Yilda statistik mexanika , an Ursell funktsiyasi  yoki bog'liq korrelyatsiya funktsiyasi , a kumulyant  a tasodifiy o'zgaruvchi . Uni ko'pincha ulangan holda yig'ish orqali olish mumkin Feynman diagrammalari  (barcha Feynman diagrammalarining yig'indisi korrelyatsion funktsiyalar ).
Ursell funktsiyasi nomi berilgan Xarold Ursel , uni 1927 yilda kim kiritgan.
Ta'rif  
Agar X  tasodifiy o'zgaruvchidir lahzalar  s n   va kumulyantlar (Ursell funktsiyalari bilan bir xil) siz n   ning funktsiyalari X  bilan bog'liq eksponent formula :
                    E                  (         tugatish                  (         z         X         )         )         =                   ∑                       n                     s                       n                                               z                               n                             n               !            =         tugatish                            (                                     ∑                               n                             siz                               n                                                               z                                       n                                     n                   !               )        {displaystyle operator nomi {E} (exp (zX)) = sum _ {n} s_ {n} {frac {z ^ {n}} {n!}} = exp chap (sum _ {n} u_ {n} { frac {z ^ {n}} {n!}} ight)}   (qayerda                     E       {displaystyle operator nomi {E}}     bo'ladi kutish ).
Ko'p o'zgaruvchan tasodifiy o'zgaruvchilar uchun Ursell funktsiyalari yuqoridagiga o'xshash tarzda va ko'p o'zgaruvchan kumulyantlar singari aniqlanadi.[1] 
                              siz                       n                     (                                     X                               1               ,             …             ,                           X                               n              )          =                                                                                            ∂                                       ∂                                           z                                               1                    ⋯                                                 ∂                                       ∂                                           z                                               n                    jurnal                              E                                              (                                   tugatish                                      ∑                                       z                                           men                                         X                                           men                    )               |                                      z                               men               =             0         {displaystyle u_ {n} chap (X_ {1}, ldots, X_ {n} ight) = chap. {frac {qisman} {qisman z_ {1}}} cdots {frac {qisman} {qisman z_ {n}} } log operator nomi {E} chap (exp sum z_ {i} X_ {i} ight) ight | _ {z_ {i} = 0}}   Bitta tasodifiy o'zgaruvchining Ursell funktsiyalari X  sozlash orqali bulardan olinadi X  = X 1  = … = X n  .
Birinchi bir necha tomonidan berilgan
                                                                                          siz                                       1                   (                                   X                                       1                   )                 =                                                E                                  (                                   X                                       1                   )                                                               siz                                       2                   (                                   X                                       1                   ,                                   X                                       2                   )                 =                                                E                                  (                                   X                                       1                                     X                                       2                   )                 −                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                   )                                                               siz                                       3                   (                                   X                                       1                   ,                                   X                                       2                   ,                                   X                                       3                   )                 =                                                E                                  (                                   X                                       1                                     X                                       2                                     X                                       3                   )                 −                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                                     X                                       3                   )                 −                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       3                                     X                                       1                   )                 −                 E                                  (                                   X                                       3                   )                 E                                  (                                   X                                       1                                     X                                       2                   )                 +                 2                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       3                   )                                                               siz                                       4                                     (                                                             X                                               1                       ,                                           X                                               2                       ,                                           X                                               3                       ,                                           X                                               4                      )                  =                                                E                                  (                                   X                                       1                                     X                                       2                                     X                                       3                                     X                                       4                   )                 −                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                                     X                                       3                                     X                                       4                   )                 −                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       1                                     X                                       3                                     X                                       4                   )                 −                 E                                  (                                   X                                       3                   )                 E                                  (                                   X                                       1                                     X                                       2                                     X                                       4                   )                 −                 E                                  (                                   X                                       4                   )                 E                                  (                                   X                                       1                                     X                                       2                                     X                                       3                   )                                                                             −                 E                                  (                                   X                                       1                                     X                                       2                   )                 E                                  (                                   X                                       3                                     X                                       4                   )                 −                 E                                  (                                   X                                       1                                     X                                       3                   )                 E                                  (                                   X                                       2                                     X                                       4                   )                 −                 E                                  (                                   X                                       1                                     X                                       4                   )                 E                                  (                                   X                                       2                                     X                                       3                   )                                                                             +                 2                 E                                  (                                   X                                       1                                     X                                       2                   )                 E                                  (                                   X                                       3                   )                 E                                  (                                   X                                       4                   )                 +                 2                 E                                  (                                   X                                       1                                     X                                       3                   )                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       4                   )                 +                 2                 E                                  (                                   X                                       1                                     X                                       4                   )                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       3                   )                 +                 2                 E                                  (                                   X                                       2                                     X                                       3                   )                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       4                   )                                                                             +                 2                 E                                  (                                   X                                       2                                     X                                       4                   )                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       3                   )                 +                 2                 E                                  (                                   X                                       3                                     X                                       4                   )                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                   )                 −                 6                 E                                  (                                   X                                       1                   )                 E                                  (                                   X                                       2                   )                 E                                  (                                   X                                       3                   )                 E                                  (                                   X                                       4                   )           {displaystyle {egin {aligned} u_ {1} (X_ {1}) = {} va operator nomi {E} (X_ {1})  u_ {2} (X_ {1}, X_ {2}) = {} va operator nomi {E} (X_ {1} X_ {2}) - operator nomi {E} (X_ {1}) operator nomi {E} (X_ {2})  u_ {3} (X_ {1}, X_ {2}, X_ {3}) = {} va operator nomi {E} (X_ {1} X_ {2} X_ {3}) - operator nomi {E} (X_ {1}) operator nomi {E} (X_ {2} X_ {3}) ) -operator nomi {E} (X_ {2}) operator nomi {E} (X_ {3} X_ {1}) - operator nomi {E} (X_ {3}) operator nomi {E} (X_ {1} X_ {2}) ) + 2operatorname {E} (X_ {1}) operatorname {E} (X_ {2}) operatorname {E} (X_ {3})  u_ {4} chap (X_ {1}, X_ {2}, X_ {3}, X_ {4} ight) = {} va operator nomi {E} (X_ {1} X_ {2} X_ {3} X_ {4}) - operator nomi {E} (X_ {1}) operator nomi {E} (X_ {2} X_ {3} X_ {4}) - operator nomi {E} (X_ {2}) operator nomi {E} (X_ {1} X_ {3} X_ {4}) - operator nomi {E} (X_ {3}) operator nomi {E} (X_ {1} X_ {2} X_ {4}) - operator nomi {E} (X_ {4}) operator nomi {E} (X_ {1} X_ {2} X_ {3}) ) & & - operator nomi {E} (X_ {1} X_ {2}) operator nomi {E} (X_ {3} X_ {4}) - operator nomi {E} (X_ {1} X_ {3}) operator nomi {E } (X_ {2} X_ {4}) - operator nomi {E} (X_ {1} X_ {4}) operator nomi {E} (X_ {2} X_ {3})  & + 2operatorname {E} (X_ {) 1} X_ {2}) o peratorname {E} (X_ {3}) operator nomi {E} (X_ {4}) + 2operatorname {E} (X_ {1} X_ {3}) operatorname {E} (X_ {2}) operatorname {E} ( X_ {4}) + 2operatorname {E} (X_ {1} X_ {4}) operatorname {E} (X_ {2}) operatorname {E} (X_ {3}) + 2operatorname {E} (X_ {2}) X_ {3}) operator nomi {E} (X_ {1}) operator nomi {E} (X_ {4})  & + 2operatorname {E} (X_ {2} X_ {4}) operator nomi {E} (X_ {1) }) operatorname {E} (X_ {3}) + 2operatorname {E} (X_ {3} X_ {4}) operatorname {E} (X_ {1}) operatorname {E} (X_ {2}) - 6operatorname { E} (X_ {1}) operator nomi {E} (X_ {2}) operator nomi {E} (X_ {3}) operator nomi {E} (X_ {4}) oxiri {hizalanmış}}}   Xarakteristikasi  
Perkus (1975)  Ursell funktsiyalari, bir nechta tasodifiy o'zgaruvchilarning ko'p qirrali funktsiyalari sifatida qaralganda, o'zgaruvchilar har doim yo'q bo'lib ketishi bilan doimiygacha aniq aniqlanganligini ko'rsatdi. X men   ikkita bo'sh bo'lmagan mustaqil to'plamga bo'lish mumkin.
Shuningdek qarang  
Adabiyotlar  
Glimm, Jeyms ; Jaffe, Artur  (1987), Kvant fizikasi  (2-nashr), Berlin, Nyu-York: Springer-Verlag , ISBN  978-0-387-96476-8  , JANOB  0887102 Percus, J. K. (1975), "Ising spin panjaralari uchun o'zaro tengsizlik", Kom. Matematika. Fizika. , 40  (3): 283–308, Bibcode :1975CMaPh..40..283P , doi :10.1007 / bf01610004 , JANOB  0378683 , S2CID  120940116  Ursell, H. D. (1927), "Gibbsning nomukammal gazlar uchun fazali integralini baholash", Proc. Kembrij falsafasi. Soc. , 23  (6): 685–697, Bibcode :1927PCPS ... 23..685U , doi :10.1017 / S0305004100011191