptiheksipentiruncicantic 8-kub h2,3,5,6,7{4,36}  | (1,1,3,5,5,7,9,11) | 5806080 | 1290240 | 6.244998 | ||||||||
| 62 | =  | heptieksipentisterik 8-kub h2,4,5,6,7{4,36}  | (1,1,3,3,5,7,9,11) | 6451200 | 1290240 | 6.0827627 | ||||||||
| 63 | =  | geptiheksipentisteriruncik 8-kub h3,4,5,6,7{4,36}  | (1,1,1,3,5,7,9,11) | 4300800 | 860160 | 6.0000000 | ||||||||
| 64 | =  | heptieksipentistiruniktsikantik 8-kub h2,3,4,5,6,7{4,36}  | (1,1,3,5,7,9,11,13) | 2580480 | 10321920 | 7.5498347 | ||||||||
E8 oila
E8 oila simmetriya tartibiga ega 696,729,600.
Ning barcha almashtirishlariga asoslangan 255 shakl mavjud Kokseter-Dinkin diagrammalari bir yoki bir nechta halqalar bilan. Sakkizta shakl quyida keltirilgan, 4 ta bitta halqali, 3 ta qisqartirish (2 ta halqa) va oxirgi omnitruncation quyida keltirilgan. Bowers uslubidagi qisqartma nomlari o'zaro bog'liqlik uchun berilgan.
Shuningdek qarang E8 polytopes ro'yxati ushbu oilaning Kokseter samolyot grafikalari uchun.
| E8 bir xil politoplar | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| # | Kokseter-Dinkin diagrammasi | Ismlar | Element hisobga olinadi | |||||||||||
| 7 yuzlar | 6 yuzlar | 5 yuzlar | 4 yuzlar | Hujayralar | Yuzlar | Qirralar | Vertices | |||||||
| 1 | 421 (fy) | 19440 | 207360 | 483840 | 483840 | 241920 | 60480 | 6720 | 240 | |||||
| 2 | Qisqartirilgan 421 (tiffy) | 188160 | 13440 | |||||||||||
| 3 | Tuzatilgan 421 (qattiq) | 19680 | 375840 | 1935360 | 3386880 | 2661120 | 1028160 | 181440 | 6720 | |||||
| 4 | 4. Birlashtirilgan21 (borfy) | 19680 | 382560 | 2600640 | 7741440 | 9918720 | 5806080 | 1451520 | 60480 | |||||
| 5 | To'g'rilangan 421 (torfy) | 19680 | 382560 | 2661120 | 9313920 | 16934400 | 14515200 | 4838400 | 241920 | |||||
| 6 | Tuzatilgan 142 (buffy) | 19680 | 382560 | 2661120 | 9072000 | 16934400 | 16934400 | 7257600 | 483840 | |||||
| 7 | Tuzatilgan 241 (robay) | 19680 | 313440 | 1693440 | 4717440 | 7257600 | 5322240 | 1451520 | 69120 | |||||
| 8 | 241 (bay) | 17520 | 144960 | 544320 | 1209600 | 1209600 | 483840 | 69120 | 2160 | |||||
| 9 | Qisqartirilgan 241 | 138240 | ||||||||||||
| 10 | 142 (bif) | 2400 | 106080 | 725760 | 2298240 | 3628800 | 2419200 | 483840 | 17280 | |||||
| 11 | Qisqartirilgan 142 | 967680 | ||||||||||||
| 12 | Hamma narsa21 | 696729600 | ||||||||||||
Muntazam va bir xil chuqurchalar
Beshta asosiy affin mavjud Kokseter guruhlari 7-kosmosda muntazam va bir xil tessellations hosil qiluvchi:
| # | Kokseter guruhi | Kokseter diagrammasi | Shakllar | |
|---|---|---|---|---|
| 1 | [3[8]] | 29 | ||
| 2 | [4,35,4] | 135 | ||
| 3 | [4,34,31,1] | 191 (64 yangi) | ||
| 4 | [31,1,33,31,1] | 77 (10 yangi) | ||
| 5 | [33,3,1] | 143 | ||
Muntazam va bir xil tessellations quyidagilarni o'z ichiga oladi:
-  29 noyob qo'ng'iroq shakllari, shu jumladan:
- 7-sodda chuqurchalar: {3[8]} 









 
 - 7-sodda chuqurchalar: {3[8]} 
 -  135 noyob qo'ng'iroq shakllari, shu jumladan:
- Muntazam 7 kubik chuqurchasi: {4,34,4} = {4,34,31,1}, 












 = 














 
 - Muntazam 7 kubik chuqurchasi: {4,34,4} = {4,34,31,1}, 
 -  191 ta noyob qo'ng'iroq shakllari, 127 tasi bilan bo'lishilgan va 64 ta yangi, shu jumladan:
- 7-demikub chuqurchasi: h {4,34,4} = {31,1,34,4}, 












 = 












 
 - 7-demikub chuqurchasi: h {4,34,4} = {31,1,34,4}, 
 - , [31,1,33,31,1]: 77 ta noyob uzuk almashtirishlari, va 10 tasi yangi, a deb nomlangan birinchi Kokseter chorak 7 kubik chuqurchalar.










, 









, 









, 









, 









, 









, 









, 









, 









, 










 -  143 noyob qo'ng'iroq shakllari, shu jumladan:
- 133 chuqurchalar: {3,33,3}, 









 - 331 chuqurchalar: {3,3,3,33,1}, 









 
 - 133 chuqurchalar: {3,33,3}, 
 
Muntazam va bir xil giperbolik chuqurchalar
8-darajali ixcham giperbolik Kokseter guruhlari, barcha cheklangan tomonlari bilan ko'plab chuqurchalar hosil qila oladigan va cheklangan guruhlar mavjud emas tepalik shakli. Biroq, mavjud 4 parakompakt giperbolik Kokseter guruhi 8-darajali, ularning har biri Kokseter diagrammasi halqalarining permütatsiyasi sifatida 7 bo'shliqda bir xil chuqurchalar hosil qiladi.
|  = [3,3[7]]: |  = [31,1,32,32,1]: |  = [4,33,32,1]: |  = [33,2,2]: | 
Adabiyotlar
- T. Gosset: N o'lchovlar fazosidagi muntazam va yarim muntazam ko'rsatkichlar to'g'risida, Matematika xabarchisi, Makmillan, 1900 yil
 - A. Bool Stott: Oddiy politoplardan va kosmik plombalardan semiregularning geometrik chiqarilishi, Koninklijke akademiyasining Verhandelingen van Vetenschappen kengligi birligi Amsterdam, Eerste Sectie 11,1, Amsterdam, 1910
 - H.S.M. Kokseter:
- H.S.M. Kokseter, M.S. Longuet-Xiggins va J.C.P. Miller: Yagona polyhedra, London Qirollik jamiyati falsafiy operatsiyalari, Londne, 1954
 - H.S.M. Kokseter, Muntazam Polytopes, 3-nashr, Dover Nyu-York, 1973 yil
 
 - Kaleydoskoplar: H.S.M.ning tanlangan yozuvlari. Kokseter, F. Artur Sherk, Piter MakMullen, Entoni C. Tompson, Asia Ivic Weiss, Wiley-Interscience nashri tomonidan tahrirlangan, 1995, ISBN 978-0-471-01003-6 Wiley :: Kaleydoskoplar: H.S.M.ning tanlangan yozuvlari. Kokseter
- (22-qog'oz) H.S.M. Kokseter, Muntazam va yarim muntazam polipoplar I, [Matematik. Zayt. 46 (1940) 380-407, MR 2,10]
 - (23-qog'oz) H.S.M. Kokseter, Muntazam va yarim muntazam politoplar II, [Matematik. Zayt. 188 (1985) 559-591]
 - (24-qog'oz) H.S.M. Kokseter, Muntazam va yarim muntazam polipoplar III, [Matematik. Zayt. 200 (1988) 3-45]
 
 - N.V. Jonson: Yagona politoplar va asal qoliplari nazariyasi, T.f.n. Dissertatsiya, Toronto universiteti, 1966 y
 - Klitzing, Richard. "8D yagona politoplari (polyzetta)".
 
Tashqi havolalar
- Polytop nomlari
 - Har xil o'lchamdagi politoplar
 - Ko'p o'lchovli lug'at
 - Giperspace uchun lug'at, Jorj Olshevskiy.