WikiDer > Marsdagi suv

Water on Mars

Rassomning qadimiy Mars qanday ko'rinishga ega bo'lganligi haqidagi taassurotlari geologik ma'lumotlar
Marsda suv muzi
eng yaqin joylar[1]
(2019 yil 10-dekabr)
Global
Planar
Mars - Utopiya Planitia
Mars erlari
Relyef xaritasi
Qisqichbaqasimon relyef katta miqdordagi er osti muzini topishga olib keldi - to'ldirish uchun etarli suv Superior ko'li (2016 yil 22-noyabr)[2][3][4]

Deyarli barchasi Marsdagi suv bugungi kunda muz kabi mavjud, ammo u bug 'sifatida oz miqdorda mavjud atmosfera.[5] Kam hajmli suyuqlik deb o'ylagan narsa sho'r suvlar sayozlikda Mars tuprog'ideb nomlangan takroriy nishab chiziqlari,[6][7] quyuq chiziqlar hosil qilish uchun pastga siljigan oqayotgan qum va chang donalari bo'lishi mumkin.[8] Suv muzining yuzasida ko'rinadigan yagona joy - bu shimoliy qutbli muzlik.[9] Doimiy suv ostida ham mo'l-ko'l muz bor karbonat angidrid marsning janubiy qutbidagi muz qatlami va mo''tadil sharoitda sayoz er osti qatlamida.[10][11][12] 21 million km dan ortiq3 Mars sathida yoki uning yaqinida muz aniqlangan, bu butun sayyorani 35 metr (115 fut) chuqurlikka qoplash uchun etarli.[13] Hatto ko'proq muz chuqur er ostiga yopilib qolishi mumkin.[14]

Ba'zi bir suyuq suvlar bugungi kunda Mars yuzasida vaqtincha paydo bo'lishi mumkin, ammo atmosferada erigan namlik izlari va ma'lum hayot uchun qiyin muhit bo'lgan yupqa plyonkalar bilan cheklangan.[7][15][16] Sayyora yuzasida hech qanday doimiy suyuq suv omborlari mavjud emas, chunki u erda atmosfera bosimi o'rtacha 600 ga teng paskallar (0.087 psi), raqamdan biroz pastroq suvning bug 'bosimi unda erish nuqtasi; o'rtacha Mars sharoitida, Mars yuzasidagi toza suv muzlab qoladi yoki agar erish nuqtasidan yuqori qizdirilsa, bo'lar edi ulug'vor bug'ga Oldin 3.8 milliard yil oldin, Mars zichroq bo'lgan bo'lishi mumkin atmosfera va undan yuqori sirt harorati,[17][18][19][20] ko'p miqdordagi suyuq suv yuzasida[21][22][23][24] ehtimol, shu jumladan katta okean[25][26][27][28] bu sayyoramizning uchdan bir qismini qamrab olgan bo'lishi mumkin.[29][30][31] Aftidan, suv Mars tarixida yaqinda turli vaqt oralig'ida qisqa vaqt davomida yuza bo'ylab oqgan.[32][33][34] Aeolis Palus yilda Geyl krateri, tomonidan o'rganilgan Qiziqish rover, qadimiyning geologik qoldiqlari chuchuk suvli ko'l bu uchun mehmondo'st muhit bo'lishi mumkin edi mikrobial hayot.[35][36][37]

Ko'pgina dalillar Marsda suv muzining ko'pligi va sayyoramizda juda muhim rol o'ynaganligini ko'rsatadi geologik tarix.[38][39] Marsdagi suvning hozirgi inventarizatsiyasini kosmik qurilmalar tasvirlari bo'yicha taxmin qilish mumkin, masofadan turib zondlash texnikalar (spektroskopik o'lchovlar,[40][41] radar,[42] va hokazo), shuningdek, qo'nuvchilar va roverlardan yuzaki tekshiruvlar.[43][44] O'tgan suvning geologik dalillari juda katta chiqish kanallari toshqinlar bilan o'yilgan,[45] qadimiy daryo vodiy tarmoqlari,[46][47] deltalar,[48] va ko'llar;[49][50][51][52] va faqat suyuq suvda hosil bo'lishi mumkin bo'lgan tog 'jinslari va minerallarni aniqlash.[53] Ko'p sonli geomorfik xususiyatlari er osti muzlari mavjudligini ko'rsatadi (doimiy muzlik)[54] va muzning harakatlanishi muzliklar, ham yaqin o'tmishda[55][56][57][58] va hozirgi.[59] Gully va Nishab chiziqlari qoyalar va krater devorlari bo'ylab oqar suv Mars yuzasini shakllantirishda davom etmoqda, ammo bu qadimgi o'tmishdagidan ancha past.

Garchi Marsning yuzasi vaqti-vaqti bilan nam bo'lgan va milliardlab yillar oldin mikroblar hayoti uchun mehmondo'st bo'lishi mumkin bo'lsa ham,[60] Yer yuzidagi mavjud muhit quruq va muzqaymoqdir, ehtimol tirik organizmlar uchun engib bo'lmaydigan to'siq bo'lishi mumkin. Bundan tashqari, Marsda qalin atmosfera yo'q, ozon qatlamiva magnit maydon, quyosh va kosmik nurlanish to'siqsiz sirtga urish. Ionlashtiruvchi nurlanishning uyali tuzilishga zararli ta'siri, sirtdagi hayotni saqlab qolish uchun eng asosiy omillardan biridir.[61][62] Shuning uchun, kashf qilish uchun eng yaxshi potentsial joylar Marsdagi hayot er osti muhitida bo'lishi mumkin.[63][64][65] Marsda katta miqdordagi er osti muzlari topilgan; aniqlangan suv hajmi undagi suv hajmiga tengdir Superior ko'li.[2][3][4] 2018 yilda olimlar kashfiyot haqida xabar berishdi Marsdagi subglasial ko'l, Dan 1,5 km (0,93 milya) pastda joylashgan janubiy qutbli muzlik, gorizontal kattaligi taxminan 20 km (12 milya) bo'lgan sayyoradagi birinchi ma'lum suyuq suv tanasi.[66][67]

Marsdagi suvning darajasi va holatini bilish sayyoramizning hayotni saqlash va foydalanishga yaroqliligini baholash uchun juda muhimdir. kelajakda insonni tadqiq qilish uchun resurslar. Shu sababli, "Suvga ergashing" mavzusi fan mavzusi edi NASA"s Marsni o'rganish dasturi 21-asrning birinchi o'n yilligida (MEP). NASA va ESA missiyalar, shu jumladan 2001 yil Mars Odisseya, Mars Express, Mars Exploration Rovers (MER), Mars razvedka orbiteri (MRO) va Mars Feniks qo'nish Marsda suvning ko'pligi va tarqalishi haqida ma'lumot berdi.[68] Mars Odisseya, Mars Express, MRO va Mars Science Lander Qiziqish rover hali ham ishlamoqda va kashfiyotlar davom etmoqda.

2020 yil sentyabr oyida olimlar bir nechta yirik mavjudligini tasdiqladilar sho'r suvli ko'llar muz ostida janubiy qutb mintaqasi sayyoramizning Mars. Tadqiqotchilardan birining so'zlariga ko'ra: "Biz xuddi shu suv havzasini [oldindan dastlabki aniqlashda ilgari aytilganidek] aniqladik, lekin yana uchta suv havzasini asosiy atrofida topdik ... Bu murakkab tizim."[69][70]

Tarixiy ma'lumot

Marsda suv tushunchasi oldin paydo bo'lgan kosmik asr yuzlab yillar bilan. Erta teleskopik kuzatuvchilar oq qutblar va bulutlar suv borligidan dalolat beradi deb to'g'ri taxmin qilishgan. Ushbu kuzatuvlar, Marsda 24 soatlik kun borligi bilan bir qatorda, astronomni boshqargan Uilyam Xersel 1784 yilda Mars o'z aholisiga "ko'p jihatdan biznikiga o'xshash vaziyatni" taklif qilganini e'lon qilish.[71]

Marsning tarixiy xaritasi tomonidan chizilgan Jovanni Schiaparelli sayyoramizning 1877 yildagi "Buyuk oppozitsiyasi" paytida.
Astronom tomonidan tasvirlangan Mars kanallari Persival Louell, 1898.

20-asrning boshlariga kelib, ko'pgina astronomlar Mars Yerdan ancha sovuq va quruqligini tan olishdi. Okeanlarning mavjudligi endi qabul qilinmadi, shuning uchun paradigma Marsning ozgina suv bilan "o'layotgan" sayyora tasviriga aylandi. Mavsumiy ravishda o'zgarib turishi mumkin bo'lgan qorong'u joylar keyinchalik o'simlik qatlamlari deb o'ylashdi.[72] Mars haqidagi ushbu fikrni ommalashtirish uchun eng mas'ul odam edi Persival Louell (1855-1916), u marsliklar tarmog'ini qurayotgan irqni tasavvur qildi kanallar ekvatorda yashovchilarga qutblardan suv olib kelish. Garchi ulkan jamoatchilik g'ayratini keltirib chiqarsa-da, Louellning g'oyalari aksariyat astronomlar tomonidan rad etilgan. O'sha paytdagi ilmiy muassasaning aksariyat qarashlari, ehtimol ingliz astronomi tomonidan eng yaxshi xulosa qilingan Edvard Valter Maunder (1851–1928) Marsning iqlimini Arktika orolidagi yigirma ming futlik cho'qqisidagi sharoit bilan taqqoslagan[73] faqat qaerda liken tirik qolishlarini kutish mumkin edi.

Ayni paytda, ko'plab astronomlar sayyora vositasini takomillashtirdilar spektroskopiya ning tarkibini aniqlash umidida Mars muhiti. 1925 yildan 1943 yilgacha Valter Adams va Teodor Dunxem da Uilton tog'idagi rasadxona Mars atmosferasida kislorod va suv bug'larini aniqlashga harakat qildi va umuman salbiy natijalarga erishdi. Mars atmosferasining ma'lum bo'lgan yagona tarkibiy qismi karbonat angidrid (CO) edi2) tomonidan spektroskopik tarzda aniqlangan Jerar Kuyper 1947 yilda.[74] 1963 yilgacha Marsda suv bug'lari aniq aniqlanmagan.[75]

Mariner 4 bepusht sayyorani aks ettiruvchi ushbu tasvirni sotib oldi (1965).

Ning tarkibi qutb qopqoqlari, beri muzli suv deb taxmin qilingan Kassini (1666), 1800 yillarning oxirlarida CO ni ma'qul ko'rgan bir necha olimlar tomonidan so'roq qilingan2 sayyoramizning umuman past harorati va sezilarli suv etishmasligi tufayli muz. Ushbu gipoteza nazariy jihatdan tasdiqlandi Robert Leyton va Bryus Myurrey 1966 yilda.[76] Bugungi kunda ikkala qutbning qishki qopqoqlari asosan CO dan iborat ekanligi ma'lum2 muz, ammo shimoliy qutbda yoz davomida doimiy (yoki ko'p yillik) suv muzligi qoladi. Janubiy qutbda kichik miqdordagi CO2 muzlar yozda qoladi, ammo bu qopqoqni ham suv muzlari qoplaydi.

Marslik iqlim jumboqining so'nggi qismi tomonidan taqdim etilgan Mariner 4 1965 yilda. Kosmik kemadan olingan donli televizion suratlarda sirt ustunlik qilgan ta'sir kraterlari, bu shuni anglatadiki, sirt juda qadimgi va Yerda ko'rilgan eroziya va tektonik faollik darajasini boshdan kechirmagan. Kichkina eroziya, suyuq suv sayyoramizda katta rol o'ynamaganligini anglatardi geomorfologiya milliard yillar davomida.[77] Bundan tashqari, kosmik kemadan sayyoramiz orqasida o'tganida radio signalining o'zgarishi olimlarga atmosfera zichligini hisoblash imkonini berdi. Natijalar atmosfera bosimini Yer sathining 1% dan kamini dengiz sathida ko'rsatdi va shu kabi past bosimlarda tezda qaynab yoki muzlatib qo'yadigan suyuq suv mavjudligini samarali ravishda istisno qildi.[78] Shunday qilib, Mars haqidagi tasavvur Oyga o'xshash dunyoda tug'ildi, ammo atrofdagi changni puflash uchun faqat atmosfera haqida. Marsning bu ko'rinishi taxminan o'n yilgacha davom etishi mumkin edi Mariner 9 sayyoramizning o'tmishdagi muhiti hozirgi zamonga qaraganda ancha zukko ekanligi haqida maslahatlar bilan ancha dinamik Marsni namoyish etdi.

2014 yil 24-yanvar kuni NASA shu haqida xabar berdi hozirgi tadqiqotlar Marsda Qiziqish va Imkoniyat rovers qadimiy hayotga oid dalillarni izlaydilar, shu jumladan a biosfera asoslangan avtotrofik, kimyoviy va / yoki kimyoviy-lito-avtotrofik mikroorganizmlar, shuningdek, qadimiy suv, shu jumladan fluvio-lakustrin muhitlari (tekisliklar bo'lishi mumkin bo'lgan qadimiy daryo yoki ko'llar bilan bog'liq) yashashga yaroqli.[79][80][81]

Ko'p yillar davomida toshqinlarning kuzatilgan qoldiqlari global suv sathidan suvning chiqishi natijasida yuzaga kelgan deb o'ylar edilar, ammo 2015 yilda chop etilgan tadqiqotlar natijasida 450 million yil oldin joylashtirilgan mintaqaviy cho'kindi va muz konlari paydo bo'ldi.[82] "Daryolar va muzlik eritmalaridan cho'kindi jinslarning cho'kindi jinsi sayyoramizning shimoliy pasttekisligi tarkibiga kirgan ibtidoiy okean ostidagi ulkan kanyonlarni to'ldirdi. Aynan shu kanyon cho'kindilarida saqlanib qolgan suv keyinchalik katta toshqinlar sifatida ajralib chiqdi, ularning ta'sirini bugun ko'rish mumkin."[45][82]

Tosh va minerallardan olingan dalillar

Mars o'z tarixida juda ko'p miqdorda suvga ega bo'lganligi keng tarqalgan,[83][84] ammo keyinchalik suyuq suvning barcha katta maydonlari g'oyib bo'ldi. Ushbu suvning bir qismi zamonaviy Marsda muz sifatida saqlanib qoladi va mo'l-ko'l suvga boy materiallar tarkibiga kiradi, shu jumladan gil minerallar (fillosilikatlar) va sulfatlar.[85][86] Vodorodning izotopik nisbatlarini o'rganish shuni ko'rsatadiki, 2.5 dan yuqori bo'lgan asteroidlar va kometalar astronomik birliklar (AU) Mars suvining manbasini beradi,[87] hozirgi vaqtda Yerning hozirgi okeanining 6% dan 27% gacha.[87]

Marsdagi suv tarixi. Raqamlar necha milliard yil oldin ekanligini anglatadi.

Ob-havo mahsulotidagi suv (suvli minerallar)

Mars sathidagi asosiy jins turi bazalt, nozik taneli magmatik asosan toshlardan tashkil topgan mafiya silikat minerallari olivin, piroksenva plagioklazli dala shpati.[88] Suv va atmosfera gazlari ta'sirida bu minerallar kimyoviy ob-havo yangi (ikkilamchi) minerallarga kiradi, ularning ba'zilari suvni o'zlarining kristalli tuzilmalariga yoki H shaklida qo'shishi mumkin2O yoki kabi gidroksil (OH). Misollari namlangan (yoki gidroksillangan) minerallarga temir gidroksidi kiradi goetit (quruqlikdagi umumiy komponent tuproqlar); The evaporit minerallar gips va kieserit; opalin silika; va fillosilikatlar (shuningdek, deyiladi gil minerallar), kabi kaolinit va montmorillonit. Ushbu minerallarning barchasi Marsda aniqlangan.[89]

Kimyoviy ob-havoning to'g'ridan-to'g'ri ta'siridan biri suv va boshqa reaktiv kimyoviy turlarni iste'mol qilish, ularni mobil suv omborlaridan olishdir atmosfera va gidrosfera va ularni tog 'jinslari va minerallarga ajratish.[90] Mars qobig'idagi suv miqdori sifatida saqlanadi gidratlangan minerallar hozircha noma'lum, ammo juda katta bo'lishi mumkin.[91] Masalan, tog 'jinslari chiqindilarining mineralogik modellari Imkoniyat rover da Meridiani Planum deb taklif qilaman sulfat u erdagi konlarda og'irligi bo'yicha 22% gacha suv bo'lishi mumkin.[92]

Yerda barcha ob-havoning kimyoviy reaktsiyalari ma'lum darajada suvni o'z ichiga oladi.[93] Shunday qilib, ko'plab ikkilamchi minerallar aslida suvni o'z ichiga olmaydi, ammo baribir suv hosil bo'lishini talab qiladi. Suvsiz ikkilamchi minerallarning ayrim misollariga ko'plari kiradi karbonatlar, biroz sulfatlar (masalan, angidrit) va temir oksidi mineral kabi metall oksidlari gematit. Marsda ushbu ob-havo mahsulotlarining bir nechtasi nazariy jihatdan suvsiz yoki oz miqdordagi muz shaklida yoki ingichka molekulyar plyonkalarda hosil bo'lishi mumkin (bitta qatlamlar).[94][95] Marsda ob-havoning bunday ekzotik jarayonlari qay darajada amalga oshirilayotgani hali ham noaniq. Suv tarkibiga kiradigan yoki suv ishtirokida hosil bo'lgan minerallar odatda "suvli minerallar" deb nomlanadi.

Suvli minerallar - bu minerallar paydo bo'lganida mavjud bo'lgan muhit turining sezgir ko'rsatkichlari. Suvli reaktsiyalar paydo bo'lishining osonligi (qarang Gibbs bepul energiya) bosimga, haroratga va gaz va eruvchan turlarning kontsentratsiyasiga bog'liq.[96] Ikkita muhim xususiyatlar pH va oksidlanish-qaytarilish potentsiali (E.h). Masalan, sulfat mineral jarozit faqat past pH (yuqori kislotali) suvda hosil bo'ladi. Fillosilikatlar odatda neytraldan yuqori pH (ishqoriy) suvda hosil bo'ladi. Eh bu o'lchovdir oksidlanish darajasi suvli tizimning Birgalikda Eh va pH qiymati termodinamik jihatdan eng barqaror bo'lgan va shu sababli suvli tarkibiy qismlar to'plamidan hosil bo'lishi mumkin bo'lgan minerallarning turlarini bildiradi. Shunday qilib, Marsdagi, shu jumladan hayot uchun qulay bo'lgan atrof-muhit sharoitlari tog 'jinslarida mavjud bo'lgan mineral turlaridan xulosa chiqarish mumkin.

Gidrotermik o'zgarish

Suvli minerallar er osti qatlamida ham hosil bo'lishi mumkin gidrotermik teshiklar va yoriqlar orqali migratsiya qiluvchi suyuqliklar. Gidrotermik tizimni boshqaradigan issiqlik manbai yaqin bo'lishi mumkin magma jismlar yoki katta qismdan qolgan issiqlik ta'sirlar.[97] Yerning okean qobig'idagi gidrotermik o'zgarishlarning muhim turlaridan biri bu serpantinizatsiyadengiz suvi ko'chib o'tganda paydo bo'ladi ultramafik va bazaltika jinslari Suv-tosh reaktsiyalari temir temirni (mineral sifatida) olivin va piroksendagi oksidlanishiga olib keladi. magnetit) hosil qiluvchi molekulyar vodorod (H2) yon mahsulot sifatida. Jarayon natijasida ba'zi bir fillosilikatlar (serpantin minerallari) va turli xil karbonat minerallari hosil bo'lishiga yordam beradigan yuqori ishqoriy va kamaytiruvchi (past Eh) muhit yaratiladi, ular birgalikda tosh deb nomlanadi. serpantinit.[98] Ishlab chiqarilgan vodorod gazi muhim energiya manbai bo'lishi mumkin xemosintetik organizmlar yoki u CO bilan reaksiyaga kirishishi mumkin2 ishlab chiqarish metan gaz, bu jarayon Mars atmosferasida bildirilgan metanning izsiz miqdori uchun biologik bo'lmagan manba sifatida qaraldi.[99] Serpantin minerallari, shuningdek, kristal tuzilishida juda ko'p suvni (gidroksil sifatida) saqlashi mumkin. Yaqinda o'tkazilgan bir tadqiqot shuni ta'kidladiki, Marsning qadimgi tog'li er qobig'idagi gipotetik serpentinitlar 500 metr (1600 fut) qalin global ekvivalent qatlam (GEL) suvni o'z ichiga olishi mumkin.[100] Marsda ba'zi serpantin minerallari aniqlangan bo'lsa-da, masofadan turib zondlash ma'lumotlaridan keng tarqalmaganligi aniq emas.[101] Ushbu fakt Mars qobig'ida chuqurlikda yashiringan serpantinitning katta miqdorini istisno etmaydi.

Ob-havo darajasi

Birlamchi minerallarning ikkilamchi suvli minerallarga aylanish tezligi turlicha. Birlamchi silikat minerallari bosim va haroratda sayyora sirtidagi sharoitdan kattaroq magmadan kristallanadi. Sirtdagi muhit ta'sirida bu minerallar yo'q muvozanat va barqaror kimyoviy fazalarni hosil qilish uchun mavjud kimyoviy komponentlar bilan o'zaro aloqada bo'lishga moyil bo'ladi. Umuman olganda, eng yuqori haroratda kristallashgan silikat minerallari (sovigan magmada birinchi bo'lib qattiqlashadi) eng tez ob-havo.[102] Yer va Marsda ushbu mezonga javob beradigan eng keng tarqalgan mineral hisoblanadi olivin, osonlikcha ob-havo gil minerallar suv borligida.

Olivin Marsda keng tarqalgan,[103] Mars sathining suv ta'sirida o'zgarmasligini taxmin qilish; mo'l-ko'l geologik dalillar aksini ko'rsatmoqda.[104][105][106]

Mars meteoritlari

Mars meteoriti ALH84001.

Marsdan kelgan 60 dan ortiq meteorit topildi.[107] Ulardan ba'zilari Marsda bo'lganlarida suvga duch kelganliklariga oid dalillarni o'z ichiga oladi. Biroz Mars meteoritlari deb nomlangan bazaltika shergottitlar, paydo bo'ladi (gidratlangan mavjudotdan) karbonatlar va sulfatlar) kosmosga uchirishdan oldin suyuq suvga duch kelgan bo'lishi kerak.[108][109] Yana bir meteoritlar sinfi - naxlitlar, taxminan 620 million yil oldin suyuq suv bilan to'yingan va ular asteroid ta'sirida Marsdan 10,75 million yil oldin chiqarilgan. So'nggi 10 000 yil ichida ular Yerga tushishdi.[110] Mars meteoriti NWA 7034 ko'pchilik Mars meteoritlariga qaraganda bir martalik suv darajasiga ega. Bu rover missiyalari tomonidan o'rganilgan bazaltlarga o'xshaydi va u dastlab shakllangan Amazoniya davri.[111][112]

1996 yilda bir guruh olimlar mikroorganizmlar tarkibida bo'lishi mumkinligi haqida xabar berishdi Allan Hills 84001, Marsdan kelgan meteorit.[113] Ko'pgina tadqiqotlar, ularning talqin qilinishining asosliligini, asosan, ushbu taxmin qilingan qoldiqlarning shakliga asoslangan holda tortishdi.[114][115] Ko'pchilik ekanligi aniqlandi organik moddalar meteoritda quruqlikdan kelib chiqqan.[116] Bundan tashqari, ilmiy kelishuvga ko'ra, "yolg'iz morfologiyani ibtidoiy hayotni aniqlash vositasi sifatida aniq ishlatish mumkin emas".[117][118][119] Morfologiyani izohlash sub'ektiv xarakterga ega va uning ishlatilishi ko'pgina talqin xatolariga olib keldi.[117]

Geomorfik dalillar

Ko'llar va daryo vodiylari

1971 yil Mariner 9 kosmik kemalar Marsdagi suv haqidagi g'oyalarimizda inqilobni keltirib chiqardi. Ko'p joylarda katta daryo vodiylari topilgan. Tasvirlardan ko'rinib turibdiki, suv toshqini to'g'onlarni yorib o'tib, chuqur vodiylarni o'yib tashlagan, oluklarni tubsiz toshga aylantirib, minglab kilometrlarni bosib o'tgan.[45] Janubiy yarimsharda joylashgan tarvaqaylab irmoqlarning hududlari, bir vaqtlar yomg'ir yog'ishini taxmin qildi.[120][121] Vaqt o'tishi bilan tan olingan vodiylar soni ortdi. 2010 yil iyun oyida nashr etilgan tadqiqotlar Marsdagi 40 ming daryo vodiysini xaritaga tushirdi va avval aniqlangan daryo vodiylari sonini taxminan to'rt baravar oshirdi.[31] Mars suvidan eskirgan xususiyatlarni ikki xil sinfga bo'lish mumkin: 1) dendritik (tarvaqaylab ketgan), yer usti miqyosidagi, keng tarqalgan, No'xiyan- yosh vodiy tarmoqlari va 2) juda katta, uzun, bitta ipli, ajratilgan, Hesperian- yosh chiqish kanallari. Yaqinda olib borilgan ishlar shuni ko'rsatadiki, hozirgi paytda sirli, kichikroq, yoshroq sinf ham bo'lishi mumkin (Hesperian ga Amazon) o'rta kengliklarda joylashgan kanallar, ehtimol vaqti-vaqti bilan muz qatlamlarining erishi bilan bog'liq.[122][123]

Kasei Valles - asosiy chiqish kanali - ko'rilgan MOLA balandlik ma'lumotlari. Oqim chapdan o'ngga qarab edi. Rasm taxminan. 1600 km bo'ylab. Kanal tizimi ushbu tasvirdan yana 1200 km janubga cho'zilgan Exus Chasma.

Marsning ba'zi qismlari namoyish etiladi teskari yengillik. Bu cho'kindilar oqim tubiga yotqizilib, keyinchalik eroziyaga chidamli bo'lib, ehtimol tsementlash natijasida yuzaga keladi. Keyinchalik maydon ko'milishi mumkin. Oxir oqibat, eroziya qoplamali qatlamni olib tashlaydi va avvalgi oqimlar eroziyaga chidamli bo'lgani uchun ko'rinadigan bo'ladi. Mars Global Surveyor ushbu jarayonning bir nechta misollarini topdi.[124][125] Ko'plab teskari oqimlar Marsning turli mintaqalarida, ayniqsa Medusae fossae shakllanishi,[126] Miyamoto krateri,[127] Saheki krateri,[128] va Juventae platosi.[129][130]

Inverted stream kanallari Antoniadi krateri. Manzil: Syrtis Major to'rtburchagi.

Marsda turli xil ko'l havzalari topilgan.[131] Ba'zilar hajmi bo'yicha Yerdagi eng katta ko'llar bilan taqqoslanadi, masalan Kaspiy dengizi, Qora dengizva Baykal ko'li. Vodiy tarmoqlari bilan oziqlangan ko'llar janubiy baland tog'larda joylashgan. Daryo vodiylari bilan yopiq depressiyalar bo'lgan joylar mavjud. Ushbu hududlarda bir vaqtlar ko'llar bo'lgan deb o'ylashadi; bittasi Terra sirenum uning toshqini o'tib ketgan Ma'adim Vallis ichiga Gusev krateri, tomonidan o'rganilgan Mars Exploration Rover Ruh. Yana biri yaqin Parana Valles va Loire Vallis.[132] Ba'zi ko'llar yog'ingarchilik tufayli, boshqalari er osti suvlaridan hosil bo'lgan deb o'ylashadi.[49][50] Argir havzasida ko'llar mavjud bo'lgan,[38][39] Ellada havzasi,[51] va ehtimol Valles Marineris.[52][133][134] Ehtimol, ba'zida Nuxianda ko'plab kraterlar ko'llarga mezbonlik qilgan. Ushbu ko'llar sovuq, quruq (Yer me'yorlari bo'yicha) gidrologik muhitga o'xshashdir Buyuk havza davomida g'arbiy AQShning Oxirgi muzlik maksimal.[135]

2010 yildagi tadqiqotlar shuni ko'rsatadiki, Marsda ekvatorning ba'zi qismida ko'llar ham bo'lgan. Ilgari tadqiqotlar shuni ko'rsatdiki, Marsda iliq va namli tarix azaldan qurigan, ammo bu ko'llar Hesperian Epoch, ancha keyingi davr. NASA-dan olingan batafsil tasvirlardan foydalanish Mars razvedka orbiteri, tadqiqotchilar taxmin qilishlaricha, bu davrda Mars atmosferasini qizdirish uchun vulqon faolligi, meteorit ta'sirlari yoki Mars orbitasida siljishlar ko'payib, erdagi mavjud muzlarni eritishi mumkin edi. Vulkanlar atmosferani vaqtincha qalinlashtiradigan, ko'proq quyosh nurlarini ushlab turadigan va suyuq suv mavjud bo'ladigan darajada iliq holga keltiradigan gazlarni chiqargan bo'lar edi. Ushbu tadqiqotda ko'l havzalarini bir-biriga yaqinlashtiradigan kanallar topildi Ares Vallis. Bir ko'lni to'ldirganda, uning suvlari qirg'oqlardan toshib, boshqa ko'l paydo bo'ladigan pastki qismga kanallarni o'yib tashlagan.[136][137] Ushbu quruq ko'llar dalillarni izlash uchun maqsad bo'lishi mumkin (biosignature) o'tgan hayot.

2012 yil 27 sentabrda NASA olimlari Qiziqish uchun mo'ljallangan rover qadimiy uchun to'g'ridan-to'g'ri dalillarni topdi oqim yilda Geyl krateri, Marsda qadimiy suvning "kuchli oqimi" ni taklif qilmoqda.[138][139][140][141] Xususan, hozirda quruq oqimni tahlil qilish shuni ko'rsatdiki, suv 3,3 km / soat (0,92 m / s),[138] ehtimol kestirib, chuqurlikda. Oqim suvining isboti faqat kuchli suyuqlik oqimlari ta'sirida dumaloq toshlar va shag'al parchalari ko'rinishida bo'lgan. Ularning shakli va yo'nalishi krater qirg'og'idan yuqoridan uzoqqa transportni taklif qiladi, u erda kanal nomi berilgan Tinchlik Vallis ga oziklanadi allyuvial fan.

Eridaniya ko'li taxminan 1,1 million kvadrat kilometr maydonga ega bo'lgan nazariy qadimiy ko'ldir.[142][143][144] Uning maksimal chuqurligi 2400 metr, hajmi 562000 km3. U Yerdagi dengizga chiqadigan eng katta dengizdan kattaroq edi Kaspiy dengizi va boshqa barcha mars ko'llariga qaraganda ko'proq suv bor edi. Eridania dengizida butun Shimoliy Amerika suvlaridan 9 baravar ko'proq suv bor edi Buyuk ko'llar.[145][146][147] Ko'lning yuqori yuzasi ko'lni o'rab turgan vodiy tarmoqlari balandligida deb taxmin qilingan; ularning hammasi bir balandlikda tugaydi, bu ko'lga tushishlarini anglatadi.[148][149][150]

CRISM bilan olib borilgan tadqiqotlar natijasida qalinligi 400 metrdan katta bo'lgan minerallar mavjud bo'lgan qalin konlar topildi saponit, talk-saponit, Fega boy slyuda (masalan, glaukonit-nontronit), Fe- va Mg-serpantin, Mg-Fe-Ca-karbonat va ehtimol Fe-sulfid. Fe-sulfid, ehtimol, suv bilan isitiladigan suvdan chuqur suvda hosil bo'lgan vulqonlar. Sifatida tasniflangan bunday jarayon gidrotermik Yerda hayot boshlangan joy bo'lishi mumkin.[147]

Ko'l deltalari

Delta ichida Eberswalde krateri.

Tadqiqotchilar bir qator misollarni topdilar deltalar Mars ko'llarida hosil bo'lgan.[30] Deltalarni topish - bu Marsda bir vaqtlar juda ko'p suyuq suv bo'lganligining asosiy belgisidir. Deltalar hosil bo'lishi uchun odatda uzoq vaqt davomida chuqur suv kerak bo'ladi. Shuningdek, suv sathini ushlab turish uchun barqaror bo'lishi kerak cho'kindi yuvishdan. Deltalar keng geografik oraliqda topilgan,[49] deltalar taxminiy oldingi qirralarning atrofida to'planishi mumkinligi haqida ba'zi bir dalillar mavjud Marsning shimoliy okeani.[151]

Er osti suvlari

Qatlamlar tomonidan shakllanishi mumkin er osti suvlari asta-sekin ko'tarilish.

1979 yilga kelib shunday deb o'ylashdi chiqish kanallari er osti suv omborlarining yagona, katastrofik yorilishlarida hosil bo'lgan, ehtimol muz bilan yopilgan va suvning katta miqdorini boshqacha qurg'oqchil Mars sathidan chiqarib yuborgan.[152][153] Bundan tashqari, og'ir yoki hatto halokatli suv toshqini foydasiga dalillar topilgan ulkan to'lqinlar ichida Athabasca Vallis.[154][155] Ko'plab chiqish kanallari boshlanadi Xaos yoki Xazma er osti muzining muhrini buzishi mumkin bo'lgan yoriqlar uchun dalillarni taqdim etuvchi xususiyatlar.[133]

Dallanish vodiy tarmoqlari Mars er osti suvlarining to'satdan katastrofik ravishda chiqishi natijasida hosil bo'lishiga mos kelmaydi, chunki ularning bitta chiqish nuqtasidan kelib chiqmaydigan dendritik shakllari bo'yicha ham, ular bo'ylab ko'rinib turgan chiqindilar bo'yicha ham.[156] Buning o'rniga, ba'zi mualliflar er osti suvlarining er osti suvlaridan asta-sekin chiqib ketishi natijasida buloqlar sifatida hosil bo'lgan deb ta'kidlashdi.[157] Ushbu talqinni qo'llab-quvvatlash uchun bunday tarmoqlarda ko'plab vodiylarning yuqori oqimlari boshlanadi quti darasi yoki "amfiteatr" boshlari, ular Yer yuzida odatda er osti suvlari chiqishi bilan bog'liq. Ayrim mualliflar kanallar uchida mayda shkalalar yoki vodiylar borligi haqida kam dalillar mavjud bo'lib, ular ba'zi mualliflar bu oqim er yuzida asta-sekin to'planib qolmasdan, balki er osti qatlamidan to'satdan paydo bo'lganini ko'rsatmoqda deb talqin qildilar.[133] Boshqalar vodiylar amfiteatrlari boshlari bilan er osti suvlari hosil bo'lishi o'rtasidagi bog'liqlikni quruqlik misollari uchun bahslashmoqdalar,[158] va vodiy tarmoqlariga nozik shkalalarning etishmasligi ularni olib tashlash bilan bog'liq deb ta'kidladilar ob-havo yoki ta'sirli bog'dorchilik.[133] Ko'pgina mualliflarning ta'kidlashicha, vodiy tarmoqlarining aksariyati qisman er osti suvlarining oqishi jarayonlari ta'sirida va shakllangan.

Eoliya qumtepasining saqlanishi va sementlanishi stratigrafiya Berns Cliff-da Chidamlilik krateri sayoz er osti suvlari oqimi bilan boshqarilgan deb o'ylashadi.[159]

Er osti suvlari Marsdagi cho'kindi jinslar va jarayonlarni boshqarishda ham muhim rol o'ynadi.[160] Ushbu gipotezaga ko'ra, er osti suvlari erigan minerallar bilan kraterlarda va atrofida yuzaga chiqib, minerallar - ayniqsa sulfat - va qo'shib qatlam hosil bo'lishiga yordam bergan. cho'kindi jinslarni sementlash.[159][161][162][163][164][165] Boshqacha qilib aytganda, ba'zi qatlamlar er osti suvlari minerallar yotqizilishi bilan ko'tarilib, mavjud bo'lgan bo'shashgan sementlash natijasida hosil bo'lishi mumkin. aoliya cho'kindi jinslar. Natijada qotib qolgan qatlamlar ko'proq himoyalangan eroziya. Ma'lumotlaridan foydalangan holda 2011 yilda nashr etilgan tadqiqot Mars razvedka orbiteri, xuddi shu turdagi cho'kindilar o'z ichiga olgan katta maydonda mavjudligini ko'rsating Arabistoni Terra.[166] Cho'kindi jinslarga boy bo'lgan hududlar, shuningdek, mintaqaviy miqyosda er osti suvlarining ko'tarilishini boshdan kechirgan joylardir.[167]

2019 yil fevral oyida evropalik olimlar, taxmin qilinadigan ulkan okean bilan bog'langan, qadimiy sayyora bo'ylab er osti suvlari tizimining geologik dalillarini nashr etdilar.[168][169][170][171] 2019 yil sentyabr oyida tadqiqotchilar xabar berishicha InSight tushuntirishsiz ochilgan lander magnit impulslarva magnit tebranishlar Yer osti chuquridagi butun dunyo bo'ylab suyuq suv omboriga mos keladi.[172]

Mars okeanining gipotezasi

Marsning shimoliy yarim sharidagi past relyefli moviy mintaqa suyuq suvning ibtidoiy okeani joylashgan joy deb faraz qilingan.[173]

Mars okeanining gipotezasi quyidagicha Vastitas Borealis havzasi kamida bir marta suyuq suv okeanining joyi bo'lgan,[23] va qariyb uchdan biriga dalillarni keltiradi sirt Marsni sayyoramizning boshida suyuq okean qoplagan geologik tarix.[131][174] Ushbu okean, dublyaj qilingan Okean Borealis,[23] shimoliy yarim sharda joylashgan Vastitas Borealis havzasini to'ldirgan bo'lar edi, bu mintaqa o'rtacha sayyoralar balandligidan 4-5 kilometr pastda joylashgan (2,5-3,1 milya). Taxminan 3,8 milliard yil avvalgi davrga tegishli bo'lgan va dengiz sathining shakllanishiga to'g'ri keladigan balandroq ikkita qirg'oq sohili taklif qilingan. vodiy tarmoqlari tog'larda va pastki qismi, ehtimol yoshroq bilan bog'liq chiqish kanallari. Balandroq bo'lgan "Arabiya qirg'oq chizig'i" butun Mars atrofida kuzatilishi mumkin, faqat Tharsis vulqon mintaqasi orqali. Pastki, "Deuteronilus" quyidagilarni ta'qib qiladi Vastitas Borealis shakllanish.[133]

2010 yil iyun oyida o'tkazilgan tadqiqot natijalariga ko'ra qadimiyroq okean Marsning 36 foizini qoplagan bo'lar edi.[30][31] Marsdagi barcha relyeflarning balandligini o'lchaydigan Mars Orbiter Laser Altimeter (MOLA) ma'lumotlari 1999 yilda ishlatilgan va suv havzasi chunki bunday okean sayyoramizning taxminan 75 foizini qoplagan bo'lar edi.[175] Erta Mars er yuzida suyuq suv mavjud bo'lishini ta'minlash uchun iliq iqlim va zich atmosferani talab qilishi kerak edi.[176][177] Bundan tashqari, vodiy tarmoqlarining ko'pligi a imkoniyatini qat'iy qo'llab-quvvatlaydi gidrologik tsikl o'tmishda sayyorada.[161][178]

Dastlabki Mars okeanining mavjudligi olimlar orasida munozarali bo'lib qolmoqda va ba'zi xususiyatlarning "qadimiy qirg'oqlar" deb talqin qilinishi shubha ostiga qo'yildi.[179][180] Taxminiy 2 milliard yoshli bola bilan bog'liq bitta muammo (2Ga) qirg'oq chizig'i shundaki, u tekis emas - ya'ni doimiy tortishish potentsiali chizig'iga amal qilmaydi. Bunga Mars massasining tarqalishining o'zgarishi, ehtimol vulqon otilishi yoki meteor ta'siriga bog'liq bo'lishi mumkin;[181] ehtimol Elysium vulkanik viloyati yoki shimoliy tekisliklar ostida ko'milgan ulkan Utopiya havzasi ilgari surilgan.[161]

2015 yil mart oyida olimlar qadimgi Mars okeanining, ehtimol sayyoramizning shimoliy yarim sharida va Yerning kattaligi haqida dalillar mavjudligini ta'kidladilar. Shimoliy Muz okeani, yoki Mars sirtining taxminan 19%. Ushbu topilma suv va nisbatlaridan kelib chiqqan deyteriy zamonaviy Mars atmosferasida Yerdagi nisbatga nisbatan. Marsda Yerda mavjud bo'lganidan sakkiz baravar ko'p deyteriy topilgan bo'lib, bu qadimgi Marsda suv miqdori ancha yuqori bo'lganligini ko'rsatmoqda. Natijalari Qiziqish rover ilgari deuteriumning yuqori nisbatini topgan edi Geyl krateri, ammo okean mavjudligini ko'rsatadigan darajada baland emas. Boshqa olimlar ushbu yangi tadqiqot tasdiqlanmaganidan ogohlantirmoqdalar va Marsning iqlim modellari hali ham sayyoramiz o'tmishda suyuq suv havzalarini ushlab turish uchun etarlicha iliq bo'lganligini ko'rsatmaganligini ta'kidlamoqdalar.[182]

Shimoliy okeanga oid qo'shimcha dalillar 2016 yil may oyida nashr etilgan bo'lib, unda Ismenius Lakus to'rtburchagidagi sirtning bir qismi qanday o'zgarganligi tasvirlangan tsunami. Tsunami asteroidlarning okeanga urilishi natijasida yuzaga kelgan. Ularning ikkalasi ham 30 km diametrli kraterlarni yaratishga qodir bo'lgan deb o'ylashdi. Birinchi tsunami avtoulovlar yoki kichik uylarning kattaligidagi toshlarni ko'tarib olib yurgan. To'lqinlardan teskari yuvish toshlarni qayta tiklash orqali kanallarni hosil qildi. Ikkinchisi okean 300 m pastroq bo'lganida kirib keldi. Ikkinchisi vodiylarga tashlangan juda ko'p muzni tashiydi. Hisob-kitoblar shuni ko'rsatadiki, to'lqinlarning o'rtacha balandligi 50 m bo'lgan bo'lar edi, lekin balandliklar 10 m dan 120 m gacha o'zgarib turardi. Raqamli simulyatsiyalar shuni ko'rsatadiki, okeanning ushbu qismida har 30 million yilda diametri 30 km bo'lgan ikkita ta'sir krater hosil bo'ladi. Bu erda shuni anglatadiki, buyuk shimoliy okean millionlab yillar davomida mavjud bo'lgan bo'lishi mumkin. Okeanga qarshi dalillardan biri qirg'oq chizig'ining etishmasligi edi. Ushbu xususiyatlar ushbu tsunami hodisalari bilan yuvilgan bo'lishi mumkin. Ushbu tadqiqotda o'rganilgan Mars qismlari Chryse Planitia va shimoli-g'arbiy Arabistoni Terra. Ushbu tsunamilar Ismenius Lacus to'rtburchagidagi va ba'zi sirtlarga ta'sir ko'rsatdi Mare Acidalium to'rtburchagi.[183][184][185][186]

2019 yil iyul oyida an qadimiy okean iloji boricha shakllangan bo'lishi mumkin bo'lgan Marsda mega-tsunami natijasida hosil bo'lgan manba meteorit ta'siri yaratish Lomonosov krateri.[187][188]

So'nggi oqimlar uchun dalillar

Issiq fasl yonbag'rida oqadi Nyuton krateri.
Tarmoqlangan jarliklar.
Chuqur jarliklar guruhi.

Sof suyuq suv bir necha soat davomida eng past balandliklardan tashqari hozirgi past atmosfera bosimi va past harorat bilan Mars yuzasida barqaror shaklda mavjud bo'lolmaydi.[189][190] Shunday qilib, 2006 yilda NASA kuzatuvlaridan so'ng geologik sir boshlandi Mars razvedka orbiteri aniqlandi jar O'n yil oldin bo'lmagan konlar, ehtimol suyuqlik oqishi natijasida yuzaga kelgan sho'r suv Marsda eng issiq oylarda.[191][192] Tasvirlar ikkita kraterdan iborat edi Terra sirenum va Centauri Montes 1999 va 2001 yillar oralig'ida Marsda (nam yoki quruq) oqimlarning mavjudligini ko'rsatadigan ko'rinadi.[191][193][194]

Ilm-fan jamoalarida jarliklar suyuq suv bilan hosil bo'ladimi yoki yo'qmi haqida kelishmovchiliklar mavjud. Shuningdek, jarlarni o'yadigan oqimlar quruq donalar bo'lishi mumkin,[195][196] yoki karbonat angidrid bilan yog'lanishi mumkin. Ba'zi tadkikotlar janubiy baland tog'larda hosil bo'lgan jarliklar noto'g'ri sharoitlar tufayli suv bilan hosil bo'lmasligini tasdiqlaydi. Past bosimli, geotermik bo'lmagan va sovuq mintaqalar yilning istalgan nuqtasida suyuq suvga yo'l bermaydi, ammo qattiq karbonat angidrid uchun juda mos keladi. Yozning iliqroq davrida erishi natijasida karbonat angidrid suyuq karbonat angidrid gazini hosil qiladi va keyinchalik bu jarliklarni hosil qiladi.[197][198] Agar jarliklar yuzada oqayotgan suv bilan o'yilgan bo'lsa ham, suvning aniq manbai va uning harakat mexanizmlari tushunilmaydi.[199]

Quruq jarliklar yil bo'yi saqlanib qolgan chuqurliklarga o'ralgan. Marsda ko'plab boshqa xususiyatlar mavjud va ularning ba'zilari mavsumiy ravishda o'zgarib turadi.

2011 yil avgust oyida NASA talaba tomonidan kashf etilganligini e'lon qildi Lujendra Ojha[200] Janubiy yarimsharda krater qirralari yonidagi toshli toshlar ostidagi tik yonbag'irlarda joriy mavsumiy o'zgarishlarning o'zgarishi. Hozir bu qorong'u chiziqlar takroriy nishab chiziqlari (RSL), Mars yozining eng iliq davrida pasayish kuzatilgan, so'ngra yillar oralig'ida davriy ravishda takrorlanib, yilning qolgan qismida asta-sekin pasayib ketgan.[15] Tadqiqotchilar ushbu belgilar sho'r suvga mos kelishini taxmin qilishdi (sho'r suvlar) pastga tushgan va keyin bug'lanib, ehtimol qandaydir qoldiq qoldirgan.[201][202] O'shandan beri CRISM spektroskopik vositasi bu takrorlanadigan qiyalik chiziqlari hosil bo'lgan bir vaqtning o'zida paydo bo'lgan gidroksidi tuzlarning to'g'ridan-to'g'ri kuzatuvlarini o'tkazdi va 2015 yilda ushbu chiziqlar sayoz tuproqlar orqali suyuq sho'rlar oqimi natijasida hosil bo'lishini tasdiqladi. Lineae tarkibida gidratlangan xlorat va perklorat tuzlar (ClO
4
) tarkibida suyuq suv molekulalari mavjud.[203] Mars yozida, harorat -23 ° C (-9 ° F; 250 K) dan yuqori bo'lganida, chiziqlar pastga qarab oqadi.[204] Biroq, suv manbai noma'lum bo'lib qolmoqda.[7][205][206] Shu bilan birga, neytron spektrometr ma'lumotlari Mars Odisseya o'n yil ichida olingan orbiter 2017 yil dekabrida nashr etilgan va faol joylarda suv (gidrogenlangan regolit) mavjudligini isbotlamaydi, shuning uchun uning mualliflari qisqa muddatli atmosfera suvi bug'ining pasayishi yoki quruq donador oqimlar haqidagi farazlarni ham qo'llab-quvvatlaydilar.[195] Ular bugungi Marsdagi suyuq suv atmosferada erigan namlik izlari va biz bilgan hayot uchun qiyin muhit bo'lgan ingichka plyonkalar bilan cheklanishi mumkin degan xulosaga kelishdi.[207]

Hozirgi suv

Mars sirtining yuqori metrida joylashgan suv muzining nisbati past (yuqori) va yuqori (pastki) kengliklarda. Foizlar epitermal neytron oqimlari asosida stokiometrik hisob-kitoblar orqali olinadi. Ushbu oqimlar Neytron spektrometri tomonidan 2001 yil Mars Odyssey kosmik kemasida aniqlangan.

Sirtning sezilarli miqdori vodorod tomonidan global miqyosda kuzatilgan Mars Odisseya neytron spektrometri va gamma-spektrometr.[208] Ushbu vodorod muzning molekulyar tuzilishiga va orqali kiritilgan deb o'ylashadi stexiometrik hisob-kitoblar kuzatilgan oqimlar Mars sirtining yuqori metridagi suv muzining kontsentratsiyasiga aylantirildi. This process has revealed that ice is both widespread and abundant on the present surface. Below 60 degrees of latitude, ice is concentrated in several regions, particularly around the Elizium vulqonlar, Terra Sabaeava shimoli-g'arbiy qismida joylashgan Terra sirenum, and exists in concentrations up to 18% ice in the subsurface. Above 60 degrees latitude, ice is highly abundant. Polewards on 70 degrees of latitude, ice concentrations exceed 25% almost everywhere, and approach 100% at the poles.[209] The SHARAD va MARSIS radar sounding instruments have also confirmed that individual surface features are ice rich. Due to the known instability of ice at current Martian surface conditions, it is thought that almost all of this ice is covered by a thin layer of rocky or dusty material.

The Mars Odyssey neutron spectrometer observations indicate that if all the ice in the top meter of the Martian surface were spread evenly, it would give a Water Equivalent Global layer (WEG) of at least ≈14 centimetres (5.5 in)—in other words, the globally averaged Martian surface is approximately 14% water.[210] The water ice currently locked in both Martian poles corresponds to a WEG of 30 metres (98 ft), and geomorphic evidence favors significantly larger quantities of er usti suvlari over geologic history, with WEG as deep as 500 metres (1,600 ft).[13][210] It is thought that part of this past water has been lost to the deep subsurface, and part to space, although the detailed mass balance of these processes remains poorly understood.[133] The current atmospheric reservoir of water is important as a conduit allowing gradual migration of ice from one part of the surface to another on both seasonal and longer timescales, but it is insignificant in volume, with a WEG of no more than 10 micrometres (0.00039 in).[210]

Polar ice caps

The Mars Global Surveyor acquired this image of the Martian north polar ice cap in early northern summer.
Korolev Crater is estimated to contain 2,200 cubic kilometres (530 cu mi) of water ice.

The existence of ice in the Martian northern (Planum Boreum) and southern (Planum Avstraliya) polar caps has been known since the time of Mariner 9 orbita.[211] However, the amount and purity of this ice were not known until the early 2000s. 2004 yilda, MARSIS radar sounder on the European Mars Express satellite confirmed the existence of relatively clean ice in the south polar ice cap that extends to a depth of 3.7 kilometres (2.3 mi) below the surface.[212][213] Similarly, the SHARAD radar sounder on board the Mars razvedka orbiteri observed the base of the north polar cap 1.5 – 2 km beneath the surface. Together, the volume of ice present in the Martian north and south polar ice caps is similar to that of the Greenland ice sheet.[214]

Cross-section of a portion of the north polar ice cap of Mars, derived from satellite radar sounding.

An even larger ice sheet on south polar region sheet is suspected to have retreated in ancient times (Hesperian period), that may have contained 20 million km3 of water ice, which is equivalent to a layer 137 m deep over the entire planet.[215][216]

Both polar caps reveal abundant internal layers of ice and dust when examined with images of the spiral-shaped troughs that cut through their volume, and the subsurface radar measurements showed that these layers extend continuously across the ice sheets. This layering contains a record of past climates on Mars, just how Earth's ice sheets have a record for Earth's climate. Reading this record is not straightforward however,[217] so, many researchers have studied this layering not only to understand the structure, history, and flow properties of the caps,[133] but also to understand the evolution of climate on Mars.[218][219]

Surrounding the polar caps are many smaller ice sheets inside craters, some of which lie under thick deposits of sand or martian dust.[220][221] Particularly, the 81.4 kilometres (50.6 mi) wide Korolev Crater, is estimated to contain approximately 2,200 cubic kilometres (530 cu mi) of water ice exposed to the surface.[222] Korolev's floor lies about 2 kilometres (1.2 mi) below the rim, and is covered by a 1.8 kilometres (1.1 mi) deep central mound of permanent water ice, up to 60 kilometres (37 mi) in diameter.[222][223]

Subglacial liquid water

Sayt south polar subglacial water body (reported July 2018).

The existence of subglacial lakes on Mars was hypothesised when modelling of Vostok ko'li yilda Antarktida showed that this lake could have existed before the Antarctic glaciation, and that a similar scenario could potentially have occurred on Mars.[224] In July 2018, scientists from the Italiya kosmik agentligi reported the detection of such a subglasial ko'l on Mars, 1.5 kilometres (1 mi) below the southern polar ice cap, and spanning 20 kilometres (10 mi) horizontally, the first evidence for a stable body of liquid water on the planet.[66][225][226][227] The evidence for this Martian lake was deduced from a bright spot in the radar echo sounding data of the MARSIS radar on board the European Mars Express orbita,[228] collected between May 2012 and December 2015. The detected lake is centred at 193°E, 81°S, a flat area that does not exhibit any peculiar topographic characteristics but is surrounded by higher ground, except on its eastern side where there is a depression.[66] The SHARAD radar on board NASA's Mars razvedka orbiteri has seen no sign of the lake. The operating frequencies of SHARAD are designed for higher resolution, but lower penetration depth, so if the overlying ice contains a significant amount of silicates, it is unlikely that SHARAD will be able to detect the putative lake.

On 28 September 2020, the MARSIS discovery was confirmed, using new data, and reanalysing all the data with a new technique. These new radar studies report three more subglacial lakes on Mars. All are 1.5 km (0.93 mi) below the southern polar ice cap. The size of the first lake found, and the largest, has been corrected to 30 km (19 mi) wide. It is surrounded by 3 smaller lakes, each a few kilometres wide.[229]

Because the temperature at the base of the polar cap is estimated to be 205 K (−68 °C; −91 °F), scientists assume that the water may remain liquid through the antifreeze effect of magnesium and calcium perchlorates.[66][230] The 1.5-kilometre (0.93 mi) ice layer covering the lake is composed of water ice with 10 to 20% admixed dust, and seasonally covered by a 1-metre (3 ft 3 in)-thick layer of CO
2
muz.[66] Since the raw-data coverage of the south polar ice cap is limited, the discoverers stated that "there is no reason to conclude that the presence of subsurface water on Mars is limited to a single location."[66]

In 2019, a study was published that explored the physical conditions necessary for such a lake to exist.[231] The study calculated the amount of geothermal heat necessary to reach temperatures under which a liquid water and perchlorate mix would be stable under the ice. The authors concluded that "even if there are local concentrations of large amounts of perchlorate salts at the base of the south polar ice, typical Martian conditions are too cold to melt the ice...a local heat source within the crust is needed to increase the temperatures, and a magma chamber within 10 km of the ice could provide such a heat source. This result suggests that if the liquid water interpretation of the observations is correct, magmatism on Mars may have been active extremely recently."

If a liquid lake does indeed exist, its salty water may also be mixed with soil to form a sludge.[232] The lake's high levels of salt would present difficulties for most lifeforms. On Earth, organisms called halofillar exist that thrive in extremely salty conditions, though not in dark, cold, concentrated perchlorate solutions.[232]

Ground ice

For many years, various scientists have suggested that some Martian surfaces look like periglasial regions on Earth.[233] By analogy with these terrestrial features, it has been argued for many years that these may be regions of doimiy muzlik. This would suggest that frozen water lies right beneath the surface.[195][234] A common feature in the higher latitudes, naqshli zamin, can occur in a number of shapes, including stripes and polygons. On the Earth, these shapes are caused by the freezing and thawing of soil.[235] There are other types of evidence for large amounts of frozen water under the surface of Mars, such as terrain softening, which rounds sharp topographical features.[236] Evidence from Mars Odyssey's gamma-spektrometr and direct measurements with the Feniks lander have corroborated that many of these features are intimately associated with the presence of ground ice.[237]

A cross-section of underground water ice is exposed at the steep slope that appears bright blue in this enhanced-color view from the MRO.[238] The scene is about 500 meters wide. The scarp drops about 128 meters from the level ground. The ice sheets extend from just below the surface to a depth of 100 meters or more.[239]

In 2017, using the HiRISE camera on board the Mars razvedka orbiteri (MRO), researchers found at least eight eroding slopes showing exposed water ice sheets as thick as 100 meters, covered by a layer of about 1 or 2 meters thick of tuproq.[238][240] The sites are at latitudes from about 55 to 58 degrees, suggesting that there is shallow ground ice under roughly a third of the Martian surface.[238] This image confirms what was previously detected with the spectrometer on 2001 yil Mars Odisseya, MRO-da erga kirib boruvchi radarlar va boshqalar Mars Expressva tomonidan Feniks qo'nish joyida qazish.[238] These ice layers hold easily accessible clues about Mars' climate history and make frozen water accessible to future robotic or human explorers.[238] Some researchers suggested these deposits could be the remnants of glaciers that existed millions of years ago when the planet's spin axis and orbit were different. (Bo'limga qarang Mars' Ice ages below.) A more detailed study published in 2019 discovered that water ice exists at latitudes north of 35°N and south of 45°S, with some ice patches only a few centimeters from the surface covered by dust. Extraction of water ice at these conditions would not require complex equipment.[241][242]

Qisqichbaqasimon topografiya

Certain regions of Mars display taroqlangan-shaped depressions. The depressions are suspected to be the remains of a degrading ice-rich mantle deposit. Scallops are caused by ice sublimatsiya from frozen soil. The landforms of scalloped topography can be formed by the subsurface loss of water ice by sublimation under current Martian climate conditions. A model predicts similar shapes when the ground has large amounts of pure ice, up to many tens of meters in depth.[244] This mantle material was probably deposited from the atmosphere as ice formed on dust when the climate was different due to changes in the tilt of the Mars pole (see "Muzlik davri", quyida).[245][246] The scallops are typically tens of meters deep and from a few hundred to a few thousand meters across. They can be almost circular or elongated. Some appear to have coalesced causing a large heavily pitted terrain to form. The process of forming the terrain may begin with sublimation from a crack. There are often polygonal cracks where scallops form, and the presence of scalloped topography seems to be an indication of frozen ground.[130][247]

On November 22, 2016, NASA reported finding a large amount of underground ice in the Utopia Planitia region of Mars.[248] The volume of water detected has been estimated to be equivalent to the volume of water in Superior ko'li.[2][3][4]

Mintaqadagi suv muzining miqdori erga kirib boruvchi radiolokatsion vositadan olingan o'lchovlarga asoslangan edi Mars razvedka orbiteri, deb nomlangan SHARAD. SHARADdan olingan ma'lumotlarga ko'ra, “dielektrik o'tkazuvchanligi”Yoki dielektrik doimiyligi aniqlandi. Dielektrik doimiy qiymati suv muzining katta kontsentratsiyasiga mos edi.[249][250][251]

These scalloped features are superficially similar to Shveytsariya pishloqining xususiyatlari, found around the south polar cap. Swiss cheese features are thought to be due to cavities forming in a surface layer of solid karbonat angidrid, rather than water ice—although the floors of these holes are probably H2O-rich.[252]

Muzli yamaqlar

On July 28, 2005, the Evropa kosmik agentligi announced the existence of a crater partially filled with frozen water;[253] some then interpreted the discovery as an "ice lake".[254] Images of the crater, taken by the Yuqori aniqlikdagi stereo kamera bortda Evropa kosmik agentligi"s Mars Express orbiter, clearly show a broad sheet of ice in the bottom of an unnamed crater located on Vastitas Borealis, a broad plain that covers much of Mars' far northern latitudes, at approximately 70.5° North and 103° East. The crater is 35 kilometres (22 mi) wide and about 2 kilometres (1.2 mi) deep. The height difference between the crater floor and the surface of the water ice is about 200 metres (660 ft). ESA scientists have attributed most of this height difference to sand dunes beneath the water ice, which are partially visible. While scientists do not refer to the patch as a "lake", the water ice patch is remarkable for its size and for being present throughout the year. Deposits of water ice and layers of frost have been found in many different locations on the planet.

As more and more of the surface of Mars has been imaged by the modern generation of orbiters, it has become gradually more apparent that there are probably many more patches of ice scattered across the Martian surface. Many of these putative patches of ice are concentrated in the Martian mid-latitudes (≈30–60° N/S of the equator). For example, many scientists think that the widespread features in those latitude bands variously described as "latitude dependent mantle" or "pasted-on terrain" consist of dust- or debris-covered ice patches, which are slowly degrading.[133] A cover of debris is required both to explain the dull surfaces seen in the images that do not reflect like ice, and also to allow the patches to exist for an extended period of time without subliming away completely. These patches have been suggested as possible water sources for some of the enigmatic channelized flow features like jarliklar also seen in those latitudes.

Surface features consistent with existing muz to'plang have been discovered in the southern Elysium Planitia.[131] What appear to be plates, ranging in size from 30 metres (98 ft) to 30 kilometres (19 mi), are found in channels leading to a large flooded area. The plates show signs of break up and rotation that clearly distinguish them from lava plates elsewhere on the surface of Mars. The source for the flood is thought to be the nearby geological fault Cerberus Fossae that spewed water as well as lava aged some 2 to 10 million years. It was suggested that the water exited the Cerberus Fossae then pooled and froze in the low, level plains and that such frozen lakes may still exist.[255][256][257]

Muzliklar

View of a 5-km-wide, glacial-like lobe deposit sloping up into a box canyon. The surface has morenes, deposits of rocks that show how the glacier advanced.

Many large areas of Mars either appear to host glaciers, or carry evidence that they used to be present. Much of the areas in high latitudes, especially the Ismenius Lacus to'rtburchagi, are suspected to still contain enormous amounts of water ice.[258][259] Recent evidence has led many planetary scientists to conclude that water ice still exists as glaciers across much of the Martian mid- and high latitudes, protected from sublimation by thin coverings of insulating rock and/or dust.[42][59] An example of this are the glacier-like features called lobate debris aprons in an area called Deuteronilus Mensae, which display widespread evidence of ice lying beneath a few meters of rock debris.[59] Glaciers are associated with buzilgan er, and many volcanoes. Researchers have described glacial deposits on Hecates Tolus,[260] Arsia Mons,[261] Pavonis Mons,[262] va Olympus Mons.[263] Glaciers have also been reported in a number of larger Martian craters in the mid-latitudes and above.

Vallisni qaytaring with lineated floor deposits. Manzil: Hellas to'rtburchagi

Glacier-like features on Mars are known variously as viscous flow features,[264] Martian flow features, lobate debris aprons,[59] or lineated valley fill,[55] depending on the form of the feature, its location, the landforms it is associated with, and the author describing it. Many, but not all, small glaciers seem to be associated with gullies on the walls of craters and mantling material.[265] The lineated deposits known as lineated valley fill are probably rock-covered glaciers that are found on the floors most channels within the buzilgan er atrofida topilgan Arabistoni Terra shimoliy yarim sharda. Their surfaces have ridged and grooved materials that deflect around obstacles. Lineated floor deposits may be related to lobate debris aprons, which have been proven to contain large amounts of ice by orbiting radar.[42][59] For many years, researchers interpreted that features called 'lobate debris aprons' were glacial flows and it was thought that ice existed under a layer of insulating rocks.[58][266][267] With new instrument readings, it has been confirmed that lobate debris aprons contain almost pure ice that is covered with a layer of rocks.[42][59]

A ridge interpreted as the terminal moraine of an alpine glacier. Manzil: Ismenius Lacus to'rtburchagi.

Moving ice carries rock material, then drops it as the ice disappears. This typically happens at the snout or edges of the glacier. On Earth, such features would be called morenes, but on Mars they are typically known as moraine-like ridges, concentric ridges, yoki arcuate ridges.[268] Because ice tends to sublime rather than melt on Mars, and because Mars's low temperatures tend to make glaciers "cold based" (frozen down to their beds, and unable to slide), the remains of these glaciers and the ridges they leave do not appear the exactly same as normal glaciers on Earth. In particular, Martian moraines tend to be deposited without being deflected by the underlying topography, which is thought to reflect the fact that the ice in Martian glaciers is normally frozen down and cannot slide.[133] Ridges of debris on the surface of the glaciers indicate the direction of ice movement. The surface of some glaciers have rough textures due to sublimatsiya of buried ice. The ice evaporates without melting and leaves behind an empty space. Overlying material then collapses into the void.[269] Sometimes chunks of ice fall from the glacier and get buried in the land surface. When they melt, a more or less round hole remains. Many of these "kettle holes" have been identified on Mars.[270]

Despite strong evidence for glacial flow on Mars, there is little convincing evidence for relyef shakllari carved by glacial eroziyamasalan, U shaklidagi vodiylar, crag and tail tepaliklar, arêtes, druminlar. Such features are abundant in glaciated regions on Earth, so their absence on Mars has proven puzzling. The lack of these landforms is thought to be related to the cold-based nature of the ice in most recent glaciers on Mars. Chunki quyosh izolatsiyasi reaching the planet, the temperature and density of the atmosphere, and the geothermal heat flux are all lower on Mars than they are on Earth, modelling suggests the temperature of the interface between a glacier and its bed stays below freezing and the ice is literally frozen down to the ground. This prevents it from sliding across the bed, which is thought to inhibit the ice's ability to erode the surface.[133]

Development of Mars' water inventory

The variation in Mars's surface water content is strongly coupled to the evolution of its atmosphere and may have been marked by several key stages.

Dry channels near Warrego Valles.

Early Noachian era (4.6 Ga to 4.1 Ga)

The early Noachian era was characterized by atmospheric loss to space from heavy meteoritic bombardment and hydrodynamic escape.[271] Ejection by meteorites may have removed ~60% of the early atmosphere.[271][272] Significant quantities of phyllosilicates may have formed during this period requiring a sufficiently dense atmosphere to sustain surface water, as the spectrally dominant phyllosilicate group, smectite, suggests moderate water-to-rock ratios.[273] However, the pH-pCO2 between smectite and carbonate show that the precipitation of smectite would constrain pCO2 to a value not more than 1×10−2 atm (1.0 kPa).[273] As a result, the dominant component of a dense atmosphere on early Mars becomes uncertain, if the clays formed in contact with the Martian atmosphere,[274] particularly given the lack of evidence for karbonat yotqiziqlari. An additional complication is that the ~25% lower brightness of the young Sun would have required an ancient atmosphere with a significant issiqxona effekti to raise surface temperatures to sustain liquid water.[274] Yuqori CO2 content alone would have been insufficient, as CO2 precipitates at qisman bosim exceeding 1.5 atm (1,500 hPa), reducing its effectiveness as a issiqxona gazi.[274]

Middle to late Noachean era (4.1 Ga to 3.8 Ga)

During the middle to late Noachean era, Mars underwent potential formation of a ikkilamchi atmosfera by outgassing dominated by the Tharsis volcanoes, including significant quantities of H2O, CO2, va hokazo2.[271][272] Martian valley networks date to this period, indicating globally widespread and temporally sustained surface water as opposed to catastrophic floods.[271] The end of this period coincides with the termination of the internal magnit maydon and a spike in meteoritic bombardment.[271][272] The cessation of the internal magnetic field and subsequent weakening of any local magnit maydonlari allowed unimpeded atmospheric stripping by the solar wind. For example, when compared with their terrestrial counterparts, 38Ar /36Ar, 15N/14N, and 13C /12C ratios of the Martian atmosphere are consistent with ~60% loss of Ar, N2va CO2 by solar wind stripping of an upper atmosphere enriched in the lighter isotopes via Reylini fraktsiyalash.[271] Supplementing the solar wind activity, impacts would have ejected atmospheric components in bulk without isotopic fractionation. Nevertheless, cometary impacts in particular may have contributed volatiles to the planet.[271]

Hesperian to Amazonian era (present) (~3.8 Ga to present)

Atmospheric enhancement by sporadic outgassing events were countered by solar wind stripping of the atmosphere, albeit less intensely than by the young Sun.[272] Catastrophic floods date to this period, favoring sudden subterranean release of volatiles, as opposed to sustained surface flows.[271] While the earlier portion of this era may have been marked by aqueous acidic environments and Tharsis-centric groundwater discharge[275] dating to the late Noachian, much of the surface alteration processes during the latter portion is marked by oxidative processes including the formation of Fe3+ oxides that impart a reddish hue to the Martian surface.[272] Such oxidation of primary mineral phases can be achieved by low-pH (and possibly high temperature) processes related to the formation of palagonitic tephra,[276] by the action of H2O2 that forms photochemically in the Martian atmosphere,[277] and by the action of water,[273] none of which require free O2. The action of H2O2 may have dominated temporally given the drastic reduction in aqueous and igneous activity in this recent era, making the observed Fe3+ oxides volumetrically small, though pervasive and spectrally dominant.[278] Nevertheless, aquifers may have driven sustained, but highly localized surface water in recent geologic history, as evident in the geomorphology of craters such as Mojave.[279] Bundan tashqari, Lafayet Mars meteoriti shows evidence of aqueous alteration as recently as 650 Ma.[271]

Muzlik davri

North polar layered deposits of ice and dust.

Mars has experienced about 40 large scale changes in the amount and distribution of ice on its surface over the past five million years,[280][262] with the most recent happening about 2.1 to 0.4 Myr ago, during the Late Amazon glaciation at the ikkilamchi chegara.[281][282] These changes are known as ice ages.[283] Ice ages on Mars are very different from the ones that the Earth experiences. Ice ages are driven by changes in Mars's orbit and egilish —also known as obliquity. Orbital calculations show that Mars wobbles on its axis far more than Earth does. The Earth is stabilized by its proportionally large moon, so it only wobbles a few degrees. Mars may change its tilt by many tens of degrees.[246][284] When this obliquity is high, its poles get much more direct sunlight and heat; this causes the ice caps to warm and become smaller as ice sublimes. Adding to the variability of the climate, the ekssentriklik of the orbit of Mars changes twice as much as Earth's eccentricity. As the poles sublime, the ice is redeposited closer to the equator, which receive somewhat less quyosh izolatsiyasi at these high obliquities.[285] Computer simulations have shown that a 45° tilt of the Martian axis would result in ice accumulation in areas that display glacial landforms.[286]

The moisture from the ice caps travels to lower latitudes in the form of deposits of frost or snow mixed with dust. The atmosphere of Mars contains a great deal of fine dust particles, the water vapor condenses on these particles that then fall down to the ground due to the additional weight of the water coating. When ice at the top of the mantling layer returns to the atmosphere, it leaves behind dust that serves to insulate the remaining ice.[285] The total volume of water removed is a few percent of the ice caps, or enough to cover the entire surface of the planet under one meter of water. Much of this moisture from the ice caps results in a thick smooth mantle with a mixture of ice and dust.[245][287][288] This ice-rich mantle, that can be 100 meters thick at mid-latitudes,[289] smoothes the land at lower latitudes, but in places it displays a bumpy texture or patterns that give away the presence of water ice underneath.

Habitability assessments

Karl Sagan with a model of a Viking lander.
ExoMars rover prototype being tested in the Atakama sahrosi, 2013.

Beri Viking quruqlik that searched for current microbial life in 1976, NASA has pursued a "follow the water" strategy on Mars. However, liquid water is a necessary but not sufficient condition for life as we know it because yashashga yaroqlilik is a function of a multitude of environmental parameters.[290] Chemical, physical, geological, and geographic attributes shape the environments on Mars. Isolated measurements of these factors may be insufficient to deem an environment habitable, but the sum of measurements can help predict locations with greater or lesser habitability potential.[291]

Habitable environments need not be inhabited, and for purposes of sayyoralarni himoya qilish, scientists are trying to identify potential habitats where stowaway bacteria from Earth on spacecraft could contaminate Mars.[292] If life exists —or existed— on Mars, evidence or biosignature could be found in the subsurface, away from present-day harsh surface conditions such as perchlorates,[293][294] ionizing radiation, desiccation and freezing.[295] Habitable locations could occur kilometers below the surface in a hypothetical hydrosphere, or it could occur near the sub-surface in contact with permafrost.[61][62][63][64][65]

The Qiziqish rover is assessing Mars' past and present habitability potential. The European-Russian ExoMars programme is an astrobiology project dedicated to the search for and identification of biosignatures on Mars. Bunga quyidagilar kiradi ExoMars Trace Gas Orbiter that started mapping the atmospheric methane in April 2018, and the 2020 ExoMars rover that will drill and analyze subsurface samples 2 meters deep. NASA Mars 2020 rover will cache dozens of drilled core samples for their potential transport to Earth laboratories in the late 2020s or 2030s.

Findings by probes

Mariner 9

Meander in Scamander Vallis, ko'rinib turganidek Mars Global Surveyor. Such images implied that large amounts of water once flowed on the surface of Mars.

The images acquired by the Mariner 9 Mars orbiter, launched in 1971, revealed the first direct evidence of past water in the form of dry river beds, kanyonlar (shu jumladan Valles Marineris, a system of canyons over about 4,020 kilometres (2,500 mi) long), evidence of water eroziya and deposition, weather fronts, fogs, and more.[296] The findings from the Mariner 9 missions underpinned the later Viking dasturi. Juda katta Valles Marineris canyon system is named after Mariner 9 in honor of its achievements.

Viking dasturi

Streamlined islands in Maja Valles suggest that large floods occurred on Mars.

By discovering many geological forms that are typically formed from large amounts of water, the two Viking orbiters and the two landers caused a revolution in our knowledge about water on Mars. Katta chiqish kanallari were found in many areas. Ular suv toshqini to'g'onlarni yorib o'tib, chuqur vodiylarni o'yib tashlaganini, yivlarni tubsiz toshlarga aylantirganini va minglab kilometrlarni bosib o'tganligini ko'rsatdi.[297] Large areas in the southern hemisphere contained branched valley networks, suggesting that rain once fell.[298] Many craters look as if the impactor fell into mud. When they were formed, ice in the soil may have melted, turned the ground into mud, then the mud flowed across the surface.[120][121][233][299] Regions, called "Chaotic Terrain," seemed to have quickly lost great volumes of water that caused large channels to form downstream. Estimates for some channel flows run to ten thousand times the flow of the Missisipi daryosi.[300] Underground volcanism may have melted frozen ice; the water then flowed away and the ground collapsed to leave chaotic terrain. Also, general chemical analysis by the two Viking landers suggested the surface has been either exposed to or submerged in water in the past.[301][302]

Mars Global Surveyor

Ning taqsimlanishini ko'rsatadigan xarita gematit in Sinus Meridiani. This data was used to target the landing of the Imkoniyat rover that found definite evidence of past water.

The Mars Global Surveyor"s Termal emissiya spektrometri (TES) is an instrument able to determine the mineral composition on the surface of Mars. Mineral composition gives information on the presence or absence of water in ancient times. TES identified a large (30,000 square kilometres (12,000 sq mi)) area in the Nili Fossae formation that contains the mineral olivin.[303] It is thought that the ancient asteroid impact that created the Isidis havzasi resulted in faults that exposed the olivine. The discovery of olivine is strong evidence that parts of Mars have been extremely dry for a long time. Olivine was also discovered in many other small outcrops within 60 degrees north and south of the equator.[304] The probe has imaged several channels that suggest past sustained liquid flows, two of them are found in Nanedi Valles va Nirgal Vallis.[305]

Inner channel (near top of the image) on floor of Nanedi Valles that suggests that water flowed for a fairly long period. Rasm Lunae Palus to'rtburchagi.

Mars Pathfinder

The Pathfinder lander recorded the variation of diurnal temperature cycle. It was coldest just before sunrise, about −78 °C (−108 °F; 195 K), and warmest just after Mars noon, about −8 °C (18 °F; 265 K). At this location, the highest temperature never reached the freezing point of water (0 °C (32 °F; 273 K)), too cold for pure liquid water to exist on the surface.

The atmospheric pressure measured by the Pathfinder on Mars is very low —about 0.6% of Earth's, and it would not permit pure liquid water to exist on the surface.[306]

Other observations were consistent with water being present in the past. Some of the rocks at the Mars Pathfinder site leaned against each other in a manner geologists term imbricated. It is suspected that strong flood waters in the past pushed the rocks around until they faced away from the flow. Some pebbles were rounded, perhaps from being tumbled in a stream. Parts of the ground are crusty, maybe due to cementing by a fluid containing minerals.[307] There was evidence of clouds and maybe fog.[307]

Mars Odisseya

Complex drainage system in Semeykin krateri. Manzil: Ismenius Lacus to'rtburchagi

The 2001 yil Mars Odisseya found much evidence for water on Mars in the form of images, and with its neytron spektrometri, it proved that much of the ground is loaded with water ice. Mars has enough ice just beneath the surface to fill Michigan ko'li ikki marta.[308] Ikkala yarim sharda ham, 55 ° kenglikdan qutblarga qadar, Mars sirt ostida muzning zichligi yuqori; bir kilogramm tuproqda 500 gramm (18 oz) suv muzi bor. Ammo ekvatorga yaqin joyda tuproqda atigi 2% dan 10% gacha suv bor.[309] Olimlarning fikriga ko'ra, bu suvning katta qismi, masalan, minerallarning kimyoviy tuzilishida yopilgan gil va sulfatlar.[310][311] Yuqori yuzasida kimyoviy bog'langan suvning bir necha foizi bo'lsa ham, muz bir necha metr chuqurlikda yotadi, chunki Arabistoni Terra, Amazonis to'rtburchagiva Elizium to'rtburchagi ko'p miqdordagi suv muzini o'z ichiga oladi.[312] Shuningdek, orbitachi ekvatorial mintaqalar yuzasi yaqinida katta miqdordagi suv muzining katta konlarini topdi.[195] Ekvatorial hidratsiyaning dalillari ham morfologik, ham kompozitsion bo'lib, ikkalasida ham ko'rinadi Medusae fossae shakllanishi va Tarsis Montes.[195] Ma'lumotlarni tahlil qilish shuni ko'rsatadiki, janubiy yarim sharda qatlam bo'lib, hozirda yo'q bo'lib ketgan katta suv massasi ostidagi qatlamli konlar haqida gap boradi.[313]

Oramdagi qadimiy suv manbasini ko'rsatadigan bloklar. Manzil: Oxia Palus to'rtburchagi.

Bortidagi asboblar Mars Odisseya tuproqning yuqori metrini o'rganishga qodir. 2002 yilda, agar barcha tuproq sathlari bir tekis suv qatlami bilan qoplansa, bu 0,5-1,5 kilometr (0,31-0,93 milya) global suv sathiga (GLW) to'g'ri keladi, deb hisoblash uchun mavjud ma'lumotlar ishlatilgan.[314]

Minglab tasvirlar qaytib keldi Odisseya orbiter, shuningdek, Marsda bir vaqtlar uning yuzasida katta miqdordagi suv oqib o'tgan degan fikrni qo'llab-quvvatlaydi. Ba'zi rasmlarda dallanadigan vodiylarning naqshlari ko'rsatilgan; boshqalar ko'llar ostida hosil bo'lishi mumkin bo'lgan qatlamlarni ko'rsatadi; hatto daryo va ko'l deltalar aniqlandi.[49][315]Ko'p yillar davomida tadqiqotchilar muzliklar izolyatsion jinslar qatlami ostida mavjud deb gumon qilishgan.[42][58][59] Vodiyni to'ldirish bu tosh bilan qoplangan muzliklarning bir misolidir. Ular ba'zi kanallarning pollarida joylashgan. Ularning yuzalarida to'siqlar atrofida burilib ketadigan qirralar va yivli materiallar mavjud. Chiziqli qavat konlari bilan bog'liq bo'lishi mumkin lobat qoldiqlari uchun apronlar, ularning orbita radarida katta miqdordagi muz borligi ko'rsatilgan.[42][59]

Feniks

Permafrost tomonidan tasvirlangan ko'pburchaklar Feniks qo'nish.

The Feniks lander shuningdek, Marsning shimoliy mintaqasida katta miqdordagi suv muzlari mavjudligini tasdiqladi.[316][317] Ushbu topilma oldingi orbital ma'lumotlar va nazariya tomonidan taxmin qilingan,[318] va Mars Odisseyasi asboblari yordamida orbitadan o'lchandi.[309] 2008 yil 19-iyun kuni NASA robot qo'l bilan qazilgan "Dodo-Goldilocks" xandaqidagi zar moddasi kattalikdagi yorqin materiallarning to'plari to'rt kun davomida bug'lanib ketganini e'lon qildi va bu yorqin to'plar suvdan iborat ekanligini aniq ko'rsatib berdi. muz bu azizlar ta'sir qilishdan keyin. CO bo'lsa ham2 (quruq muz) mavjud sharoitlarda ham sublimatsiya qiladi, buni kuzatilganidan ancha tezroq bajaradi.[319] 2008 yil 31-iyulda NASA buni e'lon qildi Feniks uning qo'nish joyida suvli muz borligini yana tasdiqladi. Namunani dastlabki isitish tsikli davomida massa spektrometri namuna harorati 0 ° C (32 ° F; 273 K) ga yetganda suv bug'ini aniqladi.[320] Suyuq suv hozirgi qisqa atmosfera bosimi va harorati bilan Mars yuzasida mavjud bo'lolmaydi, faqat qisqa muddatlarda eng past balandliklardan tashqari.[189][190][316][321]

Ning mavjudligi perklorat (ClO4) anion, kuchli oksidlovchi, mars tuprog'ida tasdiqlangan. Ushbu tuz suvni sezilarli darajada pasaytirishi mumkin muzlash nuqtasi.

Ostidagi ko'rinish Feniks qo'nish raketalari ta'siriga tushgan suv muzini ko'rsatadigan qo'nish joyi.

Qachon Feniks tushdi, retrorockets avtoulovga sepilgan tuproq va eritilgan muz.[322] Fotosuratlarda, qo'nish stantsiyalariga yopishgan materiallarning qoldiqlari ko'rsatilgan.[322] Bloblar mos keladigan darajada kengaytirildi taslimlik, yo'qolishdan oldin qoraygan (bilan izchil suyultirish keyin tomchilatib yubordi) va birlashganday bo'ldi. Ushbu kuzatuvlar termodinamik qon tomirlari suyuq bo'lishi mumkinligini ko'rsatuvchi dalillar sho'r suv tomchilar.[322][323] Boshqa tadqiqotchilar blobsalar "donlarning donlari" bo'lishi mumkinligini taxmin qilishdi.[324][325][326] 2015 yilda perkloratning hosil bo'lishida rol o'ynashi tasdiqlandi takrorlanadigan nishab chiziqlari tikda jarliklar.[7][327]

Taxminan kamerada ko'rinib turibdiki, qo'nish joyi tekis, ammo diametri 2-3 metr (6 fut 7 dyuym - 9 fut 10 dyuym) oralig'ida, ular 20-50 santimetrlik oluklar bilan chegaralangan ko'pburchak shaklida shakllangan ( 7.9-19.7 in) chuqurlikda. Ushbu shakllar tuproqdagi muzning kengayishi va katta harorat o'zgarishi tufayli qisqarishi bilan bog'liq. Mikroskop shuni ko'rsatdiki, ko'pburchaklar ustidagi tuproq yumaloq zarrachalardan va yassi zarralardan iborat bo'lib, ehtimol loyning bir turi.[328] Muz ko'pburchaklarning o'rtasida sirtdan bir necha dyuym pastda joylashgan bo'lib, uning chekkalari bo'ylab muz kamida 200 dyuym (200 mm) chuqurlikda joylashgan.[321]

Siroz bulutlaridan qor tushishi kuzatildi. Bulutlar atmosferada -65 ° C (-85 ° F; 208 K) atrofida bo'lgan darajada hosil bo'lgan, shuning uchun bulutlar karbonat angidrid-muz (CO) emas, balki suv-muzdan iborat bo'lishi kerak edi.2 yoki quruq muz), chunki karbonat angidrid muzini hosil qilish harorati -120 ° C (-184 ° F; 153 K) dan ancha past. Missiyani kuzatish natijasida, endi bu joyda suv muzlari (qor) yil oxirida to'planib qolgan bo'lishi mumkin deb taxmin qilinmoqda.[329] Mars yozida sodir bo'lgan missiya davomida o'lchangan eng yuqori harorat -19,6 ° C (-3,3 ° F; 253,6 K), eng sovuq esa -97,7 ° C (-143,9 ° F; 175,5 K). Shunday qilib, bu mintaqada harorat suvning muzlash nuqtasidan (0 ° C (32 ° F; 273 K)) ancha pastda qoldi.[330]

Mars Exploration Rovers

Yaqin atrofdagi toshlar.
Hammasi bir-biriga parallel bo'lmagan ingichka tosh qatlamlari.
Gematit sferulalar.
Qisman ko'milgan sferulalar.

The Mars Exploration Rovers, Ruh va Imkoniyat Marsda o'tgan suv uchun juda ko'p dalillarni topdi. The Spirit Rover katta ko'l to'shagi deb o'ylangan joyga tushdi. Ko'l tubi lava oqimlari bilan qoplangan edi, shuning uchun avval o'tgan suv haqidagi dalillarni aniqlash qiyin edi. 2004 yil 5 martda NASA buni e'lon qildi Ruh Marsda "Xamfri" deb nomlangan toshdan suv tarixining ko'rsatmalarini topgan edi.[331]

Sifatida Ruh 2007 yil dekabrida teskari yo'nalishda harakatlanib, qo'lga olingan g'ildirakni orqasiga tortib, g'ildirak tuproqning yuqori qatlamini qirib tashladi va boy oq tuproqni topdi kremniy. Olimlarning fikriga ko'ra, u ikkita usuldan biri bilan ishlab chiqarilgan bo'lishi kerak.[332] Biri: issiq Bahor suv kremniyni bir joyda eritib, keyin uni boshqa joyga olib borishda hosil bo'lgan konlar (ya'ni a geyzer). Ikki: toshlardagi yoriqlar orqali ko'tarilgan kislotali bug 'ularni mineral tarkibiy qismlaridan tozalab, kremniyni ortda qoldirdi.[333] The Ruh rover shuningdek, Gusev kraterining Kolumbiya tepaligida suv borligiga oid dalillarni topdi. Klovis tog 'jinslarida Messsbauer spektrometri (MB) aniqlandi goetit,[334] faqat suv borligida hosil bo'lgan,[335][336][337] oksidlangan Fe tarkibidagi temir3+,[338] karbonat- boy jinslar, bu sayyoramiz mintaqalarida bir vaqtlar suv saqlanganligini anglatadi.[339][340]

The Imkoniyat rover ko'p miqdorda namoyish etilgan saytga yo'naltirildi gematit orbitadan. Gematit ko'pincha suvdan hosil bo'ladi. Rover chindan ham qatlamli toshlar va marmar yoki ko'kga o'xshash gematitni topdi konkretsiyalar. Shpalning boshqa joyida, Imkoniyat tergov qilingan aeolian dune stratigrafiya Berns Cliff-da Chidamlilik krateri. Uning operatorlari ushbu chiqindilarning saqlanib qolishi va tsementlanishi er osti sayoz suvlari oqimi bilan boshqarilgan degan xulosaga kelishdi.[159] Uzluksiz ishlash yillarida, Imkoniyat Marsdagi bu hudud ilgari suyuq suvga botganiga oid dalillarni qaytarib yubordi.[341][342]

MER roverlari juda kislotali bo'lgan qadimgi nam muhit uchun dalillarni topdilar. Aslida, nima Imkoniyat dalillarini topdi sulfat kislota, hayot uchun qattiq kimyoviy moddalar.[43][44][343][344] Ammo 2013 yil 17-may kuni NASA buni e'lon qildi Imkoniyat topildi gil odatda neytralga yaqin bo'lgan nam muhitda hosil bo'lgan konlar kislota. Ushbu topilma ho'l qadimiy muhit haqida qo'shimcha dalillar keltiradi hayot.[43][44]

Mars razvedka orbiteri

Buloqlar Vernal krater, ko'rinib turganidek HIRISE. Ushbu buloqlar o'tmishdagi hayot dalillarini izlash uchun yaxshi joy bo'lishi mumkin, chunki issiq buloqlar uzoq vaqt davomida hayot shakllarini saqlab qolishi mumkin. Manzil: Oxia Palus to'rtburchagi.

The Mars razvedka orbiteri"s Salom asbob Marsning suv bilan bog'liq jarayonlarning boy tarixiga ega bo'lganligini tasdiqlovchi ko'plab rasmlarni oldi. Katta kashfiyot qadimgi dalillarni topish edi issiq buloqlar. Agar ular mikrobial hayotni o'tkazgan bo'lsa, ular o'z ichiga olishi mumkin biosignature.[345] 2010 yil yanvar oyida chop etilgan tadqiqotlar atrofdagi hududda yog'ingarchilikning barqarorligini aniq ko'rsatib berdi Valles Marineris.[129][130] U erdagi minerallarning turlari suv bilan bog'liq. Shuningdek, kichik tarmoqlangan kanallarning zichligi yog'ingarchilikning ko'pligini ko'rsatadi.

Marsdagi toshlar ko'pincha turli joylarda qatlamlar deb ataladigan qatlamlar sifatida tez-tez uchraydi.[346] Qatlamlar turli xil usullar bilan, jumladan, vulqonlar, shamol yoki suv bilan hosil bo'ladi.[347] Marsdagi engil tonnali jinslar bilan bog'langan gidratlangan minerallar sulfatlar va gil kabi.[348]

Asimov kraterining g'arbiy yonbag'ridagi qatlamlar. Manzil: Noachis to'rtburchagi.

Orbiter olimlarga Mars sirtining katta qismini muz va chang aralashmasi deb o'ylangan qalin silliq mantiya bilan qoplaganligini aniqlashga yordam berdi.[245][349][350]

Sayoz er osti ostidagi muzli mantiya iqlimning tez-tez, katta o'zgarishidan kelib chiqadi deb o'ylashadi. Mars orbitasi va burilishining o'zgarishi suv muzining qutbli mintaqalardan Texasga teng bo'lgan kenglikgacha tarqalishida sezilarli o'zgarishlarni keltirib chiqaradi. Muayyan iqlim davrida suv bug'lari qutbli muzdan chiqib, atmosferaga kiradi. Suv quyi kengliklarda erga qaytib, sovuq va qorning changlari bilan mo'l-ko'l aralashgan. Mars atmosferasida juda ko'p mayda chang zarralari mavjud.[192] Suv bug'lari zarrachalarda quyuqlashadi, so'ngra suv qoplamasining qo'shimcha og'irligi tufayli ular erga tushadi. Mantiya qatlamining yuqori qismidagi muz atmosferaga qaytib tushganda, orqada chang qoladi, bu esa qolgan muzni izolyatsiya qiladi.[285]

2008 yilda Mars Reconnaissance Orbiter-dagi Sayoz Radar bilan olib borilgan tadqiqotlar kuchli dalillarni keltirdi lobat qoldiqlari uchun apronlar (LDA) in Hellas Planitia va shimoliy kengliklarning o'rtalarida muzliklar yupqa jinslar qatlami bilan qoplangan. Uning radarida LDA larning tepa va pastki qismidan kuchli aks etish aniqlandi, ya'ni qatlamning asosiy qismini toza suv muzlari tashkil etdi.[42] LDA larda suv muzining topilishi shundan dalolat beradiki, suv hatto pastki kengliklarda ham mavjud.[233]

2009 yil sentyabr oyida nashr etilgan tadqiqotlar shuni ko'rsatdiki, Marsdagi ba'zi yangi kraterlar ochiq suvli muzlarni namoyish etmoqda.[351] Biroz vaqt o'tgach, muz yo'qolib, atmosferaga bug'lanadi. Muzning atigi bir necha metr chuqurligi bor. Muz Mars Reconnaissance Orbiter bortida ixcham tasvirlash spektrometri (CRISM) bilan tasdiqlangan.[352]

2019 yilda chop etilgan qo'shimcha hisobotlarda shimoliy qutbda joylashgan suv muzlari miqdori baholandi. Bitta hisobotda MRO ma'lumotlari ishlatilgan SHARAD (SHAllow RADar sounder) zondlari. SHARAD sirtdan taxminan 2 kilometr (1,2 milya) gacha 15 metr (49 fut) oraliqda skanerlash imkoniyatiga ega. O'tgan SHARAD yugurishlarining tahlili shuni ko'rsatdiki, suv ostidagi muz va qum qatlamlari quyida joylashgan Planum Boreum, hajmning 60% dan 88% gacha suv muzidir. Bu Marsning global isishi va sovishi davrlaridan iborat uzoq muddatli global ob-havo nazariyasini qo'llab-quvvatlaydi; sovutish davrlarida suv qutblarga yig'ilib muz qatlamlarini hosil qildi, so'ngra global isish sodir bo'lganda, eritilmagan suv muzlari Marsning tez-tez uchraydigan chang bo'ronlaridan chang va axloqsizlik bilan qoplandi. Ushbu tadqiqot natijasida aniqlangan muzning umumiy hajmi taxminan 2,2 ekanligini ko'rsatdi×105 kub kilometr (5.3×104 cu mi) yoki suv eritilgan bo'lsa, Mars sathini 1,5 metr (4,9 fut) suv qatlami bilan to'liq qoplashi mumkin.[353] Ishni Planum Boreum zichligini baholash uchun tortishish ma'lumotlari yozib olingan, o'rtacha hisobda suv muzining 55% gacha bo'lganligini ko'rsatuvchi alohida tortishish ma'lumotlari ishlatilgan.[354]

Ga o'xshash ko'plab xususiyatlar pingolar Yerda Utopia Planitia (~ 35-50 ° N; ~ 80-115 ° E) da HiRISE fotosuratlarini o'rganish orqali topilgan. Pingoslarda muzning yadrosi mavjud.[355]

Qiziqish rover

"Xotta" tog 'jinslari - qadimiy oqim tomonidan kashf etilgan Qiziqish rover jamoa (2012 yil 14 sentyabr) (Rasmni yaqinlashtirib olish) (3-o'lchovli versiya).
Tosh toshlari Marsda - quruqlik bilan taqqoslaganda flyuvial konglomerat - oqimda "shiddat bilan" oqayotgan suvni taklif qilish.[138][139][140]

O'zining doimiy missiyasini juda erta boshlash, NASA"s Qiziqish rover so'zsiz aniqlandi flüvial Marsdagi cho'kindi jinslar Ushbu toshlardagi toshlarning xususiyatlari ilgari oyoq Bilagi zo'r va belgacha chuqurlikdagi oqimni taklif qildi. Ushbu toshlar an. Etagidan topilgan allyuvial fan ilgari orbitadan aniqlangan krater devoridan tushayotgan tizim.[138][139][140]

2012 yil oktyabr oyida birinchi Rentgen difraksiyasini tahlil qilish a Mars tuprog'i tomonidan ijro etilgan Qiziqish. Natijalar, shu jumladan bir nechta minerallarning mavjudligini aniqladi dala shpati, piroksenlar va olivinva namunadagi Mars tuprog'ining ob-havoning bazalt tuproqlariga o'xshashligini taxmin qildi Gavayi vulqonlari. Amaldagi namuna, tarqatilgan changdan iborat global chang bo'ronlari va mahalliy mayda qum. Hozircha materiallar Qiziqish tahlillari depozitlarning dastlabki g'oyalariga mos keladi Geyl krateri nam va quruq muhitdan vaqt o'tishi bilan o'tishni qayd etish.[356]

2012 yil dekabr oyida NASA bu haqda xabar berdi Qiziqish o'zining birinchi keng doirasini ijro etdi tuproqni tahlil qilish, suv molekulalarining mavjudligini aniqlab, oltingugurt va xlor ichida Mars tuprog'i.[357][358] Va 2013 yil mart oyida NASA dalillarni e'lon qildi mineral gidratatsiya, ehtimol hidratlangan kaltsiy sulfat, bir nechtasida tosh namunalari ning singan qismlari "Tintina" toshi va "Satton Inlier" qoyasi kabi tomirlar va tugunlar kabi boshqa jinslarda "Norr" toshi va "Wernicke" qoyasi.[359][360][361] Rover yordamida tahlil qilish DAN vositasi 4 foiz suv miqdorida, 60 sm (2,0 fut) chuqurlikgacha bo'lgan, er osti suvlarining rover shpalida Bredberi Landing saytga Yellounayf ko'rfazi maydoni Glenelg relyef.[359]

2013 yil 26 sentyabrda NASA olimlari bu haqda xabar berishdi Mars Qiziqish rover ko'plab kimyoviy bog'langan suvni (1,5 dan 3 foizgacha) aniqladi tuproq namunalari da Roknest mintaqasi ning Aeolis Palus yilda Geyl krateri.[362][363][364][365][366][367] Bundan tashqari, NASA roverda ikkita asosiy tuproq turi topilganligi haqida xabar berilgan: mayda donali mafiya turi va mahalliy ishlab chiqarilgan, qo'pol donali felsik turi.[364][366][368] Mafik turi, boshqasiga o'xshash mars tuproqlari va mars changlari, tuproqning amorf fazalarini gidratlashi bilan bog'liq edi.[368] Shuningdek, perkloratlar, ularning mavjudligi hayotga bog'liqligini aniqlashi mumkin organik molekulalar qiyin, topilgan Qiziqish rover qo'nish joyi (va undan oldinroq qutb maydonchasida) Feniks qo'nuvchisi) "ushbu tuzlarning global tarqalishini" taklif qilish.[367] NASA ham bu haqda xabar berdi Jeyk M toshi, duch kelgan tosh Qiziqish yo'lda Glenelg, edi a mugearit va quruqlikdagi mugearit jinslariga juda o'xshash.[369]

2013 yil 9-dekabrda NASA Marsda bir vaqtlar katta bo'lganini xabar qildi chuchuk suvli ko'l ichida Geyl krateri,[35][36] bu uchun mehmondo'st muhit bo'lishi mumkin edi mikrobial hayot.

2014 yil 16-dekabrda NASA miqdori noodatiy o'sish, keyin kamayish aniqlanganligini xabar qildi metan ichida atmosfera sayyoramizning Mars; bunga qo'chimcha, organik kimyoviy moddalar a dan burg'ilangan kukunda aniqlangan tosh tomonidan Qiziqish rover. Shuningdek, asoslangan deyteriy ga vodorod nisbati bo'yicha tadqiqotlar, suvning katta qismi Geyl krateri Marsda qadimgi davrlarda, kraterdagi ko'l yotqizig'i shakllanmasdan oldin yo'qolganligi aniqlandi; keyinchalik katta miqdordagi suv yo'qolib ketishda davom etdi.[370][371][372]

2015 yil 13 aprelda, Tabiat tomonidan to'plangan namlik va er harorati ma'lumotlarini tahlilini nashr etdi Qiziqish, tunda Mars er osti qatlamining yuqori 5 sm qismida suyuq sho'r suv plyonkalari paydo bo'lishining dalillarini ko'rsatmoqda. Suvning faolligi va harorati ko'payish talablaridan past bo'lib qoladi metabolizm ma'lum quruqlikdagi mikroorganizmlar.[6][373]

2015 yil 8 oktyabrda NASA ko'llar va soylar mavjudligini tasdiqladi Gale krateri 3.3 - 3.8 milliard yil oldin quyi qatlamlarni hosil qilish uchun cho'kindi jinslarni etkazib bergan Sharp tog'i.[374][375]

2018 yil 4-noyabr kuni geologlar tadqiqotlarga asoslangan dalillarni taqdim etdilar Geyl krateri tomonidan Qiziqish rover, juda ko'p edi suv erta Mars.[376][377]

Mars Express

The Mars Express Orbitertomonidan ishga tushirilgan Evropa kosmik agentligi, Mars sirtini xaritalash va radar uskunalari yordamida er osti suvlari dalillarini izlash bilan shug'ullanmoqda. 2012 yildan 2015 yilgacha Orbiter muz qatlamlari ostidagi joyni skanerladi Planum Avstraliya. Olimlar 2018 yilga kelib o'qishlar 20 km (12 milya) kenglikdagi suv osti ko'lini ko'rsatganligini aniqladilar. Ko'lning tepasi sayyora yuzasi ostida 1,5 kilometr (0,93 milya) joylashgan; suyuq suv qanchalik chuqurroq cho'zilganligi noma'lum bo'lib qolmoqda.[378][379]

Interaktiv xarita

Acheron FossaeAcidalia PlanitiaAlba MonsAmazonis PlanitiaAonia PlanitiaArabistoni TerraArcadia PlanitiaArgentea PlanumArgyre PlanitiaChryse PlanitiaClaritas FossaeCydonia MensaeDaedalia PlanumElysium MonsElysium PlanitiaGale krateriHadriaka PateraHellas MontesHellas PlanitiaHesperia PlanumXolden krateriIcaria PlanumIsidis PlanitiaJezero krateriLomonosov krateriLucus PlanumLycus SulciLyot krateriLunae PlanumMalea PlanumMaraldi krateriMareotis FossaeMareotis TempeMargaritifer TerraMie krateriMilankovich krateriNepenthes MensaeNereidum MontesNilosyrtis MensaeNoachis TerraOlympica FossaeOlympus MonsPlanum AvstraliyaPrometey TerraProtonilus MensaeSirenSizifiy PlanumSolis PlanumSuriya PlanumTantalus FossaeTempe TerraTerra KimmeriyaTerra SabaeaTerra sirenumTarsis MontesTraktus katenasiTyrhen TerraUliss PateraUranius PateraUtopiya PlanitiaValles MarinerisVastitas BorealisXanthe TerraMars xaritasi
Yuqoridagi rasmda bosish mumkin bo'lgan havolalar mavjudInteraktiv tasvir xaritasi ning Marsning global topografiyasi. Hover sichqonchangiz 60 dan ortiq taniqli geografik ob'ektlarning nomlarini ko'rish uchun rasm ustiga bosing va ularga bog'lanish uchun bosing. Asosiy xaritaning ranglanishi nisbiyligini bildiradi balandliklar, ma'lumotlar asosida Mars Orbiter Laser Altimeter NASA-da Mars Global Surveyor. Oq va jigarrang ranglar eng baland balandlikni bildiradi (+12 dan +8 km gacha); keyin pushti va qizil ranglar (+8 dan +3 km gacha); sariq rang 0 km; ko'katlar va ko'klar balandliklar (pastga qarab) −8 km). O'qlar bor kenglik va uzunlik; Qutbiy mintaqalar qayd etilgan.


Shuningdek qarang

Adabiyotlar

  1. ^ Torbet, Jorjina (2019 yil 12-dekabr). "NASA Mars sathidan" suv muzini "topdi - muzga belkurak bilan etib borish mumkin, deydi mutaxassislar". Engadget. Olingan 12 dekabr, 2019.
  2. ^ a b v Xodimlar (2016 yil 22-noyabr). "Qisqichbaqasimon relyef Marsda ko'milgan muzni topishga olib keldi". NASA. Olingan 23-noyabr, 2016.
  3. ^ a b v "Marsda topilgan Nyu-Meksiko kattaligidagi muzlatilgan suv ko'li - NASA". Ro'yxatdan o'tish. 2016 yil 22-noyabr. Olingan 23-noyabr, 2016.
  4. ^ a b v "Mars muz koni Superior ko'li singari suvga ega". NASA. 2016 yil 22-noyabr. Olingan 23-noyabr, 2016.
  5. ^ Yakoski, B.M .; Haberle, R.M. (1992). "Marsda suvning mavsumiy harakati". Kiefferda, H.H.; va boshq. (tahr.). Mars. Tukson, AZ: Arizona universiteti matbuoti. 969-1016 betlar.
  6. ^ a b Martin-Torres, F. Xaver; Zorzano, Mariya-Paz; Valentin-Serrano, Patrisiya; Harri, Ari-Matti; Genzer, Mariya (2015 yil 13 aprel). "Vaqtinchalik suyuq suv va Marsdagi Geyl krateridagi suv faolligi". Tabiatshunoslik. 8 (5): 357–361. Bibcode:2015NatGe ... 8..357M. doi:10.1038 / ngeo2412.
  7. ^ a b v d Ojha, L .; Vilgelm, M. B.; Murchie, S. L.; Makeven, A. S.; Ray, J. J .; Xenli, J .; Masse, M.; Chojnacki, M. (2015). "Marsda takrorlanadigan qiya chiziqlarda gidratlangan tuzlarning spektral dalillari". Tabiatshunoslik. 8 (11): 829–832. Bibcode:2015NatGe ... 8..829O. doi:10.1038 / ngeo2546. S2CID 59152931.
  8. ^ Marslik takrorlanadigan yo'llar: Oqim qum, suv emasmi?, Nasa.org 2017-11-20
  9. ^ Karr, M.H. (1996). Marsdagi suv. Nyu-York: Oksford universiteti matbuoti. p. 197.
  10. ^ Bibring, J.-P .; Langevin, Iv; Poulet, Fransua; Gendrin, Alin; Gondet, Brigit; Berthe, Mishel; Suflot, Alen; Drossart, Per; Kombilar, Mishel; Belluchchi, Giankarlo; Moroz, Vassili; Mangold, Nikolas; Shmitt, Bernard; Omega jamoasi; Erard, S .; Forni, O .; Manaud, N .; Polo, G.; Enkrenaz, T .; Fuchet T.; Melchiorri, R .; Altieri, F .; Formisano, V .; Bonello, G.; Fonti, S .; Capaccioni, F.; Cerroni, P .; Koradini, A .; Kottsov, V .; va boshq. (2004). "Marsning janubiy qutb qopqog'ida aniqlangan ko'p yillik suv muzi". Tabiat. 428 (6983): 627–630. Bibcode:2004 yil natur.428..627B. doi:10.1038 / nature02461. PMID 15024393. S2CID 4373206.
  11. ^ Pradeep, Talappil; Kumar, Rajnish; Choudari, Nilesh; Ragupatiya, Gopi; Bxayn, Radxa Gobinda; Metikkalam, Rabin Rajan J.; Ghosh, Jyotirmoy (2019 yil 29-yanvar). "Klatrat gidratlari yulduzlararo muhitda". Milliy fanlar akademiyasi materiallari. 116 (5): 1526–1531. doi:10.1073 / pnas.1814293116. ISSN 0027-8424. PMC 6358667. PMID 30630945.
  12. ^ "Marsning janubiy qutbidagi suv". Evropa kosmik agentligi (ESA). 2004 yil 17 mart.
  13. ^ a b Christensen, P. R. (2006). "Suv qutblarda va Marsning abadiy muzli mintaqalarida". Elementlar. 3 (2): 151–155. doi:10.2113 / gselements.2.3.151.
  14. ^ Karr, 2006, p. 173.
  15. ^ a b Vebster, Yigit; Braun, Dueyn (2013 yil 10-dekabr). "NASA Mars kosmik kemasi yanada dinamik qizil sayyorani ochdi". NASA.
  16. ^ "Marsdagi muz va tuzdan suyuq suv". Geofizik tadqiqotlar xatlari. NASA astrobiologiyasi. 2014 yil 3-iyul. Arxivlangan asl nusxasi 2014 yil 14 avgustda. Olingan 13 avgust, 2014.
  17. ^ Pollack, JB (1979). "Yerdagi sayyoralardagi iqlim o'zgarishi". Ikar. 37 (3): 479–553. Bibcode:1979 Avtomobil ... 37..479P. doi:10.1016/0019-1035(79)90012-5.
  18. ^ Pollack, JB .; Kasting, J.F .; Richardson, SM; Poliakoff, K. (1987). "Erta Marsda nam, iliq iqlim uchun ish". Ikar. 71 (2): 203–224. Bibcode:1987 Avtomobil ... 71..203P. doi:10.1016/0019-1035(87)90147-3. hdl:2060/19870013977. PMID 11539035.
  19. ^ Fairen, A. G. (2010). "Sovuq va nam Mars Mars". Ikar. 208 (1): 165–175. Bibcode:2010 yil avtoulov..208..165F. doi:10.1016 / j.icarus.2010.01.006.
  20. ^ Fairen, A. G.; va boshq. (2009). "Marsning boshida suvli eritmalarning muzlashiga qarshi barqarorlik". Tabiat. 459 (7245): 401–404. Bibcode:2009 yil natur.459..401F. doi:10.1038 / nature07978. PMID 19458717. S2CID 205216655.
  21. ^ "relizlar / 2015/03/150305140447". scancedaily.com. Olingan 25 may, 2015.
  22. ^ Villanueva, G.; Mumma, M.; Novak, R .; Käufl, H .; Xartog, P.; Enkrenaz, T .; Tokunaga, A .; Xayot, A .; Smit, M. (2015). "Mars atmosferasidagi kuchli suv izotopik anomaliyalari: hozirgi va qadimiy suv omborlarini tekshirish". Ilm-fan. 348 (6231): 218–221. Bibcode:2015 yilgi ... 348..218V. doi:10.1126 / science.aaa3630. PMID 25745065. S2CID 206633960.
  23. ^ a b v Beyker, V.R .; Strom, RG .; Gulik, VC.; Kargel, J.S .; Komatsu, G.; Kale, V.S. (1991). "Qadimgi okeanlar, muz qatlamlari va Marsdagi gidrologik tsikl". Tabiat. 352 (6348): 589–594. Bibcode:1991 yil natur.352..589B. doi:10.1038 / 352589a0. S2CID 4321529.
  24. ^ Salese, F .; Ansan, V .; Mangold, N .; Karter, J .; Anouk, O .; Poulet, F.; Ori, G.G. (2016). "Ellada havzasidan shimolda joylashgan interteralararo tekisliklar uchun cho'kindi kelib chiqishi: Marsning boshlarida iqlim sharoiti va eroziya tezligiga ta'siri" (PDF). Geofizik tadqiqotlar jurnali: Sayyoralar. 121 (11): 2239–2267. Bibcode:2016JGRE..121.2239S. doi:10.1002 / 2016JE005039.
  25. ^ Parker, T.J .; Sonders, R.S .; Shneeberger, D.M. (1989). "G'arbiy Deuteronilus Mensae, Marsda o'tish davri morfologiyasi: pasttekislik / balandlik chegarasini o'zgartirish uchun ta'siri". Ikar. 82 (1): 111–145. Bibcode:1989 yil avtoulov ... 82..111P. doi:10.1016/0019-1035(89)90027-4.
  26. ^ Dohm, JM .; Beyker, Viktor R.; Boynton, Uilyam V.; Feyn, Alberto G.; Ferris, Jastin S.; Finch, Maykl; Furfaro, Roberto; Xare, Trent M.; Jeyn, Daniel M.; Kargel, Jefri S.; Karunatillake, Suniti; Keller, Jon; Kerri, Kris; Kim, Kyeong J .; Komatsu, Goro; Mahaney, Uilyam S.; Shulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruis, Xaver; Wheelock, Shawn J. (2009). "GRS dalillari va Marsda paleooceans imkoniyatlari" (PDF). Sayyora va kosmik fan. 57 (5–6): 664–684. Bibcode:2009P & SS ... 57..664D. doi:10.1016 / j.pss.2008.10.008.
  27. ^ "PSRD: Qadimgi toshqin suvlari va Marsdagi dengizlar". Psrd.hawaii.edu. 2003 yil 16-iyul.
  28. ^ "Gamma-ray dalillari qadimgi Marsda okeanlar bo'lganligini ko'rsatmoqda". SpaceRef. 2008 yil 17-noyabr.
  29. ^ Klifford, SM; Parker, T.J. (2001). "Mars gidrosferasining evolyutsiyasi: ibtidoiy okean taqdiri va shimoliy tekisliklarning hozirgi holati uchun ta'siri". Ikar. 154 (1): 40–79. Bibcode:2001 yil avtoulov..154 ... 40C. doi:10.1006 / icar.2001.6671. S2CID 13694518.
  30. ^ a b v Di Axil, Gaetano; Hynek, Brian M. (2010). "Delta va vodiylarning global tarqalishi bilan qo'llab-quvvatlanadigan Marsdagi qadimiy okean". Tabiatshunoslik. 3 (7): 459–463. Bibcode:2010 yil NatGe ... 3..459D. doi:10.1038 / ngeo891.
  31. ^ a b v "Qadimgi okean Marsning uchdan bir qismini qoplagan bo'lishi mumkin". Scainedaily.com. 2010 yil 14 iyun.
  32. ^ Karr, 2006, 144–147 betlar.
  33. ^ Fassett, C. I .; Dikson, Jeyms L.; Boshliq, Jeyms V.; Levi, Jozef S.; Marchant, Devid R. (2010). "Amazoniya Marsidagi Supraglacial va Proglacial vodiylari". Ikar. 208 (1): 86–100. Bibcode:2010 yil avtoulov ... 208 ... 86F. doi:10.1016 / j.icarus.2010.02.021.
  34. ^ "Flashback: Marsdagi suv 10 yil oldin e'lon qilindi". SPACE.com. 2000 yil 22-iyun.
  35. ^ a b Chang, Kennet (2013 yil 9-dekabr). "Marsda, qadimiy ko'l va ehtimol hayot". Nyu-York Tayms.
  36. ^ a b Turli xil (2013 yil 9-dekabr). "Ilm-fan - Maxsus to'plam - Marsdagi qiziquvchanlik". Ilm-fan.
  37. ^ Fairen, A. G.; va boshq. (2014). "Geyl krateridagi sovuq gidrologik tizim, Mars". Sayyora va kosmik fan. 93: 101–118. Bibcode:2014P & SS ... 93..101F. doi:10.1016 / j.pss.2014.03.002.
  38. ^ a b Parker, T .; Klifford, S. M.; Banerdt, W. B. (2000). "Argyre Planitia va Mars global gidrologik tsikli" (PDF). Oy va sayyora fanlari. XXXI: 2033. Bibcode:2000LPI .... 31.2033P.
  39. ^ a b Xayzayzer, X .; Boshliq, J. (2002). "Argir havzasining topografiyasi va morfologiyasi, Mars: uning geologik va gidrologik tarixi uchun ta'siri". Sayyora. Space Sci. 50 (10–11): 939–981. Bibcode:2002P & SS ... 50..939H. doi:10.1016 / S0032-0633 (02) 00054-5.
  40. ^ Soderblom, LA (1992). Kifffer, X.H .; va boshq. (tahr.). Mars sirtining tarkibi va mineralogiyasi spektroskopik kuzatuvlardan - 0,3 mikrondan 50 mikrongacha. Tukson, AZ: Arizona universiteti matbuoti. pp.557–593. ISBN 978-0-8165-1257-7.
  41. ^ Glotch, T .; Christensen, P. (2005). "Aram Xaosning geologik va mineralogik xaritasi: suvga boy tarixga dalil". J. Geofiz. Res. 110 (E9): E09006. Bibcode:2005JGRE..110.9006G. doi:10.1029 / 2004JE002389. S2CID 53489327.
  42. ^ a b v d e f g Xolt, J. V.; Safaeinili, A .; Plaut, J. J .; Yosh, D. A .; Boshliq J. V .; Fillips, R. J .; Kempbell, B. A .; Karter, L. M .; Gim, Y .; Seu, R .; Jamoa, Sharad (2008). "Marsning O'rta-Janubiy kengliklari, Ellada havzasi yaqinidagi Lobat qoldiqlari apronlari ichidagi muzning radarli dalillari" (PDF). Oy va sayyora fanlari. XXXIX (1391): 2441. Bibcode:2008LPI .... 39.2441H.
  43. ^ a b v Amos, Jonatan (2013 yil 10-iyun). "Old Opportunity Mars rover kashfiyot qildi". BBC yangiliklari.
  44. ^ a b v "Mars Rover Opportunity rock-dagi gil kleylarni tekshiradi". Reaktiv harakatlanish laboratoriyasi, NASA. 2013 yil 17-may.
  45. ^ a b v "Ulkan Mars toshqinlariga olib keladigan global emas, mintaqaviy jarayonlar". Sayyora ilmiy instituti. SpaceRef. 2015 yil 11 sentyabr. Olingan 12 sentyabr, 2015.
  46. ^ Xarrison, K; Grimm, R. (2005). "Er osti suvlari bilan boshqariladigan vodiy tarmoqlari va Mars boshida er usti suv oqimining pasayishi". Geofizik tadqiqotlar jurnali. 110 (E12): E12S16. Bibcode:2005 yil JGRE..11012S16H. doi:10.1029 / 2005JE002455. S2CID 7755332.
  47. ^ Xovard, A .; Mur, Jefri M.; Irvin, Rossman P. (2005). "Marsning boshlarida keng tarqalgan fluvial faollikning intensiv terminal davri: 1. Vodiy tarmog'ining kesilishi va u bilan bog'liq konlar". Geofizik tadqiqotlar jurnali. 110 (E12): E12S14. Bibcode:2005 yil JGRE..11012S14H. doi:10.1029 / 2005JE002459. S2CID 14890033.
  48. ^ Salese, F .; Di Axil, G.; Nisemann, A .; Ori, G. G .; Hauber, E. (2016). "Moa Valles, Marsda yaxshi saqlanib qolgan paleoflyuvial-paleolakustrin tizimlarining gidrologik va cho'kindi tahlillari". J. Geofiz. Res. Sayyoralar. 121 (2): 194–232. Bibcode:2016JGRE..121..194S. doi:10.1002 / 2015JE004891.
  49. ^ a b v d Irvin, Rossman P.; Xovard, Alan D.; Kreddok, Robert A.; Mur, Jeffri M. (2005). "Marsning boshlarida keng tarqalgan flyuzial faollikning intensiv terminal davri: 2. Oqim va paleolake rivojlanishining ko'payishi". Geofizik tadqiqotlar jurnali. 110 (E12): E12S15. Bibcode:2005 yil JGRE..11012S15I. doi:10.1029 / 2005JE002460.
  50. ^ a b Fassett, C .; Boshliq, III (2008). "Vodiydagi tarmoq orqali oziqlanadigan, Marsdagi ochiq havzali ko'llar: tarqalishi va No'xiy yuzasi va er osti gidrologiyasi uchun ta'siri". Ikar. 198 (1): 37–56. Bibcode:2008 yil avtoulov..198 ... 37F. doi:10.1016 / j.icarus.2008.06.016.
  51. ^ a b Mur, J .; Wilhelms, D. (2001). "Ellada Marsdagi qadimgi muz bilan qoplangan ko'llarning mumkin bo'lgan joyi sifatida" (PDF). Ikar. 154 (2): 258–276. Bibcode:2001 yil avtomobil..154..258 million. doi:10.1006 / icar.2001.6736. hdl:2060/20020050249.
  52. ^ a b Vayts, S .; Parker, T. (2000). "Valles Marineris ichki qatlamlari doimiy suv havzalarida hosil bo'lganligining yangi dalillari" (PDF). Oy va sayyora fanlari. XXXI: 1693. Bibcode:2000LPI .... 31.1693W.
  53. ^ "Qadimgi Mars namlangan yangi alomatlar". Space.com. 2008 yil 28 oktyabr.
  54. ^ Squires, S.W .; va boshq. (1992). "Mars regolitidagi muz". Kiefferda, H.H. (tahrir). Mars. Tukson, AZ: Arizona universiteti matbuoti. pp.523–554. ISBN 978-0-8165-1257-7.
  55. ^ a b Boshliq J.; Marchant, D. (2006). "Shimoliy Arabiston Terrasida (24 E, 39 N) shimoliy o'rta kenglikdagi Marsdagi Amazoniya muzlik davridagi No'xiya kraterining devorlari modifikatsiyalari: Lobat qoldiqlari apronlarining tabiati va evolyutsiyasi va ularning chiziqli vodiy to'ldirish va muzlik tizimlari bilan aloqasi (mavhum) ) ". Oy sayyorasi. Ilmiy ish. 37: 1128.
  56. ^ Boshliq J.; va boshq. (2006). "Agar Marsdagi dixotomiya chegarasi Amazoniyadagi o'rta kenglik mintaqaviy muzlik bilan o'zgarishi bo'lsa". Geofiz. Res. Lett. 33 (8): 33. Bibcode:2006 yilGeoRL..33.8S03H. doi:10.1029 / 2005gl024360. S2CID 9653193.
  57. ^ Boshliq J.; Marchant, D. (2006). "Marsning Amazon davridagi global miqyosdagi shimoliy o'rta kenglik muzliklarining dalillari: 30-50 N kenglik zonasida qoldiqlar bilan qoplangan muzlik va vodiy muzlik yotqiziqlari (referat)". Oy sayyorasi. Ilmiy ish. 37: 1127.
  58. ^ a b v Lyuis, Richard (2008 yil 23 aprel). "Muzliklarda Mars iqlimi yaqinda faol bo'lganligi aniqlandi". Braun universiteti.
  59. ^ a b v d e f g h Plaut, Jefri J.; Safaeinili, Ali; Xolt, Jon V.; Fillips, Rojer J.; Boshliq, Jeyms V.; Seu, Roberto; Puttsig, Nataniel E.; Frigeri, Alessandro (2009). "Marsning O'rta-Shimoliy kengliklarida Lobat qoldiqlari apronlaridagi muzning radarli dalillari" (PDF). Geofizik tadqiqotlar xatlari. 36 (2): n / a. Bibcode:2009 yilGeoRL..3602203P. doi:10.1029 / 2008GL036379.
  60. ^ Uoll, Mayk (2011 yil 25 mart). "Marsda hayot izlovchi Kris Karr bilan savol-javob". Space.com.
  61. ^ a b Dartnell, L.R .; Desorgher; Palata; Coates (2007 yil 30-yanvar). "Sirt va er osti Mars radiatsiyaviy muhitini modellashtirish: astrobiologiyaga ta'siri". Geofizik tadqiqotlar xatlari. 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029 / 2006GL027494. Ionlashtiruvchi nurlanishning hujayra tuzilishiga zararli ta'siri potentsial astrobiologik yashash joylarida hayotni saqlab qolish uchun asosiy cheklovchi omillardan biridir.
  62. ^ a b Dartnell, L. R .; Desorgher, L .; Uord, J. M .; Coates, A. J. (2007). "Marsning sirt osti ionlashtiruvchi nurlanishi: biosignature va geologiya" (PDF). Biogeoscience. 4 (4): 545–558. Bibcode:2007BGeo .... 4..545D. doi:10.5194 / bg-4-545-2007. Ushbu ionlashtiruvchi nurlanish maydoni uxlab yotgan hujayralar yoki sporalarning yashashi va er osti qatlamida molekulyar biomarkerlarning saqlanib qolishi va shuning uchun uning xarakteristikasi uchun zararli hisoblanadi. [..] Hatto sirt ostida 2 metr chuqurlikda ham har qanday mikroblar uxlab qolishi mumkin, hozirgi muzlash sharoitida kriyopreservlangan va shuning uchun metabolik faol emas va sodir bo'layotgan hujayra degradatsiyasini tiklay olmaydi.
  63. ^ a b de Morais, A. (2012). "Mars uchun mumkin bo'lgan biokimyoviy model" (PDF). 43-Oy va sayyora bo'yicha ilmiy konferentsiya (2012). Olingan 5 iyun, 2013. O'sha paytdagi keng vulkanizm, ehtimol, turli qatlamlarda er osti yoriqlari va g'orlarini vujudga keltirgan va suyuq suv bu er osti joylarda saqlanib, sho'rlangan suyuq suv, mineral moddalar organik molekulalari va geotermik issiqlik uchun tarkibiy qismlar bo'lgan katta qatlamlarni hosil qilishi mumkin edi. Yerdagi biz bilgan hayot.
  64. ^ a b Didimus, JonTomas (2013 yil 21 yanvar). "Olimlar Mars osti qatlami hayotni ushlab turishi mumkinligiga oid dalillarni topdilar. Raqamli jurnal - fan. Mars yuzasida hayot bo'lishi mumkin emas, chunki u radiatsiya bilan yuviladi va u butunlay muzlab qoladi. Yer osti hayoti bundan himoyalangan bo'lar edi. - Prof. Parnell.
  65. ^ a b Shtayvervald, Bill (2009 yil 15-yanvar). "Martian metan Qizil sayyora o'lik sayyora emasligini ochib beradi". NASA ning Goddard kosmik parvoz markazi. NASA. Agar mikroskopik marslik hayoti metan hosil qilsa, u sirtdan ancha pastda joylashgan bo'lib, u erda hali ham suyuq suv mavjud bo'lishi uchun etarlicha iliq
  66. ^ a b v d e f Orosei, R .; va boshq. (2018 yil 25-iyul). "Marsda subglasiyali suyuq suvning radiolokatsion dalillari". Ilm-fan. 361 (6401): 490–493. arXiv:2004.04587. Bibcode:2018Sci ... 361..490O. doi:10.1126 / science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385.
  67. ^ Xelton, Meri (25.07.2018). "Marsda suyuq suvli" ko'l "aniqlandi". BBC yangiliklari. Olingan 26 iyul, 2018.
  68. ^ NASA Mars tadqiqot dasturiga umumiy nuqtai. http://www.nasa.gov/mission_pages/mars/overview/index.html.
  69. ^ Lauro, Sebastyan Emanuel; va boshq. (2020 yil 28 sentyabr). "MARSISning yangi ma'lumotlari bilan Marsning janubiy qutbidan pastda joylashgan bir nechta subglasial suv havzalari". Tabiat astronomiyasi. arXiv:2010.00870. Bibcode:2020NatAs.tmp..194L. doi:10.1038 / s41550-020-1200-6. S2CID 222125007. Olingan 29 sentyabr, 2020.
  70. ^ O'Kallagan, Jonatan (2020 yil 28 sentyabr). "Marsdagi suv: uchta ko'milgan ko'lni kashf qilish olimlarni qiziqtiradi - Tadqiqotchilar qizil sayyoramizning muzli yuzasi ostida yashiringan ko'llar guruhini aniqladilar". Tabiat. doi:10.1038 / d41586-020-02751-1. PMID 32989309. Olingan 29 sentyabr, 2020.
  71. ^ Sheehan, 1996, p. 35.
  72. ^ Kifffer, X.H .; Jakoski, BM; Snayder, C. (1992). "Mars sayyorasi: Antik davrdan to hozirgi kungacha". Kiefferda, H.H.; va boshq. (tahr.). Mars. Tukson, AZ: Arizona universiteti matbuoti. 1-33 betlar.
  73. ^ hartmann, 2003, p. 20.
  74. ^ Sheehan, 1996, p. 150.
  75. ^ Spinrad, X .; Myunx, G.; Kaplan, L. D. (1963). "Tahririyatga xat: Marsda suv bug'ini aniqlash". Astrofizika jurnali. 137: 1319. Bibcode:1963ApJ ... 137.1319S. doi:10.1086/147613.
  76. ^ Leyton, RB .; Murray, miloddan avvalgi (1966). "Karbonat angidrid oksidi va boshqa uchuvchi moddalarning Marsdagi harakati". Ilm-fan. 153 (3732): 136–144. Bibcode:1966Sci ... 153..136L. doi:10.1126 / science.153.3732.136. PMID 17831495. S2CID 28087958.
  77. ^ Leyton, RB .; Myurrey, miloddan avvalgi; Sharp, R.P.; Allen, J.D .; Sloan, R.K. (1965). "Mariner IV Mars fotosuratlari: Dastlabki natijalar". Ilm-fan. 149 (3684): 627–630. Bibcode:1965Sci ... 149..627L. doi:10.1126 / science.149.3684.627. PMID 17747569. S2CID 43407530.
  78. ^ Kliore, A .; va boshq. (1965). "Occultation Experiment: Mars atmosferasi va ionosferasini to'g'ridan-to'g'ri o'lchash natijalari". Ilm-fan. 149 (3689): 1243–1248. Bibcode:1965 yil ... 149.1243K. doi:10.1126 / science.149.3689.1243. PMID 17747455. S2CID 34369864.
  79. ^ Grotzinger, Jon P. (2014 yil 24-yanvar). "Maxsus nashrga kirish - yashash uchun qulaylik, taponomiya va Marsda organik uglerodni qidirish". Ilm-fan. 343 (6169): 386–387. Bibcode:2014Sci ... 343..386G. doi:10.1126 / science.1249944. PMID 24458635.
  80. ^ Turli xil (2014 yil 24-yanvar). "Maxsus son - Mundarija - Marsning yashash qobiliyatini o'rganish". Ilm-fan. 343 (6169): 345–452.
  81. ^ Grotzinger, JP .; va boshq. (2014 yil 24-yanvar). "Yellounayf ko'rfazidagi feys-lakustrin muhiti, Geyl krateri, Mars". Ilm-fan. 343 (6169): 1242777. Bibcode:2014Sci ... 343A.386G. CiteSeerX 10.1.1.455.3973. doi:10.1126 / science.1242777. PMID 24324272. S2CID 52836398.
  82. ^ a b Rodriguez, J. Aleksis P.; Kargel, Jefri S.; Beyker, Viktor R.; Gulik, Virjiniya shtati; va boshq. (2015 yil 8 sentyabr). "Marsning chiqib ketish kanallari: ularning manba suv qatlamlari qanday paydo bo'lgan va nega ular shunchalik tez drenajlangan?". Ilmiy ma'ruzalar. 5: 13404. Bibcode:2015 yil NatSR ... 513404R. doi:10.1038 / srep13404. PMC 4562069. PMID 26346067.
  83. ^ Xodimlar (2012 yil 2-iyul). "Qadimgi Mars suvlari chuqur yer osti mavjud bo'lgan". Space.com.
  84. ^ Kreddok, R .; Xovard, A. (2002). "Marsning iliq va ho'l kunlarida yog'ingarchilik holati". J. Geofiz. Res. 107 (E11): E11. Bibcode:2002 yil JGRE..107.5111C. doi:10.1029 / 2001je001505.
  85. ^ Boshliq J.; va boshq. (2006). "Marsning shimoliy o'rta kengliklarida vodiyning keng muzlik yotqiziqlari: kech Amazonning obliklarga bog'liq ob-havoning o'zgarishiga dalil". Yer sayyorasi. Ilmiy ish. Lett. 241 (3–4): 663–671. Bibcode:2006E & PSL.241..663H. doi:10.1016 / j.epsl.2005.11.016.
  86. ^ Xodimlar (2008 yil 28-oktabr). "NASA Mars razvedka orbiteri Wetter Mars tafsilotlarini oshkor qildi". SpaceRef. NASA.
  87. ^ a b Lunin, Jonatan I.; Chambers, Jon; va boshq. (2003 yil sentyabr). "Marsda suvning kelib chiqishi". Ikar. 165 (1): 1–8. Bibcode:2003 yil avtoulov..165 .... 1L. doi:10.1016 / S0019-1035 (03) 00172-6.
  88. ^ Soderblom, L.A .; Bell, JF (2008). "Mars sirtini o'rganish: 1992–2007". Bellda J.F. (tahr.) Mars yuzasi: Tarkibi, mineralogiyasi va jismoniy xususiyatlari. Kembrij universiteti matbuoti. pp.3–19. Bibcode:2008mscm.book ..... B.
  89. ^ Ming, D.V.; Morris, R.V .; Klark, RC (2008). "Marsdagi suvli o'zgarish". Bellda J.F. (tahr.) Mars yuzasi: Tarkibi, mineralogiyasi va jismoniy xususiyatlari. Kembrij universiteti matbuoti. pp.519–540. Bibcode:2008mscm.book ..... B.
  90. ^ Lyuis, J.S. (1997). Quyosh tizimining fizikasi va kimyosi (qayta ishlangan tahrir). San-Diego, Kaliforniya: Akademik matbuot. ISBN 978-0-12-446742-2.
  91. ^ Lasue, J .; va boshq. (2013). "Mars gidrosferasining miqdoriy baholari". Space Sci. Vah. 174 (1–4): 155–212. Bibcode:2013 yil SSSRv..174..155L. doi:10.1007 / s11214-012-9946-5. S2CID 122747118.
  92. ^ Klark, miloddan avvalgi; va boshq. (2005). "Meridiani Planumda ko'chatlar kimyosi va mineralogiyasi". Yer sayyorasi. Ilmiy ish. Lett. 240 (1): 73–94. Bibcode:2005E & PSL.240 ... 73C. doi:10.1016 / j.epsl.2005.09.040.
  93. ^ Bloom, L. (1978). Geomorfologiya: Keyingi zamon relyef shakllarini tizimli tahlil qilish. Englewood Cliffs, NJ: Prentice-Hall. p.114.
  94. ^ Boynton, V.V.; va boshq. (2009). "Mars Feniks qo'nish maydonida kaltsiy karbonat uchun dalillar". Ilm-fan. 325 (5936): 61–4. Bibcode:2009 yilgi ... 325 ... 61B. doi:10.1126 / science.1172768. PMID 19574384. S2CID 26740165.
  95. ^ Gooding, J.L .; Arvidson, RE; Zolotov, M. YU. (1992). "Fizikaviy va kimyoviy ob-havo". Kiefferda, H.H.; va boshq. (tahr.). Mars. Tukson, AZ: Arizona universiteti matbuoti. pp.626–651. ISBN 978-0-8165-1257-7.
  96. ^ Melosh, XJ (2011). Sayyoraviy sirt jarayonlari. Kembrij universiteti matbuoti. p.296. ISBN 978-0-521-51418-7.
  97. ^ Abramov, O .; Kring, D.A. (2005). "Erta Marsda ta'sir ko'rsatadigan gidrotermik faollik". J. Geofiz. Res. 110 (E12): E12S09. Bibcode:2005 yil JGRE..11012S09A. doi:10.1029 / 2005JE002453. S2CID 20787765.
  98. ^ Shrenk, M.O .; Brazelton, VJ; Lang, S.Q. (2013). "Serpantinizatsiya, uglerod va chuqur hayot". Mineralogiya va geokimyo bo'yicha sharhlar. 75 (1): 575–606. Bibcode:2013RvMG ... 75..575S. doi:10.2138 / rmg.2013.75.18. S2CID 8600635.
  99. ^ Baucom, Martin (2006 yil mart-aprel). "Marsda hayotmi?". Amerikalik olim. 94 (2): 119. doi:10.1511/2006.58.119.
  100. ^ Chassefière, E; Langlais, B; Kuesnel, Y; Leblanc, F. (2013), "Erta Marsning yo'qolgan suvi taqdiri: serpantinatsiyaning roli" (PDF), EPSC tezislari, 8, p. EPSC2013-188
  101. ^ Ehlmann, B. L.; Xantal, JF .; Murchie, S.L. (2010). "Marsda serpantin yotqiziqlarining geologik o'rnatilishi" (PDF). Geofiz. Res. Lett. 37 (6): L06201. Bibcode:2010GeoRL..37.6201E. doi:10.1029 / 2010GL042596.
  102. ^ Bloom, L. (1978). Geomorfologiya: Keyingi zamon relyef shakllarini tizimli tahlil qilish. Englewood Cliffs, NJ: Prentice-Hall.., p. 120
  103. ^ Oddi, A .; va boshq. (2013). "Olivinning Marsdagi global tekshiruvi: Yer po'sti va mantiya tarkibiga oid tushunchalar". J. Geofiz. Res. 118 (2): 234–262. Bibcode:2013JGRE..118..234O. doi:10.1029 / 2012JE004149.
  104. ^ Firibgar, T. D .; Treiman, A. H .; Lindstrom, D. J .; Burkland, M. K .; Koen, B. A .; Grier, J. A .; Li, B.; Olson, E. K. (2000). "Lafayet meteoritidan Iddingsitdagi zo'r gazlar: so'nggi bir necha yuz million yil ichida Marsda suyuq suv borligi haqidagi dalillar". Meteoritika va sayyora fanlari. 35 (1): 107–115. Bibcode:2000M va PS ... 35..107S. doi:10.1111 / j.1945-5100.2000.tb01978.x.
  105. ^ Boshliq J.; Kreslavskiy, M. A .; Ivanov, M. A .; Xizinger, X .; Fuller, E. R .; Pratt, S. (2001). "O'rta Mars tarixidagi suv: MOLA ma'lumotlaridan yangi tushunchalar". AGU bahorgi yig'ilishining tezislari. 2001: P31A – 02 ChAKIRILADI. Bibcode:2001 AGUSM ... P31A02H.
  106. ^ Boshliq J.; va boshq. (2001). "Marsda turgan suv havzalarini izlash: ular qachon bo'lgan, qaerga borgan va astrobiologiyaga qanday ta'sir ko'rsatgan?". AGU kuzgi yig'ilishining referatlari. 21: P21C – 03. Bibcode:2001AGUFM.P21C..03H.
  107. ^ Meyer, C. (2012) Mars meteoritlari to'plami; Milliy Aronavtika va kosmik boshqarmasi. http://curator.jsc.nasa.gov/antmet/mmc/.
  108. ^ "Shergotty Meteorite - JPL, NASA". NASA. Olingan 19 dekabr, 2010.
  109. ^ Xamiliton, V.; Kristensen, Filipp R.; McSween, Garri Y. (1997). "Vibratsiyali spektroskopiya yordamida Mars meteorit litologiyalari va mineralogiyalarini aniqlash". Geofizik tadqiqotlar jurnali. 102 (E11): 25593–25603. Bibcode:1997JGR ... 10225593H. doi:10.1029 / 97JE01874.
  110. ^ Treiman, A. (2005). "Naxlit meteoritlari: Marsdan avgitga boy magmatik tog 'jinslari" (PDF). Chemie der Erde - Geokimyo. 65 (3): 203–270. Bibcode:2005 yil CHEG ... 65..203T. doi:10.1016 / j.chemer.2005.01.004. Olingan 8 sentyabr, 2006.
  111. ^ Ege, Karl B.; Uilson, Nikol V.; Makkubbin, Frensis M.; Zigler, Karen; Polyak, Viktor J.; Sharp, Zakari D.; Asmerom, Yaman; Nunn, Morgan X.; Shahin, Robina; Tiyemens, Mark X.; Stil, Endryu; Fogel, Merilin L.; Bowden, Roksan; Glamoclija, Mixaela; Chjan, Zhisheng; Elardo, Stiven M. (2013 yil 15-fevral). "Erta Amazoniya Marsidagi noyob meteorit: Afrikaning shimoliy g'arbiy qismida suvga boy Bazaltika Breccia 7034". Ilm-fan. 339 (6121): 780–785. Bibcode:2013 yil ... 339..780A. doi:10.1126 / science.1228858. PMID 23287721. S2CID 206544554.
  112. ^ Qabul qilaman, C. va boshq. 2013. Amazonka erta Marsidagi noyob meteorit: Suvga boy Bazaltika Breccia Shimoliy G'arbiy Afrika 7034. Ilm: 339, 780-785.
  113. ^ Makkay, D.; Kichik Gibson, EK; Tomas-Keprta, KL; Vali, H; Romanek, CS; Klemett, SJ; Chillier, XD; Maechling, CR; Zare, RN (1996). "Marsda o'tgan hayotni qidirish: AL84001 Mars meteoritida mumkin bo'lgan relagativ biogen faollik". Ilm-fan. 273 (5277): 924–930. Bibcode:1996Sci ... 273..924M. doi:10.1126 / science.273.5277.924. PMID 8688069. S2CID 40690489.
  114. ^ Gibbs, V.; Pauell, C. (1996 yil 19-avgust). "Ma'lumotlarda xatolar bormi?". Ilmiy Amerika.
  115. ^ "Qarama-qarshilik davom etmoqda: Mars meteoriti hayotga yopishadi - Yoki shundaymi?". SPACE.com. 2002 yil 20 mart.
  116. ^ Bada, J .; Glavin, DP; McDonald, GD; Becker, L (1998). "AL84001 mars meteoritida endogen aminokislotalarni qidirish". Ilm-fan. 279 (5349): 362–365. Bibcode:1998 yil ... 279..362B. doi:10.1126 / science.279.5349.362. PMID 9430583. S2CID 32301715.
  117. ^ a b Garsiya-Ruis, Xuan-Manuel Garsiya-Ruis (1999 yil 30-dekabr). "Anorganik yog'ingarchilik tizimlarining morfologik harakati - Astrobiologiya uchun vositalar, usullar va vazifalar II". SPIE ishlari. Astrobiologiya uchun vositalar, usullar va vazifalar II. Proc. SPIE 3755: 74-82. doi:10.1117/12.375088. S2CID 84764520. "Morfologiyani ibtidoiy hayotni aniqlash vositasi sifatida bir ma'noda ishlatish mumkin emas" degan xulosaga kelishdi.
  118. ^ Agresti; Uy; Jogi; Kudryavstev; McKeegan; Runnegar; Schopf; Vdovyak (2008 yil 3-dekabr). "Erning eng qadimgi hayotini aniqlash va geokimyoviy tavsifi". NASA Astrobiologiya instituti. NASA. Arxivlandi asl nusxasi 2013 yil 23 yanvarda. Olingan 15 yanvar, 2013.
  119. ^ Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Endryu D.; Tripati, Abhishek B. (2007 yil 28-aprel). "Arxey hayotining dalillari: Stromatolitlar va mikrofosilalar" (PDF). Prekambriyen tadqiqotlari. 158 (3–4): 141–155. Bibcode:2007 yil PRER..158..141S. doi:10.1016 / j.precamres.2007.04.009. Arxivlandi asl nusxasi (PDF) 2012 yil 24 dekabrda. Olingan 15 yanvar, 2013.
  120. ^ a b Raeburn, P. (1998). "Qizil sayyora Mars sirlarini ochish". National Geographic. Vashington
  121. ^ a b Mur, P .; va boshq. (1990). Quyosh tizimining atlasi. Nyu-York: Mitchell Beazley Publishers.
  122. ^ Berman, Daniel S.; Crown, David A.; Bleamaster, Lesli F. (2009). "Marsdagi o'rta kenglik kraterlarining tanazzuli". Ikar. 200 (1): 77–95. Bibcode:2009 Avtomobil ... 200 ... 77B. doi:10.1016 / j.icarus.2008.10.026.
  123. ^ Fassett, Xolib I.; Boshliq, Jeyms V. (2008). "Mars vodiysi tarmog'ining faolligi vaqti: buferli kraterni hisoblashdagi cheklovlar". Ikar. 195 (1): 61–89. Bibcode:2008 Avtomobil ... 195 ... 61F. doi:10.1016 / j.icarus.2007.12.009.
  124. ^ Malin, Maykl C. (2010). "1985–2006 yillarda Mars Orbiter kamerasini ilmiy tadqiq qilish haqida umumiy ma'lumot". Mars jurnali. 5: 1–60. Bibcode:2010 yil IJMSE ... 5 .... 1M. doi:10.1555 / mars.2010.0001. S2CID 128873687.
  125. ^ "Aeolis Mensae yaqinidagi notekis tizmalar". Hiroc.lpl.arizona.edu. 2007 yil 31-yanvar. Arxivlangan asl nusxasi 2016 yil 5 martda. Olingan 8 oktyabr, 2009.
  126. ^ Zimbelman, J .; Griffin, L. (2010). "Medusae Fossae Formation, Marsning quyi qismidagi yardanglar va sinute tizmalarning HiRISE tasvirlari". Ikar. 205 (1): 198–210. Bibcode:2010 yil avtoulov..205..198Z. doi:10.1016 / j.icarus.2009.04.003.
  127. ^ Newsom, H.; Lanza, Nina L.; Ollila, Ann M.; Wiseman, Sandra M.; Roush, Ted L.; Marzo, Juzeppe A.; Tornabene, Livio L.; Okubo, Kris X.; Osterloo, Mikki M.; Xemilton, Viktoriya E .; Crumpler, Larri S. (2010). "Miyamoto krateri ostidagi teskari kanal konlari, Mars". Ikar. 205 (1): 64–72. Bibcode:2010 yil avtoulov..205 ... 64N. doi:10.1016 / j.icarus.2009.03.030.
  128. ^ Morgan, AM; Xovard, A.D .; Xobli, DEJ; Mur, JM .; Ditrix, VE; Uilyams, RME; Burr, D.M .; Grant, J.A .; Uilson, SA; Matsubara, Y. (2014). "Marsian Saheki krateridagi allyuvial muxlislarning sedimentologiyasi va iqlim muhiti va Atakama cho'lidagi quruqlik muxlislari bilan taqqoslash" (PDF). Ikar. 229: 131–156. Bibcode:2014Moshina..229..131M. doi:10.1016 / j.icarus.2013.11.007.
  129. ^ a b Vayts, S .; Milliken, RE .; Grant, J.A .; McEwen, AS; Uilyams, RME; Bishop, J.L .; Tomson, BJ (2010). "Mars Reconnaissance Orbiter-ning Valles Marinerisga qo'shni platolarda engil tonnali qatlamli yotqiziqlar va ular bilan bog'liq bo'lgan flyuvial relyef shakllarini kuzatishlari". Ikar. 205 (1): 73–102. Bibcode:2010Icar..205 ... 73W. doi:10.1016 / j.icarus.2009.04.017.
  130. ^ a b v Zendejas, J .; Segura, A .; Raga, AC (dekabr 2010). "Asosiy ketma-ketlik M yulduzlar atrofida sayyoralardan yulduz shamollari ta'sirida atmosfera massasining yo'qolishi". Ikar. 210 (2): 539–1000. arXiv:1006.0021. Bibcode:2010 yil avtoulov..210..539Z. doi:10.1016 / j.icarus.2010.07.013. S2CID 119243879.
  131. ^ a b v Kabrol, N .; Grin, E., nashr. (2010). Marsdagi ko'llar. Nyu-York: Elsevier.
  132. ^ Goldspil, J .; Squires, S. (2000). "Er osti suvlarining siljishi va Marsda vodiyning shakllanishi". Ikar. 148 (1): 176–192. Bibcode:2000Icar..148..176G. doi:10.1006 / icar.2000.6465.
  133. ^ a b v d e f g h men j Karr, Maykl H. Mars yuzasi. Kembrij sayyora fanlari seriyasi (№ 6). ISBN 978-0-511-26688-1.
  134. ^ Nedell, S .; Svirs, Stiven V.; Andersen, Devid V. (1987). "Valles Marineris, Marsdagi qatlamli konlarning kelib chiqishi va evolyutsiyasi". Ikar. 70 (3): 409–441. Bibcode:1987 Avtomobil ... 70..409N. doi:10.1016/0019-1035(87)90086-8.
  135. ^ Matsubara, Yo, Alan D. Xovard va Sara A. Drammond. "Erta Mars gidrologiyasi: ko'l havzalari". Geofizik tadqiqotlar jurnali: Sayyoralar 116.E4 (2011).
  136. ^ "Marsning ajoyib suratlari qadimiy ko'llarning dalillarini ochib beradi". Scainedaily.com. 2010 yil 4-yanvar. Arxivlangan asl nusxasi 2016 yil 23 avgustda. Olingan 28 fevral, 2018.
  137. ^ Gupta, Sanjeev; Uorner, Nikolay; Kim, Rack; Lin, Yuan; Myuller, Jan; -1 # Jung-, Shih- (2010). "Ares Vallisdagi Hesperian ekvatorial termokarst ko'llari Marsdagi vaqtinchalik iliq sharoitlarga dalil sifatida". Geologiya. 38 (1): 71–74. Bibcode:2010 yilGeo .... 38 ... 71W. doi:10.1130 / G30579.1.
  138. ^ a b v d Brown, Dwayne; Koul, Stiv; Vebster, Yigit; Agle, D.C. (2012 yil 27 sentyabr). "NASA Rover Mars yuzasida eski oqim yo'nalishini topdi". NASA.
  139. ^ a b v NASA (2012 yil 27 sentyabr). "NASAning Curiosity Rover kompaniyasi Marsda eski oqimni topdi - video (51:40)". NASAtelevision.
  140. ^ a b v Chang, Alicia (2012 yil 27 sentyabr). "Mars rover Curiosity qadimiy oqim belgilarini topdi". Associated Press.
  141. ^ "NASA Rover Marsda qadimgi hayot uchun mos bo'lgan shartlarni topdi". NASA. 2013 yil 12 mart.
  142. ^ Parker, T., D. Kyuri. 2001 yil. Geomorfologiya 37. 303–328.
  143. ^ de Pablo, M., M. Druet. 2002. XXXIII LPSC. Xulosa # 1032.
  144. ^ de Pablo, M. 2003. VI Mars konferentsiyasi, Xulosa # 3037.
  145. ^ "Mars Study - hayotning beshigi -" Astrobiology "jurnali uchun maslahatlar beradi". astrobio.net. 2017 yil 8 oktyabr.
  146. ^ "Mars Eridania havzasi ilgari katta dengizga aylangan - sayyora ilmi, kosmik tadqiqotlar - Sci-News.com". sci-news.com.
  147. ^ a b Mixalski, J .; va boshq. (2017). "Marsdagi Eridaniya havzasidagi qadimgi gidrotermal dengiz qatlamlari". Tabiat aloqalari. 8: 15978. Bibcode:2017 NatCo ... 815978M. doi:10.1038 / ncomms15978. PMC 5508135. PMID 28691699.
  148. ^ Beyker, D., J. Boshliq. 2014. 44-LPSC, referat # 1252
  149. ^ Irvin, R .; va boshq. (2004). "Maadim Vallis, Mars va unga oid paleolake havzalarining geomorfologiyasi". J. Geofiz. Res. Sayyoralar. 109 (E12): E12009. Bibcode:2004JGRE..10912009I. doi:10.1029 / 2004je002287. S2CID 12637702.
  150. ^ Xaynek, B .; va boshq. (2010). "Mars vodiysi tarmoqlarining yangilangan global xaritasi va iqlim va gidrologik jarayonlarga ta'siri". J. Geofiz. Res. 115 (E9): E09008. Bibcode:2010JGRE..115.9008H. doi:10.1029 / 2009je003548.
  151. ^ Di Axil, Gaetano; Hynek, Brian M. (2010). "Delta va vodiylarning global tarqalishi bilan qo'llab-quvvatlanadigan Marsdagi qadimiy okean". Tabiatshunoslik. 3 (7): 459–463. Bibcode:2010 yil NatGe ... 3..459D. doi:10.1038 / ngeo891.
  152. ^ Karr, M.H. (1979). "Yopiq qatlamlardan suv chiqarish orqali marslik toshqin xususiyatlarini shakllantirish" (PDF). J. Geofiz. Res. 84: 2995–3007. Bibcode:1979JGR .... 84.2995C. doi:10.1029 / JB084iB06p02995.
  153. ^ Beyker, V .; Milton, D. (1974). "Mars va Yerdagi katastrofik toshqinlarning eroziyasi". Ikar. 23 (1): 27–41. Bibcode:1974 Avtomobil ... 23 ... 27B. doi:10.1016/0019-1035(74)90101-8.
  154. ^ "Mars Global Surveyor MOC2-862 chiqarilishi". Msss.com. Arxivlandi asl nusxasi 2009 yil 12 aprelda. Olingan 16 yanvar, 2012.
  155. ^ Endryus-Xanna, Jefri S.; Fillips, Rojer J.; Zuber, Mariya T. (2007). "Meridiani Planum va Marsning global gidrologiyasi". Tabiat. 446 (7132): 163–6. Bibcode:2007 yil natur.446..163A. doi:10.1038 / nature05594. PMID 17344848. S2CID 4428510.
  156. ^ Irvin; Rossman, P .; Kreddok, Robert A.; Xovard, Alan D. (2005). "Mars vodiysi tarmoqlarida ichki kanallar: chiqindi va oqava suvlarni ishlab chiqarish". Geologiya. 33 (6): 489–492. Bibcode:2005 yil Geo .... 33..489I. doi:10.1130 / g21333.1. S2CID 5663347.
  157. ^ Jakoskiy, Bryus M. (1999). "Suv, iqlim va hayot". Ilm-fan. 283 (5402): 648–649. doi:10.1126 / science.283.5402.648. PMID 9988657. S2CID 128560172.
  158. ^ Lamb, Maykl P. va boshq. "Buloqlar kanyonlarni toshga aylantira oladimi ?." Geofizik tadqiqotlar jurnali: Sayyoralar (1991–2012) 111.E7 (2006).
  159. ^ a b v Grotzinger, JP .; Arvidson, RE; Bell III, J.F .; Kalvin, V.; Klark, miloddan avvalgi; Fike, D.A .; Golombek, M .; Grizli, R .; Xaldemann, A .; Herkenhoff, K.E .; Jolliff, B.L .; Knol, A.H .; Malin M.; Maklennan, SM; Parker, T .; Soderblom, L .; Sohl-Dickstein, J.N .; Squires, S.W .; Toska, N.J .; Watters, WA (2005 yil 25-noyabr). "Quruqdan namgacha eoli yotqizish tizimining stratigrafiyasi va sedimentologiyasi, Kuyishlar paydo bo'lishi, Meridiani Planum". Yer va sayyora fanlari xatlari. 240 (1): 11–72. Bibcode:2005E & PSL.240 ... 11G. doi:10.1016 / j.epsl.2005.09.039. ISSN 0012-821X.
  160. ^ Michalski, Jozef R.; Nil, Pol B.; Kuadros, Xaver; Parnell, Jon; Rojers, A. Dean; Rayt, Shoun P. (2013 yil 20-yanvar). "Marsdagi er osti suvlarining faolligi va chuqur biosferaning ta'siri". Tabiatshunoslik. 6 (2): 133–138. Bibcode:2013NatGe ... 6..133M. doi:10.1038 / ngeo1706. Bu erda biz Marsning er osti yashash qobiliyatining kontseptual modelini taqdim etamiz va chuqur havzalarda er osti suvlari ko'tarilishining dalillarini baholaymiz.
  161. ^ a b v Zuber, Mariya T. (2007). "Planetarizm: Mars eng yuqori nuqtada". Tabiat. 447 (7146): 785–786. Bibcode:2007 yil natur.447..785Z. doi:10.1038 / 447785a. PMID 17568733. S2CID 4427572.
  162. ^ Andrews ‐ Hanna, J. C .; Zuber, M. T .; Arvidson, R. E.; Wiseman, S. M. (2010). "Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra". J. Geofiz. Res. 115 (E6): E06002. Bibcode:2010JGRE..115.6002A. doi:10.1029/2009JE003485.
  163. ^ Maklennan, S. M.; va boshq. (2005). "Bug'lanish shaklidagi kuyishlar, Meridiani Planum, Mars shakllanishi va diagenezi". Yer sayyorasi. Ilmiy ish. Lett. 240 (1): 95–121. Bibcode:2005E & PSL.240 ... 95M. doi:10.1016/j.epsl.2005.09.041.
  164. ^ Squyres, S. V.; Knoll, A. H. (2005). "Meridiani Planumdagi cho'kindi jinslar: kelib chiqishi, diagenezi va Marsdagi hayotga ta'siri". Yer sayyorasi. Ilmiy ish. Lett. 240 (1): 1–10. Bibcode:2005E & PSL.240 .... 1S. doi:10.1016 / j.epsl.2005.09.038..
  165. ^ Squyres, S. V.; va boshq. (2006). "Meridiani Planumda ikki yil: Opportunity rover natijalari" (PDF). Ilm-fan. 313 (5792): 1403–1407. Bibcode:2006 yil ... 313.1403S. doi:10.1126 / science.1130890. PMID 16959999. S2CID 17643218..
  166. ^ Wiseman, M.; Andrews-Hanna, J. C .; Arvidson, R. E.; Mustard, J. F.; Zabrusky, K. J. (2011). Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology (PDF). 42-Oy va sayyora fanlari konferentsiyasi.
  167. ^ Andrews‐Hanna, Jeffrey C.; Lewis, Kevin W. (2011). "Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs". Geofizik tadqiqotlar jurnali: Sayyoralar. 116 (E2): E2. Bibcode:2011JGRE..116.2007A. doi:10.1029/2010je003709. S2CID 17293290.
  168. ^ ESA Staff (February 28, 2019). "Marsda" Yer osti suvlari tizimining "birinchi dalillari topildi". Evropa kosmik agentligi. Olingan 28 fevral, 2019.
  169. ^ Houser, Kristin (February 28, 2019). "Marsda" Yer osti suvlari tizimining "birinchi dalillari topildi". Futurism.com. Olingan 28 fevral, 2019.
  170. ^ Salese, Francesco; Pondrelli, Monica; Neeseman, Alicia; Schmidt, Gene; Ori, Gian Gabriele (2019). "Geological Evidence of Planet-Wide Groundwater System on Mars". Geofizik tadqiqotlar jurnali: Sayyoralar. 124 (2): 374–395. Bibcode:2019JGRE..124..374S. doi:10.1029/2018JE005802. PMC 6472477. PMID 31007995.
  171. ^ "Mars: Planet‐Wide Groundwater System – New Geological Evidence". 2019 yil 19-fevral.
  172. ^ Andrews, Robin George (September 20, 2019). "Marsda topilgan sirli magnit impulslar - tungi hodisalar InSight qo'nish moslamasining dastlabki natijalari qatoriga kiradi, shuningdek, qizil sayyora er ostidan chuqurlikda suyuq suvning global suv omborini joylashtirishi mumkinligiga ishora qiladi". Milliy Geografiya Jamiyati. Olingan 20 sentyabr, 2019.
  173. ^ Brandenburg, John E. (1987), "The Paleo-Ocean of Mars", MECA Symposium on Mars: Evolution of its Climate and Atmosphere, Lunar and Planetary Institute, pp. 20–22, Bibcode:1987meca.symp...20B
  174. ^ Clifford, S. M.; Parker, T. J. (2001). "The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains". Ikar. 154: 40–79. Bibcode:2001Icar..154...40C. doi:10.1006/icar.2001.6671. S2CID 13694518.
  175. ^ Smit, D.; va boshq. (1999). "The Gravity Field of Mars: Results from Mars Global Surveyor" (PDF). Ilm-fan. 286 (5437): 94–97. Bibcode:1999Sci...286...94S. doi:10.1126/science.286.5437.94. PMID 10506567.
  176. ^ O'qing, Piter L.; Lewis, S. R. (2004). The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Paperback). Chichester, UK: Praxis. ISBN 978-3-540-40743-0. Olingan 19 dekabr, 2010.
  177. ^ "Martian North Once Covered by Ocean". Astrobio.net. 2009 yil 26-noyabr. Olingan 19 dekabr, 2010.
  178. ^ "New Map Bolsters Case for Ancient Ocean on Mars". SPACE.com. 2009 yil 23-noyabr.
  179. ^ Karr, M.; Head, J. (2003). "Marsdagi okeanlar: kuzatuv dalillari va mumkin bo'lgan taqdirni baholash". Geofizik tadqiqotlar jurnali. 108 (E5): 5042. Bibcode:2003JGRE..108.5042C. doi:10.1029 / 2002JE001963. S2CID 16367611.
  180. ^ "Mars Ocean Hypothesis Hits the Shore". NASA astrobiologiyasi. NASA. 26 yanvar 2001 yil. Arxivlangan asl nusxasi 2012 yil 20 fevralda.
  181. ^ Perron; Taylor, J.; va boshq. (2007). "Evidence for an ancient Martian ocean in the topography of deformed shorelines". Tabiat. 447 (7146): 840–843. Bibcode:2007Natur.447..840P. doi:10.1038/nature05873. PMID 17568743. S2CID 4332594.
  182. ^ Kaufman, Marc (March 5, 2015). "Mars Had an Ocean, Scientists Say, Pointing to New Data". The New York Times. Olingan 5 mart, 2015.
  183. ^ "Ancient Tsunami Evidence on Mars Reveals Life Potential – Astrobiology". astrobiology.com.
  184. ^ Rodriguez, J., et al. 2016. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports: 6, 25106.
  185. ^ Rodriguez, J. Alexis P.; Fairén, Alberto G.; Tanaka, Kennet L.; Zarroca, Mario; Linares, Rogelio; Platz, Tomas; Komatsu, Goro; Miyamoto, Xideaki; Kargel, Jeffrey S.; Yan, Jianguo; Gulik, Virjiniya; Higuchi, Kana; Baker, Victor R.; Glines, Natalie (May 19, 2016). "Tsunami waves extensively resurfaced the shorelines of an early Martian ocean". Ilmiy ma'ruzalar. 6 (1): 25106. Bibcode:2016NatSR...625106R. doi:10.1038/srep25106. PMC 4872529. PMID 27196957.
  186. ^ Kornell universiteti. "Ancient tsunami evidence on Mars reveals life potential." ScienceDaily. ScienceDaily, May 19, 2016. <https://www.sciencedaily.com/releases/2016/05/160519101756.htm>.
  187. ^ Andrews, Robin George (July 30, 2019). "When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero - The 75-mile-wide crater could be something like a Chicxulub crater for the red planet". The New York Times. Olingan 31 iyul, 2019.
  188. ^ Kostard, F .; va boshq. (2019 yil 26-iyun). "The Lomonosov Crater Impact Event: A Possible Mega‐Tsunami Source on Mars". Geofizik tadqiqotlar jurnali: Sayyoralar. 124 (7): 1840–1851. Bibcode:2019JGRE..124.1840C. doi:10.1029/2019JE006008. hdl:20.500.11937/76439.
  189. ^ a b Kostama, V.-P .; Kreslavsky, M. A.; Head, J. W. (June 3, 2006). "Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement". Geofizik tadqiqotlar xatlari. 33 (11): L11201. Bibcode:2006 yilGeoRL..3311201K. CiteSeerX 10.1.1.553.1127. doi:10.1029 / 2006GL025946.
  190. ^ a b Heldmann, Jennifer L.; va boshq. (2005 yil 7-may). "Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions" (PDF). Geofizik tadqiqotlar jurnali. 110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. hdl:2060/20050169988. 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 K (−53 °C; −64 °F) for parts of the day.
  191. ^ a b Malin, Michael C.; Edgett, Kennet S.; Posiolova, Liliya V.; McColley, Shawn M.; Dobrea, Eldar Z. Noe (December 8, 2006). "Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars". Ilm-fan. 314 (5805): 1573–1577. Bibcode:2006Sci...314.1573M. doi:10.1126/science.1135156. PMID 17158321. S2CID 39225477.
  192. ^ a b Head, JW; Marchant, DR; Kreslavsky, MA (2008). "Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin". PNAS. 105 (36): 13258–63. Bibcode:2008PNAS..10513258H. doi:10.1073/pnas.0803760105. PMC 2734344. PMID 18725636.
  193. ^ Henderson, Mark (December 7, 2006). "Water has been flowing on Mars within past five years, Nasa says". The Times. Buyuk Britaniya
  194. ^ Malin, Michael C.; Edgett, Kenneth S. (2000). "Evidence for Recent Groundwater Seepage and Surface Runoff on Mars". Ilm-fan. 288 (5475): 2330–2335. Bibcode:2000Sci...288.2330M. doi:10.1126/science.288.5475.2330. PMID 10875910. S2CID 14232446.
  195. ^ a b v d e Wilson, Jack T.; va boshq. (2018 yil yanvar). "Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data". Ikar. 299: 148–160. arXiv:1708.00518. Bibcode:2018Icar..299..148W. doi:10.1016/j.icarus.2017.07.028. S2CID 59520156.
  196. ^ Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. (2010). "Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water". Ikar. 205 (1): 113–137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
  197. ^ Hoffman, Nick (2002). "Active polar gullies on Mars and the role of carbon dioxide". Astrobiologiya. 2 (3): 313–323. Bibcode:2002AsBio...2..313H. doi:10.1089/153110702762027899. PMID 12530241.
  198. ^ Midussayt, Donald S.; Firibgar, Timoti D.; Lunine, Jonathan I. (2001). "Liquid CO2 breakout and the formation of recent small gullies on Mars". Geofizik tadqiqotlar xatlari. 28 (7): 1283–1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496.
  199. ^ McEwen, Alfred. S.; Ojha, Lujendra; Dundas, Colin M. (June 17, 2011). "Seasonal Flows on Warm Martian Slopes". Ilm-fan. Amerika ilm-fanni rivojlantirish bo'yicha assotsiatsiyasi. 333 (6043): 740–743. Bibcode:2011 yil ... 333..740M. doi:10.1126 / science.1204816. ISSN 0036-8075. PMID 21817049. S2CID 10460581.
  200. ^ "Nepali Scientist Lujendra Ojha spots possible water on Mars". Nepali Blogger. August 6, 2011. Archived from asl nusxasi on June 4, 2013.
  201. ^ "NASA Spacecraft Data Suggest Water Flowing on Mars". NASA. 2011 yil 4-avgust.
  202. ^ Makuen, Alfred; Lujendra, Ojha; Dundas, Colin; Mattson, Sarah; Bryne, S; Wray, J; Cull, Selby; Murchie, Scott; Tomas, Nikolay; Gulick, Virginia (August 5, 2011). "Seasonal Flows On Warm Martian Slopes". Ilm-fan. 333 (6043): 743. Bibcode:2011 yil ... 333..740M. doi:10.1126 / science.1204816. PMID 21817049. S2CID 10460581. Arxivlandi asl nusxasi 2015 yil 29 sentyabrda.
  203. ^ Dreyk, Nadiya; 28, National Geographic September (September 28, 2015). "NASA Finds 'Definitive' Liquid Water on Mars". National Geographic News. Olingan 30 sentyabr, 2015.CS1 maint: raqamli ismlar: mualliflar ro'yxati (havola)
  204. ^ Moskovits, Klara. "Water Flows on Mars Today, NASA Announces". Olingan 30 sentyabr, 2015.
  205. ^ "NASA News Conference: Evidence of Liquid Water on Today's Mars". NASA. 2015 yil 28 sentyabr.
  206. ^ "NASA Confirms Evidence That Liquid Water Flows on Today's Mars". 2015 yil 28 sentyabr. Olingan 30 sentyabr, 2015.
  207. ^ Recurring Martian Streaks: Flowing Sand, Not Water?. JPL NASA News. 2017 yil 20-noyabr.
  208. ^ Boynton, V. V.; va boshq. (2007). "Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars". Geofizik tadqiqotlar jurnali: Sayyoralar. 112 (E12): E12S99. Bibcode:2007JGRE..11212S99B. doi:10.1029/2007JE002887.
  209. ^ Feldman, V.C .; Prettyman, T. H.; Moris, S .; Plaut, J. J.; Bish, D. L .; Vaniman, D. T .; Tokar, R. L. (2004). "Global distribution of near-surface hydrogen on Mars". Geofizik tadqiqotlar jurnali. 109 (E9): E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160. E09006.
  210. ^ a b v Feldman, V.C .; va boshq. (2004). "Global distribution of near-surface hydrogen on Mars". Geofizik tadqiqotlar jurnali. 109 (E9). Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160.
  211. ^ Cutts, James A. (July 10, 1973). "Nature and origin of layered deposits of the Martian polar regions". Geofizik tadqiqotlar jurnali. 78 (20): 4231–4249. Bibcode:1973JGR....78.4231C. doi:10.1029/JB078i020p04231.
  212. ^ "Mars' South Pole Ice Deep and Wide". NASA News & Media Resources. NASA. 2007 yil 15 mart.
  213. ^ Plaut, J. J.; va boshq. (2007 yil 15 mart). "Subsurface Radar Sounding of the South Polar Layered Deposits of Mars". Ilm-fan. 316 (5821): 92–95. Bibcode:2007Sci...316...92P. doi:10.1126/science.1139672. PMID 17363628. S2CID 23336149.
  214. ^ Byrne, Shane (2009). "The Polar Deposits of Mars". Yer va sayyora fanlari bo'yicha yillik sharh. 37 (1): 535–560. Bibcode:2009AREPS..37..535B. doi:10.1146/annurev.earth.031208.100101. S2CID 54874200.
  215. ^ Scanlon, K. va boshq. 2018. Dorsa Argentea formasiyasi va Noachian-Hesperian iqlim o'zgarishi. Icarus: 299, 339–363.
  216. ^ Boshliq, J, S. Pratt. 2001. Marsda Hesperiya yoshidagi keng janubiy qutbli muz qatlami: katta erishi va orqaga chekinishi, erigan suvning yon tomoni oqishi va kutilishi uchun dalillar. J. Geofiz. Res.-Planet, 106 (E6), 12275-12299.
  217. ^ Fishbaugh, KE; Byrne, Shane; Herkenhoff, Kenneth E.; Kirk, Randolf L.; Fortezzo, Corey; Russell, Patrick S.; McEwen, Alfred (2010). "Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection" (PDF). Ikar. 205 (1): 269–282. Bibcode:2010Icar..205..269F. doi:10.1016/j.icarus.2009.04.011.
  218. ^ "How Mars Got Its Layered North Polar Cap". Eos. Olingan 26 sentyabr, 2019.
  219. ^ "Peeling Back the Layers of the Climate of Mars". Eos. Olingan 26 sentyabr, 2019.
  220. ^ Konvey, Syuzan J .; Hovius, Niels; Barnie, Talfan; Besserer, Jonathan; Le Mouélic, Stéphane; Orosei, Roberto; Read, Natalie Anne (July 1, 2012). "Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region" (PDF). Ikar. 220 (1): 174–193. Bibcode:2012Icar..220..174C. doi:10.1016/j.icarus.2012.04.021. ISSN 0019-1035.
  221. ^ "Ice islands on Mars and Pluto could reveal past climate change". phys.org. Olingan 26 sentyabr, 2019.
  222. ^ a b "A winter wonderland in red and white – Korolev Crater on Mars". Germaniya aerokosmik markazi (DLR). Olingan 20 dekabr, 2018.
  223. ^ Editor, Ian Sample Science (December 21, 2018). "Mars Express beams back images of ice-filled Korolev crater". The Guardian. Olingan 21 dekabr, 2018.CS1 maint: qo'shimcha matn: mualliflar ro'yxati (havola)
  224. ^ Duxbury, N. S.; Zotikov, I. A.; Nealson, K. H.; Romanovsky, V. E.; Carsey, F. D. (2001). "A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars" (PDF). Geofizik tadqiqotlar jurnali. 106 (E1): 1453. Bibcode:2001JGR...106.1453D. doi:10.1029/2000JE001254.
  225. ^ Chang, Kennet; Xayr, Dennis (July 25, 2018). "A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet". The New York Times. Olingan 25 iyul, 2018.
  226. ^ "Mars sathidan ulkan suyuq suv ombori aniqlandi". EurekAlert. 2018 yil 25-iyul. Olingan 25 iyul, 2018.
  227. ^ "Liquid water 'lake' revealed on Mars". BBC yangiliklari. 2018 yil 25-iyul. Olingan 25 iyul, 2018.
  228. ^ Supplementary Materials for: Orosei, R; Lauro, SE; Pettinelli, E; Cicchetti, A; Koradini, M; Cosciotti, B; Di Paolo, F; Flamini, E; Mattei, E; Pajola, M; Soldovieri, F; Cartacci, M; Kassenti, F; Frigeri, A; Giuppi, S; Martufi, R; Masdea, A; Mitri, G; Nenna, C; Noschese, R; Restano, M; Seu, R (2018). [//doi.org/10.1126%2Fscience.aar7268 "Marsda subglasial suyuq suvning radar dalillari". Ilm-fan. 361: 490–493. Bibcode:2018Sci ... 361..490O. doi:10.1126 / science.aar7268. PMID 30045881.
  229. ^ Lauro, Sebastyan Emanuel; Pettinelli, Elena; Kaprarelli, Graziella; Gallini, Luka; Rossi, Anjelo Pio; Mattei, Elisabetta; Cosciotti, Barbara; Cicchetti, Andrea; Soldovieri, Franchesko; Cartacci, Marko; Di Paolo, Federiko; Noschese, Raffaella; Orosei, Roberto (2020 yil 28 sentyabr). "MARSISning yangi ma'lumotlari bilan ochilgan Marsning janubiy qutbidan pastda joylashgan bir nechta subglasial suv havzalari". Tabiat astronomiyasi. Springer Nature Limited. arXiv:2010.00870. Bibcode:2020NatAs.tmp..194L. doi:10.1038 / s41550-020-1200-6. ISSN 2397-3366. S2CID 222125007.
  230. ^ Xelton, Meri (25.07.2018). "Marsda suyuq suvli" ko'l "aniqlandi". BBC yangiliklari.
  231. ^ Sori, Maykl M.; Bramson, Ali M. (2019). "Tuzli don bilan Marsdagi suv: Janubiy qutbda muzni bazal eritishi uchun mahalliy issiqlik anomaliyalari talab qilinadi". Geofizik tadqiqotlar xatlari. 46 (3): 1222–1231. Bibcode:2019GeoRL..46.1222S. doi:10.1029 / 2018GL080985. hdl:10150/633584. ISSN 1944-8007.
  232. ^ a b "Mars muzlari ostida ulkan suyuq suv ko'l topildi". RTÉ. 2018 yil 25-iyul. Olingan 26 iyul, 2018.
  233. ^ a b v Kieffer, Xyu H. (1992). Mars. Arizona universiteti matbuoti. ISBN 978-0-8165-1257-7. Olingan 7 mart, 2011.
  234. ^ Xauell, Yelizaveta (2017 yil 2-oktabr). "Mars ekvatorida suv muzining sirlari topildi". Space.com. Olingan 2 oktyabr, 2017.
  235. ^ "Ko'pburchak naqshli zamin: Mars va Yer o'rtasidagi sirt o'xshashliklari". SpaceRef. 2002 yil 28 sentyabr.
  236. ^ Squyres, S. (1989). "Urey mukofotining ma'ruzasi: Marsdagi suv". Ikar. 79 (2): 229–288. Bibcode:1989 yil avtoulov ... 79..229S. doi:10.1016 / 0019-1035 (89) 90078-X.
  237. ^ Lefort, A .; Rassel, P.S.; Tomas, N. (2010). "HiRISE tomonidan kuzatilgan Marsning Peneus va Amfitritlar Paterae mintaqasidagi skaloped releflari". Ikar. 205 (1): 259–268. Bibcode:2010 yil avtoulov..205..259L. doi:10.1016 / j.icarus.2009.06.005.
  238. ^ a b v d e Marsdagi tik qiyaliklar ko'milgan muzning tuzilishini ochib beradi. NASA press-relizi. 2018 yil 11-yanvar.
  239. ^ Dundas, Kolin M.; Bramson, Ali M.; Oxha, Lujendra; Ray, Jeyms J.; Mellon, Maykl T.; Byorn, Sheyn; Makeven, Alfred S.; Puttsig, Nataniel E.; Viyola, Donna; Satton, Sara; Klark, Erin; Xolt, Jon V. (2018). "Marsning o'rta kengliklarida ochiq er osti muz qatlamlari". Ilm-fan. 359 (6372): 199–201. Bibcode:2018Sci ... 359..199D. doi:10.1126 / science.aao1619. PMID 29326269.
  240. ^ Marsda muzli jarliklar aniqlandi. Fan yangiliklari. Pol Vuzen. 2018 yil 11-yanvar.
  241. ^ Pike, Silvain; Buz, Jennifer; Edvards, Kristofer S.; Bandfild, Joshua L.; Klaynbul, Armin; Kass, Devid M.; Xeyn, Pol O. (2019 yil 10-dekabr). "Yuqori va o'rta kengliklarda Marsda keng tarqalgan sayoz suv muzlari" (PDF). Geofizik tadqiqotlar xatlari. doi:10.1029 / 2019GL083947.
  242. ^ "NASA-ning Marsdagi suv muzlari uchun xazina xaritasi". Reaktiv harakatlanish laboratoriyasi. 2019 yil 10-dekabr.
  243. ^ Qo'shimcha materiallar Marsning o'rta kengliklarida joylashgan er osti muz qatlamlari Kolin M. Dundas, Ali M. Bramson, Lujendra Oxa, Jeyms J. Ray, Maykl T. Mellon, Sheyn Byrne, Alfred S. Makven, Nataniel E. Putzig, Donna Viyola. , Sara Satton, Erin Klark, Jon V. Xolt
  244. ^ Dundas, C., S. Bryrne, A. McEwen. 2015. Martian sublimatsiya termokarst relyef shakllarini rivojlanishini modellashtirish. Ikarus: 262, 154-169.
  245. ^ a b v Boshliq, Jeyms V.; Xantal, Jon F.; Kreslavskiy, Mixail A.; Milliken, Ralf E.; Marchant, Devid R. (2003). "Marsda so'nggi muzlik davrlari". Tabiat. 426 (6968): 797–802. Bibcode:2003 yil natur.426..797H. doi:10.1038 / tabiat02114. PMID 14685228. S2CID 2355534.
  246. ^ a b "HiRISE erga ajratilgan er maydoni (PSP_002917_2175)". Arizona universiteti. Olingan 19 dekabr, 2010.
  247. ^ Lefort, A .; Rassel, P.S.; Tomas, N. (2010). "HiRISE tomonidan kuzatilgan Marsning Peneus va Amfitritlar Paterae mintaqasidagi taroqli erlar". Ikar. 205: 259–268. Bibcode:2010 yil avtoulov..205..259L. doi:10.1016 / j.icarus.2009.06.005.
  248. ^ "Marsdagi er osti muzining katta koni Nyu-Meksikodan kattaroqdir". space.com.
  249. ^ Bramson, A va boshq. 2015. Arcadia Planitia, Marsda keng tarqalgan ortiqcha muz. Geofizik tadqiqot xatlari: 42, 6566-6574
  250. ^ "Arxivlangan nusxa". Arxivlandi asl nusxasi 2016 yil 30-noyabrda. Olingan 29-noyabr, 2016.CS1 maint: nom sifatida arxivlangan nusxa (havola)
  251. ^ Stuurman, C. va boshq. 2016. SHARAD Utopia Planitia, Marsda er osti suvlari muzlarining konlarini aniqlash va tavsiflash. Geofizik tadqiqot xatlari: 43, 9484_9491.
  252. ^ Byorn, S .; Ingersoll, A. P. (2002). "Martian Polar Shveytsariya-pishloq xususiyatlarini shakllantirish uchun sublimatsiya modeli". Amerika Astronomiya Jamiyati. 34: 837. Bibcode:2002DPS .... 34.0301B.
  253. ^ "Marsning shimoliy qutbidagi kraterdagi suv muzi" (Matbuot xabari). ESA. 2005 yil 27-iyul.
  254. ^ "Qizil sayyorada topilgan muzli ko'l". BBC. 2005 yil 29-iyul.
  255. ^ Myurrey, Jon B.; va boshq. (2005). "Mars ekvatoriga yaqin muzlagan dengiz uchun Mars Express yuqori aniqlikdagi stereo kameradan dalillar". Tabiat. 434 (7031): 352–356. Bibcode:2005 yil Noyabr 434..352M. doi:10.1038 / nature03379. PMID 15772653. S2CID 4373323. Bu erda biz Evropa kosmik agentligi Mars Express kosmik kemasidan olinadigan yuqori aniqlikdagi stereo kamerali tasvirlarni taqdim etamiz, bu kabi ko'llar hanuzgacha mavjud bo'lishi mumkin.
  256. ^ Orosei, R .; Cartacci, M .; Cicchetti, A .; Federiko, C .; Flamini, E .; Frigeri, A .; Xolt, J. V.; Marinangeli, L .; Noschese, R .; Pettinelli, E .; Fillips, R. J .; Pikardi, G .; Plaut, J. J .; Safaeinili, A .; Seu, R. (2008). "Marsdagi Cerberus Palusda muzlatilgan dengiz ustida radar osti qavatining ovozi" (PDF). Oy va sayyora fanlari. XXXIX: P14B – 05. Bibcode:2007AGUFM.P14B..05O. doi:10.1109 / ICGPR.2010.5550143. ISBN 978-1-4244-4604-9. S2CID 23296246.
  257. ^ Barlow, Nadine G. (2008 yil 10-yanvar). Mars: uning ichki qismi, yuzasi va atmosferasi bilan tanishish. Kembrij universiteti matbuoti. ISBN 978-0-521-85226-5.
  258. ^ Strom, RG .; Kroft, Stiven K.; Barlow, Nadine G. (1992). Marsda krujka bo'yicha marsliklarning rekord yozuvi. Arizona universiteti matbuoti. ISBN 978-0-8165-1257-7.
  259. ^ "ESA - Mars Express - Deuteronilus Mensae ning Marsdagi hayratlanarli manzaralari". Es.int. 2005 yil 14 mart.
  260. ^ Xauber, E .; va boshq. (2005). "Hecates Tolus, Marsda qanot kalderasi va juda yosh muzlik faolligining kashf etilishi". Tabiat. 434 (7031): 356–61. Bibcode:2005 yil Tabiat. 434..356H. doi:10.1038 / nature03423. PMID 15772654. S2CID 4427179.
  261. ^ Shean, David E.; Boshliq, Jeyms V.; Fastook, Jeyms L.; Marchant, Devid R. (2007). "Yaqinda Arsia-Mons, Marsdagi balandlikdagi muzlik: katta tropik tog 'muzliklarining shakllanishi va evolyutsiyasiga ta'siri" (PDF). Geofizik tadqiqotlar jurnali. 112 (E3): E03004. Bibcode:2007JGRE..112.3004S. doi:10.1029 / 2006JE002761.
  262. ^ a b Shean, D .; va boshq. (2005). "Marsdagi sovuq asosli tog 'muzligining kelib chiqishi va evolyutsiyasi: Pavonis Mons fanati shaklidagi koni". Geofizik tadqiqotlar jurnali. 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. doi:10.1029 / 2004JE002360. S2CID 14749707.
  263. ^ Basilevskiy, A .; va boshq. (2006). "Marsdagi Olympus Mons vulqonining sharqiy yon bag'ridagi yaqinda sodir bo'lgan tektonik, vulkanik va fluvial faollik". Geofizik tadqiqotlar xatlari. 33 (13). L13201. Bibcode:2006 yilGeoRL..3313201B. CiteSeerX 10.1.1.485.770. doi:10.1029 / 2006GL026396.
  264. ^ Milliken, R .; va boshq. (2003). "Mars sathidagi yopishqoq oqim xususiyatlari: yuqori aniqlikdagi Mars Orbiter Camera (MOC) tasvirlaridan kuzatuvlar". Geofizik tadqiqotlar jurnali. 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. doi:10.1029 / 2002je002005. S2CID 12628857.
  265. ^ Arfstrom, J .; Hartmann, V. (2005). "Mars oqimining xususiyatlari, morenaga o'xshash tizmalar va jarliklar: Yerdagi analoglar va o'zaro munosabatlar". Ikar. 174 (2): 321–35. Bibcode:2005 yil avtoulov..174..321A. doi:10.1016 / j.icarus.2004.05.026.
  266. ^ Boshliq J. V .; Neukum, G.; Jaumann, R .; Xizinger, X .; Xauber, E .; Karr, M.; Masson, P .; Foing, B .; Hoffmann, H.; Kreslavskiy, M.; Verner, S .; Milkovich, S .; van Gasselt, S .; HRSC birgalikda tergovchi guruhi (2005). "Tropikdan o'rta kenglikgacha qor va muzning to'planishi, Marsdagi oqimi va muzligi". Tabiat. 434 (7031): 346–350. Bibcode:2005 yil Tabiat. 344..346H. doi:10.1038 / nature03359. PMID 15772652. S2CID 4363630.
  267. ^ Xodimlar (2005 yil 17 oktyabr). "Marsning iqlimi oqimda: O'rta kenglikdagi muzliklar". Marstoday. Braun universiteti.
  268. ^ Berman, D .; va boshq. (2005). "Marsning Nyuton havzasi mintaqasidagi kraterlarning degradatsiyasida kavisli tizmalar va jarliklarning roli". Ikar. 178 (2): 465–86. Bibcode:2005 yil avtoulov..178..465B. doi:10.1016 / j.icarus.2005.05.011.
  269. ^ "Territs Valley Valley Travers". Hirise.lpl.arizona.edu. Olingan 16 yanvar, 2012.
  270. ^ "Jumbled Flow Patterns". Arizona universiteti. Olingan 16 yanvar, 2012.
  271. ^ a b v d e f g h men Yakoskiy, B. M .; Fillips, R. J. (2001). "Marsning o'zgaruvchan va iqlim tarixi". Tabiat. 412 (6843): 237–244. Bibcode:2001 yil natur.412..237J. doi:10.1038/35084184. PMID 11449285.
  272. ^ a b v d e Chaufray, J. Y .; va boshq. (2007). "Marsning quyosh shamollari bilan o'zaro ta'siri: Mars tojining shakllanishi va atmosferaning kosmosga yo'qolishi" (PDF). Geofizik tadqiqotlar jurnali. 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029 / 2007JE002915.
  273. ^ a b v Chevrier, V .; va boshq. (2007). "Filosilikatlarning termodinamikasidan aniqlangan Marsning dastlabki geokimyoviy muhiti". Tabiat. 448 (7149): 60–63. Bibcode:2007 yil natur.448 ... 60C. doi:10.1038 / nature05961. PMID 17611538. S2CID 1595292.
  274. ^ a b v Ketling, D. C. (2007). "Mars: loydagi qadimiy barmoq izlari". Tabiat. 448 (7149): 31–32. Bibcode:2007 yil natur.448 ... 31C. doi:10.1038 / 448031a. PMID 17611529. S2CID 4387261.
  275. ^ Andrews-Hanna, J. C .; va boshq. (2007). "Meridiani Planum va Marsning global gidrologiyasi". Tabiat. 446 (7132): 163–6. Bibcode:2007 yil natur.446..163A. doi:10.1038 / nature05594. PMID 17344848. S2CID 4428510.
  276. ^ Morris, R. V .; va boshq. (2001). "Mauna Kea vulqoni (Gavayi) dan olingan fillosilikat bilan kam palagonitik chang: Mars magnit changlari uchun mineralogik analog?". Geofizik tadqiqotlar jurnali. 106 (E3): 5057-5083. Bibcode:2001JGR ... 106.5057M. doi:10.1029 / 2000JE001328.
  277. ^ Chevrier, V .; va boshq. (2006). "CO2 + (H2O yoki H2O2) atmosferasida temirning ob-havoning ta'siri: Mars sirtidagi ob-havo jarayonlarining ta'siri". Geochimica va Cosmochimica Acta. 70 (16): 4295–4317. Bibcode:2006GeCoA..70.4295C. doi:10.1016 / j.gca.2006.06.1368.
  278. ^ Bibring, J-P .; va boshq. (2006). "OMEGA / Mars Express ma'lumotlaridan olingan global mineralogik va suvli marslar tarixi". Ilm-fan. 312 (5772): 400–4. Bibcode:2006 yil ... 312..400B. doi:10.1126 / science.1122659. PMID 16627738.
  279. ^ Makeven, A. S.; va boshq. (2007). "Marsdagi suv bilan bog'liq geologik faoliyatga yaqinroq qarash". Ilm-fan. 317 (5845): 1706–1709. Bibcode:2007 yil ... 317.1706M. doi:10.1126 / science.1143987. PMID 17885125. S2CID 44822691.
  280. ^ Schorghofer, Norbert (2007). "Marsdagi muzlik davrining dinamikasi" (PDF). Tabiat. 449 (7159): 192–194. Bibcode:2007 yil natur.449..192S. doi:10.1038 / nature06082. PMID 17851518. S2CID 4415456. Arxivlandi asl nusxasi (PDF) 2018 yil 13 yanvarda. Olingan 12 yanvar, 2018.
  281. ^ Dikson, Jeyms L.; Boshliq, Jeyms V.; Marchant, Devid R. (2008). "Marsdagi dixotomiya chegarasida kechiktirilgan Amazon muzligi: muzlik qalinligi maksimal va ko'p muzlik fazalariga dalil". Geologiya. 36 (5): 411–4. Bibcode:2008 yil Geo .... 36..411D. doi:10.1130 / G24382A.1. S2CID 14291132.
  282. ^ Boshliq J. V .; III; Xantal, J. F.; Kreslavskiy, M. A .; Milliken, R. E .; Marchant, D. R. (2003). "Marsda so'nggi muzlik davrlari". Tabiat. 426 (6968): 797–802. Bibcode:2003 yil natur.426..797H. doi:10.1038 / tabiat02114. PMID 14685228. S2CID 2355534.
  283. ^ Smit, Ishoq B.; Puttsig, Nataniel E.; Xolt, Jon V.; Fillips, Rojer J. (2016 yil 27-may). "Marsning qutbli konlarida qayd etilgan muzlik davri". Ilm-fan. 352 (6289): 1075–1078. Bibcode:2016Sci ... 352.1075S. doi:10.1126 / science.aad6968. PMID 27230372.
  284. ^ Levrard, B .; Unut, F.; Montmessian, F .; Laskar, J. (2004). "So'nggi muzlarga boy konlar Marsda yuqori kengliklarda past oblik paytida beqaror ekvatorial muzning sublimatsiyasi natijasida hosil bo'lgan". Tabiat. 431 (7012): 1072–1075. Bibcode:2004 yil natur.431.1072L. doi:10.1038 / tabiat03055. PMID 15510141. S2CID 4420650.
  285. ^ a b v "Mars muzlik davridan paydo bo'lishi mumkin". ScienceDaily. MLA NASA / Reaktiv harakatlanish laboratoriyasi. 2003 yil 18-dekabr.
  286. ^ Unut, F.; va boshq. (2006). "Atmosfera yog'inlarining yuqori darajada yog'ishi natijasida Marsda muzliklarning paydo bo'lishi". Ilm-fan. 311 (5759): 368–71. Bibcode:2006 yil ... 311..368F. doi:10.1126 / science.1120335. PMID 16424337. S2CID 5798774.
  287. ^ Xantal, J .; va boshq. (2001). "Yaqinda er yuzidagi muzlarni aniqlashdan Marsdagi so'nggi iqlim o'zgarishiga dalillar". Tabiat. 412 (6845): 411–4. Bibcode:2001 yil natur.412..411M. doi:10.1038/35086515. PMID 11473309. S2CID 4409161.
  288. ^ Kreslavskiy, M.; Boshliq, J. (2002). "Mars: tabiat va evolyutsiyasi yosh kenglikka bog'liq suv-muzga boy mantiya (PDF). Geofizik tadqiqotlar xatlari. 29 (15): 14–1–14–4. Bibcode:2002 yilGeoRL..29.1719K. doi:10.1029 / 2002GL015392.
  289. ^ Bitti, Kelli (2018 yil 23-yanvar). "Marslik qoyalarida ochilgan suv muzi - osmon va teleskop". Osmon va teleskop. Olingan 3 oktyabr, 2018.
  290. ^ Astrobiologiya strategiyasi 2015 Arxivlandi 2016 yil 22-dekabr, soat Orqaga qaytish mashinasi (PDF) NASA.
  291. ^ Konrad, P. G.; Archer, D .; Koll, P .; De La Torre, M.; Edgett, K .; Eigenbrode, J. L .; Fisk, M .; Freissenet, C .; Frants, H .; va boshq. (2013). "Geyl krateridagi yashash qobiliyatini baholash: dastlabki natijalar natijalari". 44-Oy va sayyora fanlari konferentsiyasi. 1719 (1719): 2185. Bibcode:2013LPI .... 44.2185C.
  292. ^ Marsni o'rganish bo'yicha astrobiologiya strategiyasi bo'yicha qo'mita; Milliy tadqiqot kengashi (2007). "Mars missiyalari uchun sayyoralarni himoya qilish". Marsni o'rganish bo'yicha astrobiologiya strategiyasi. Milliy akademiyalar matbuoti. 95-98 betlar. ISBN 978-0-309-10851-5.
  293. ^ Deyli, Jeyson (2017 yil 6-iyul). "Mars yuzasi mikroblarning hayoti uchun juda zaharli bo'lishi mumkin - Marsda keng tarqalgan UV nurlanishi va perxloratlarning birikmasi bakteriyalar uchun o'lik bo'lishi mumkin". Smithsonian. Olingan 8-iyul, 2017.
  294. ^ Uodsvort, Jenifer; Cockell, Charles S. (2017 yil 6-iyul). "Marsdagi perkloratlar ultrabinafsha nurlarining bakteriozid ta'sirini kuchaytiradi". Ilmiy ma'ruzalar. 7 (4662): 4662. Bibcode:2017 yil NatSR ... 7.4662W. doi:10.1038 / s41598-017-04910-3. PMC 5500590. PMID 28684729.
  295. ^ "NASA astrobiologiya strategiyasi" (PDF). NASA. 2015. Arxivlangan asl nusxasi (PDF) 2016 yil 22 dekabrda. Olingan 5 sentyabr, 2018.
  296. ^ "Marsni o'rganish: Missiyalar". Marsprogram.jpl.nasa.gov. Olingan 19 dekabr, 2010.
  297. ^ "Viking orbiterning Marsga qarashlari". History.nasa.gov. Olingan 19 dekabr, 2010.
  298. ^ "ch5". NASA tarixi. NASA. Olingan 19 dekabr, 2010.
  299. ^ "Kraterlar". NASA. Olingan 19 dekabr, 2010.
  300. ^ Morton, O. (2002). Xaritada Mars. Pikador, Nyu-York.
  301. ^ Arvidson, R; Gooding, Jeyms L.; Mur, Genri J. (1989). "Viking Landers tomonidan tasvirlangan, namuna olingan va tahlil qilingan Mars yuzasi". Geofizika sharhlari. 27 (1): 39–60. Bibcode:1989RvGeo..27 ... 39A. doi:10.1029 / RG027i001p00039.
  302. ^ Klark, B.; Berd, AK; Roz Jr., XJ; Toulmin P, 3-chi; Keil, K; Kastro, AJ; Kelliher, WC; Rou, CD; Evans, PH (1976). "Viking qo'nish joylarida marslik namunalarini noorganik tahlil qilish". Ilm-fan. 194 (4271): 1283–1288. Bibcode:1976Sci ... 194.1283C. doi:10.1126 / science.194.4271.1283. PMID 17797084. S2CID 21349024.
  303. ^ Xofen, T.M .; va boshq. (2003). "Marsning Nili Fosse mintaqasida Olivin kashf etilishi". Ilm-fan. 302 (5645): 627–630. Bibcode:2003Sci ... 302..627H. doi:10.1126 / science.1089647. PMID 14576430. S2CID 20122017.
  304. ^ Xofen, T .; Klark, RN; Bandfild, JL; Smit, tibbiyot; Pearl, JC; Kristensen, PR (2003). "Marsning Nili Fosse mintaqasida Olivin kashf etilishi". Ilm-fan. 302 (5645): 627–630. Bibcode:2003Sci ... 302..627H. doi:10.1126 / science.1089647. PMID 14576430. S2CID 20122017.
  305. ^ Malin, Maykl S.; Edgett, Kennet S. (2001). "Mars Global Surveyor Mars Orbiter kamerasi: sayyoralararo kruiz asosiy missiya orqali". Geofizik tadqiqotlar jurnali. 106 (E10): 23429-2355. Bibcode:2001JGR ... 10623429M. doi:10.1029 / 2000JE001455. S2CID 129376333.
  306. ^ "Atmosfera va meteorologik xususiyatlar". NASA.
  307. ^ a b Golombek, M. P.; Kuk, R. A .; Ekonomou, T .; Folkner, V. M.; Haldemann, A. F. C .; Kallemeyn, P. H .; Knudsen, J. M .; Manning, R. M .; Mur, H. J .; Parker, T. J .; Rider, R .; Shofild, J. T .; Smit, P. H.; Vaughan, R. M. (1997). "Mars Pathfinder missiyasining umumiy ko'rinishi va qo'nish joyining bashoratlarini baholash". Ilm-fan. 278 (5344): 1743–1748. Bibcode:1997 yil ... 278.1743G. doi:10.1126 / science.278.5344.1743. PMID 9388167.
  308. ^ "Mars Odisseya: Newsroom". Mars.jpl.nasa.gov. 2002 yil 28 may.
  309. ^ a b Feldman, Vashington; va boshq. (2004). "Yer yuzidagi vodorodning Marsda global tarqalishi". Geofizik tadqiqotlar jurnali. 109. Bibcode:2004JGRE..10909006F. doi:10.1029 / 2003JE002160.
  310. ^ Murche, S .; Xantal, Jon; Bishop, Janice; Boshliq, Jeyms; Pieters, Karle; Erard, Stefan (1993). "Marsdagi yorqin mintaqalarning spektral xususiyatlaridagi fazoviy o'zgarishlar". Ikar. 105 (2): 454–468. Bibcode:1993 yil avtoulov..105..454M. doi:10.1006 / icar.1993.1141.
  311. ^ "Bell uchun uy sahifasi (1996 y.) Geokimyoviy jamiyat qog'ozi". Marswatch.tn.cornell.edu. Olingan 19 dekabr, 2010.
  312. ^ Feldman, V.C .; Boynton, V. V.; Tokar, R. L .; Prettyman, T. H.; Gasnault, O .; Squyres, S. V.; Elfik, R. C .; Lourens, D. J .; Louson, S. L .; Moris, S .; Makkinni, G. V.; Mur, K. R .; Reedy, R. C. (2002). "Marsdan neytronlarning global tarqalishi: Mars Odisseya natijalari". Ilm-fan. 297 (5578): 75–78. Bibcode:2002 yil ... 297 ... 75F. doi:10.1126 / science.1073541. PMID 12040088. S2CID 11829477.
  313. ^ Mitrofanov, I .; Anfimov, D .; Kozyrev, A .; Litvak M.; Sanin, A .; Tret'yakov, V .; Krilov, A .; Shvetsov, V .; Boynton, V.; Shinoxara, C .; Xamara, D .; Saunders, R. S. (2002). "Yuqori energiyali neytron detektoridan olinadigan yer osti vodorodining xaritalari, Mars Odisseya". Ilm-fan. 297 (5578): 78–81. Bibcode:2002Sci ... 297 ... 78M. doi:10.1126 / science.1073616. PMID 12040089. S2CID 589477.
  314. ^ Boynton, V. V.; Feldman, V.C .; Squyres, S. V.; Prettyman, T. H.; Bryukner, J .; Evans, L. G.; Reedy, R. C .; Starr, R .; Arnold, J. R .; Dreyk, D. M .; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I .; d'Uston, C .; Vanke, H.; Gasnault, O .; Hamara, D. K .; Jeyn, D. M .; Marcialis, R. L .; Moris, S .; Mixeeva, I .; Teylor, G. J .; Tokar, R .; Shinohara, C. (2002). "Vodorodning Marsga yaqin yuzasida tarqalishi: yer osti muzlari konlari uchun dalil". Ilm-fan. 297 (5578): 81–85. Bibcode:2002 yil ... 297 ... 81B. doi:10.1126 / science.1073722. PMID 12040090. S2CID 16788398.
  315. ^ "Dao Vallis". Mars Odisseyasi missiyasi. MAVZU. 2002 yil 7-avgust. Olingan 19 dekabr, 2010.
  316. ^ a b Smit, P. H.; Tamppari, L .; Arvidson, R. E.; Bass D .; Blaney, D .; Boynton, V.; Karsuell, A .; Ketling, D .; Klark, B.; O'rdak, T .; DeJong, E .; Fisher, D.; Gets, V.; Gunnlaugson, P.; Xecht M .; Xipkin, V .; Xofman, J .; Xvid, S .; Keller, H .; Kounaves, S .; Lange, C. F.; Lemmon M.; Madsen, M.; Malin M.; Markevich, V.; Marshall, J .; Makkey, C .; Mellon, M.; Mikelanceli, D.; va boshq. (2008). "Feniks missiyasining maxsus bo'limiga kirish: qo'nish joyini tavsiflash tajribalari, missiyani ko'rib chiqish va kutilayotgan fan". Geofizik tadqiqotlar jurnali. 113 (E12): E00A18. Bibcode:2008JGRE..113.0A18S. doi:10.1029 / 2008JE003083. hdl:2027.42/94752. S2CID 38911896.
  317. ^ "NASA ma'lumotlari Marsdagi suv va vulqonlar to'g'risida yangi nur sochdi". NASA. 2010 yil 9 sentyabr. Olingan 21 mart, 2014.
  318. ^ Mellon, M.; Jakoskiy, B. (1993). "Marsda er osti muzlarining issiqlik va diffuzion barqarorligining geografik o'zgarishlari". Geofizik tadqiqotlar jurnali. 98 (E2): 3345-33364. Bibcode:1993JGR .... 98.3345M. doi:10.1029 / 92JE02355.
  319. ^ "Marsda suvni tasdiqlash". Nasa.gov. 2008 yil 20-iyun.
  320. ^ Jonson, Jon (2008 yil 1-avgust). "Marsda suv bor, NASA tasdiqlaydi". Los Anjeles Tayms.
  321. ^ a b "Marsdagi tuproq iflosligi". SPACE.com. Olingan 19 dekabr, 2010.
  322. ^ a b v Martines, G. M. & Renno, N. O. (2013). "Marsdagi suv va sho'r suvlar: MSL uchun dolzarb dalillar va natijalar". Kosmik fanlarga oid sharhlar. 175 (1–4): 29–51. Bibcode:2013 yil SSSRv..175 ... 29M. doi:10.1007 / s11214-012-9956-3.
  323. ^ Renno, Nilton O.; Bos, Brent J.; Ketling, Devid; Klark, Benton S.; Daryo, chiziq; Fisher, Devid; Gets, Uolter; Xviid, Stubbe F.; Keller, Xorst Uve; Kok, Jasper F.; Kounaves, Samuel P.; Ler, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markevich, Voytsex J.; Marshal, Jon; MakKay, Kristofer; Mehta, Manish; Smit, Maylz; Zorzano, M. P.; Smit, Piter X.; Stoker, Kerol; Yosh, Suzanne M. M. (2009). "Feniks qo'nish joyida suyuq suv uchun mumkin bo'lgan fizik va termodinamik dalillar". Geofizik tadqiqotlar jurnali. 114 (E1): E00E03. Bibcode:2009JGRE..114.0E03R. doi:10.1029 / 2009JE003362. hdl:2027.42/95444. S2CID 55050084.
  324. ^ Chang, Kennet (2009 yil 16 mart). "Mars Lander fotosuratlaridagi bloklar munozarani qo'zg'atadi: ular suvmi?". New York Times (onlayn).
  325. ^ "Suyuq sho'r suv Marsda bo'lishi ehtimoldan yiroq emas, yangi tahlillar". ScienceDaily. 2009 yil 20 mart.
  326. ^ "Astrobiologiya Top-10: Muzlatish uchun juda sho'r". Astrobio.net. Olingan 19 dekabr, 2010.
  327. ^ Xecht, M. X .; Kounaves, S. P.; Kvinn, R. K .; G'arbiy, S. J .; Yosh, S. M. M .; Ming, D. V.; Ketling, D.C .; Klark, B. C .; Boynton, V. V.; Xofman, J .; DeFlores, L. P.; Gospodinova, K .; Kapit, J .; Smit, P. H. (2009). "Feniks Lander uchastkasida perxlorat va mars tuproqlarining eruvchan kimyoviy moddalarini aniqlash". Ilm-fan. 325 (5936): 64–67. Bibcode:2009Sci ... 325 ... 64H. doi:10.1126 / science.1172466. PMID 19574385. S2CID 24299495.
  328. ^ Smit, P. H.; Tamppari, L. K .; Arvidson, R. E.; Bass D .; Blaney, D .; Boynton, V. V.; Karsuell, A .; Ketling, D.C .; Klark, B. C .; O'rdak, T .; DeJong, E .; Fisher, D.; Gets, V.; Gunnlaugsson, H. P.; Xecht, M. X .; Xipkin, V .; Xofman, J .; Xvid, S. F .; Keller, H. U .; Kounaves, S. P.; Lange, C. F .; Lemmon, M. T .; Madsen, M. B.; Markevich, V. J.; Marshall, J .; McKay, C. P.; Mellon, M. T .; Ming, D. V.; Morris, R. V .; va boshq. (2009). "H2O Feniks qo'nadigan saytida ". Ilm-fan. 325 (5936): 58–61. Bibcode:2009Sci ... 325 ... 58S. doi:10.1126 / science.1172339. PMID 19574383. S2CID 206519214.
  329. ^ Uaytvay, J. A .; Komguem, L .; Dikkinson, C .; Kuk, C .; Illnicki, M .; Seabrook, J .; Popovici, V .; Duck, T. J.; Devy, R .; Teylor, P. A .; Patxak, J .; Fisher, D.; Karsuell, A. I .; Deyli, M.; Xipkin, V .; Zent, ​​A. P.; Xecht, M. X .; Vud, S. E .; Tamppari, L. K .; Renno, N .; Mur, J. E .; Lemmon, M. T .; Derden, F.; Smit, P. H. (2009). "Mars suvi-muzli bulutlar va yog'ingarchiliklar". Ilm-fan. 325 (5936): 68–70. Bibcode:2009Sci ... 325 ... 68W. doi:10.1126 / science.1172344. PMID 19574386. S2CID 206519222.
  330. ^ "CSA - Yangiliklar". Asc-csa.gc.ca. 2009 yil 2-iyul. Arxivlangan asl nusxasi 2011 yil 5-iyulda.
  331. ^ "Mars Exploration Rover Missiyasi: press-relizlar". Marsrovers.jpl.nasa.gov. 2004 yil 5 mart.
  332. ^ "NASA - Mars Rover Spirit kashf etdi, o'tgan o'tmishdagi dahshatli dalillar". NASA. 2007 yil 21-may.
  333. ^ Bertster, Gay (2007 yil 10-dekabr). "Mars Rover bug'li marslik o'tmishining alomatlarini tekshirmoqda". Matbuot xabari. Reaktiv harakatlanish laboratoriyasi, Pasadena, Kaliforniya.
  334. ^ Klingelhofer, G.; va boshq. (2005). "XXXVI jild". Oy sayyorasi. Ilmiy ish. (mavhum): 2349.
  335. ^ Shreder, C .; va boshq. (2005). "Geofizik tadqiqotlar jurnali" (referat). 7. Evropa Geoscience Union, Bosh assambleyasi: 10254. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  336. ^ Morris, S .; va boshq. (2006). "Gusev krateridagi tosh, tuproq va changning Messbauer mineralogiyasi, Mars: tekislikdagi zaif o'zgargan olivin bazaltasi va Kolumbiya tepaliklarida keng tarqalgan o'zgargan bazalt orqali ruh jurnali". J. Geofiz. Res. 111 (E2): n / a. Bibcode:2006 yil JGRE..111.2S13M. doi:10.1029 / 2005je002584. hdl:1893/17159.
  337. ^ Ming, D .; Mittlefehldt, D. V.; Morris, R. V .; Oltin, D. C .; Gellert, R .; Yen, A .; Klark, B. C .; Squyres, S. V.; Farrand, V. X.; Ruff, S. V.; Arvidson, R. E.; Klingelxöfer, G.; McSween, H. Y .; Rodionov, D. S .; Shreder, C .; De Souza, P. A .; Vang, A. (2006). "Gusev krateri Kolumbiya tepaliklarida, Marsda suvli jarayonlarning geokimyoviy va mineralogik ko'rsatkichlari". J. Geofiz. Res. 111 (E2): E02S12. Bibcode:2006 yil JGRE..111.2S12M. doi:10.1029 / 2005JE002560. hdl:1893/17114.
  338. ^ Bell, J, ed. (2008). Mars yuzasi. Kembrij universiteti matbuoti. ISBN 978-0-521-86698-9.
  339. ^ Morris, R. V .; Ruff, S. V.; Gellert, R .; Ming, D. V.; Arvidson, R. E.; Klark, B. C .; Oltin, D. C .; Zebax, K .; Klingelhofer, G.; Shreder, C .; Fleycher, I .; Yen, A. S .; Squyres, S. W. (2010 yil 4-iyun). "Marsda uzoq vaqtdan beri qidirib topilgan nodir toshlar topildi". Ilm-fan. Scainedaily.com. 329 (5990): 421–424. Bibcode:2010Sci ... 329..421M. doi:10.1126 / science.1189667. PMID 20522738. S2CID 7461676.
  340. ^ Morris, Richard V.; Ruff, Stiven V.; Gellert, Ralf; Ming, Duglas V.; Arvidson, Raymond E.; Klark, Benton S.; Oltin, D. C .; Zebax, Kirsten; va boshq. (2010 yil 3-iyun). "Marsda karbonatga boy chiqindilarni Spirit Rover tomonidan aniqlash". Ilm-fan. 329 (5990): 421–424. Bibcode:2010Sci ... 329..421M. doi:10.1126 / science.1189667. PMID 20522738. S2CID 7461676.
  341. ^ "Imkoniyat Rover kuchli dalillarni topdi Meridiani Planum namlangan". Olingan 8-iyul, 2006.
  342. ^ Harvud, Uilyam (2013 yil 25-yanvar). "Opportunity rover Mars operatsiyalarining 10-yiliga o'tadi". Endi kosmik parvoz.
  343. ^ Benison, KC; Lakler, DA (2003). "Zamonaviy va qadimiy o'ta kislotali sho'rlangan konlar: mars muhitlari uchun er usti analoglari?". Astrobiologiya. 3 (3): 609–618. Bibcode:2003 AsBio ... 3..609B. doi:10.1089/153110703322610690. PMID 14678669. S2CID 36757620.
  344. ^ Benison, K; Bowen, B (2006). "Kislota sho'rlangan ko'l tizimlari o'tmishdagi muhit va Marsda hayotni izlash to'g'risida ma'lumot beradi". Ikar. 183 (1): 225–229. Bibcode:2006 yil avtoulov..183..225B. doi:10.1016 / j.icarus.2006.02.018.
  345. ^ Osterloo, MM; Xemilton, VE; Bandfild, JL; Glotch, TD; Baldrij, AM; Kristensen, PR; Tornabene, LL; Anderson, FS (2008). "Marsning janubiy tog'lik qismidagi xlor ko'taruvchi materiallar". Ilm-fan. 319 (5870): 1651–1654. Bibcode:2008 yil ... 319.1651O. CiteSeerX 10.1.1.474.3802. doi:10.1126 / science.1150690. PMID 18356522. S2CID 27235249.
  346. ^ Grotzinger, J .; Milliken, R., eds. (2012). "Marsning cho'kindi geologiyasi". SEPM.
  347. ^ "HiRISE - Tasvirlashning yuqori aniqlikdagi ilmiy tajribasi". Arizona shtatidagi HiriUniversiteti. Olingan 19 dekabr, 2010.
  348. ^ "Maqsad zonasi: Nilosyrtis? | Mars Odissey missiyasi MAVZU". Themis.asu.edu. Olingan 19 dekabr, 2010.
  349. ^ Mellon, M. T .; Yakoskiy, B. M.; Postawko, S. E. (1997). "Marsda ekvatorial er osti muzining saqlanib qolishi". J. Geofiz. Res. onlinelibrary.wiley.com. 102 (E8): 19357-19369. Bibcode:1997JGR ... 10219357M. doi:10.1029 / 97JE01346.
  350. ^ Arfstrom, Jon D. (2012). "Marsdagi ekvatorial muz qatlamlarining kontseptual modeli. J" (PDF). Yer sayyoralarining qiyosiy klimatologiyasi. Oy va sayyora instituti.
  351. ^ Byorn, Sheyn; Dundas, Kolin M.; Kennedi, Megan R.; Mellon, Maykl T.; Makeven, Alfred S.; Kall, Selbi S.; Daubar, Ingrid J .; Shean, David E.; Seelos, Kimberli D.; Murchie, Skott L.; Kantor, Bryus A.; Arvidson, Raymond E.; Edgett, Kennet S.; Reufer, Andreas; Tomas, Nikolas; Xarrison, Tanya N.; Posiolova, Liliya V.; Seelos, Frank P. (2009). "Marsda o'rta kenglikdagi er osti muzlarining yangi ta'sir kraterlaridan tarqalishi". Ilm-fan. 325 (5948): 1674–1676. Bibcode:2009 yil ... 325.1674B. doi:10.1126 / science.1175307. PMID 19779195. S2CID 10657508.
  352. ^ "Mars Kraterlarida suv muzlari paydo bo'ldi". SPACE.com. Olingan 19 dekabr, 2010.
  353. ^ S. Nerozzi, J.W. Xolt (22 may, 2019). "Marsning shimoliy qutbida ko'milgan muz va qum qopqoqlari: ikkilamchi o'zgarishlarning rekordini SHARAD bilan aniqlash". Geofizik tadqiqotlar xatlari. 46 (13): 7278–7286. Bibcode:2019GeoRL..46.7278N. doi:10.1029 / 2019GL082114. hdl:10150/634098.CS1 maint: mualliflar parametridan foydalanadi (havola)
  354. ^ Lujendra Oxha, Stefano Nerozzi, Kevin Lyuis (2019 yil 22-may). "Gravitatsiya va topografiyadan Marsning Shimoliy qutb qopqog'idagi kompozitsion cheklovlar". Geofizik tadqiqotlar xatlari. 46 (15): 8671–8679. Bibcode:2019GeoRL..46.8671O. doi:10.1029 / 2019GL082294.CS1 maint: mualliflar parametridan foydalanadi (havola)
  355. ^ Soare, E. va boshq. 2019. Utopia Planitia, Marsning o'rta kengliklarida mumkin bo'lgan (yopiq tizim) pingo va muzli xanjar / termokarst komplekslari. Ikar. https://doi.org/10.1016/j.icarus.2019.03.010
  356. ^ Braun, Dveyn (2012 yil 30 oktyabr). "NASA Rover-ning birinchi tuproq tadqiqotlari barmoq izi marslik minerallariga yordam beradi". NASA.
  357. ^ Brown, Dwayne; Vebster, Yigit; Nil-Jons, Nans (2012 yil 3-dekabr). "NASA Mars Rover birinchi marslik tuproq namunalarini to'liq tahlil qildi". NASA.
  358. ^ Chang, Ken (2012 yil 3-dekabr). "Mars Rover kashfiyoti fosh etildi". Nyu-York Tayms.
  359. ^ a b Vebster, Yigit; Braun, Dveyn (2013 yil 18 mart). "Qiziqish Mars Rover suvda trendni ko'rmoqda". NASA.
  360. ^ Rincon, Pol (2013 yil 19 mart). "Qiziquvchanlik ko'zni qamashtiradigan oppoq interyerni ochish uchun toshni buzadi". BBC.
  361. ^ Xodimlar (2013 yil 20 mart). "Qizil sayyora oq toshni yo'taladi va olimlar g'azablanadilar". MSN. Arxivlandi asl nusxasi 2013 yil 23 martda.
  362. ^ Liberman, Josh (2013 yil 26 sentyabr). "Mars suvi topildi:" Curiosity Rover "marslik tuproqlarida mo'l-ko'l, osonlikcha foydalanish mumkin bo'lgan suvni ochdi". iSciencetimes.
  363. ^ Leshin, L. A .; va boshq. (2013 yil 27 sentyabr). "Mars Curiosity Rover bilan Mars jarimalarining uchuvchan, izotopi va organik tahlili". Ilm-fan. 341 (6153): 1238937. Bibcode:2013 yil ... 341E ... 3L. doi:10.1126 / science.1238937. PMID 24072926. S2CID 206549244.
  364. ^ a b Grotzinger, Jon (26 sentyabr, 2013). "Maxsus nashrga kirish: Mars Roverning qiziqishi bilan sirt materiallarini tahlil qilish". Ilm-fan. 341 (6153): 1475. Bibcode:2013 yil ... 341.1475G. doi:10.1126 / science.1244258. PMID 24072916.
  365. ^ Nil-Jons, Nensi; Zubritskiy, Yelizaveta; Vebster, Yigit; Martialay, Meri (2013 yil 26 sentyabr). "Curiosity's SAM Instrument suvdan va boshqa narsalardan sirt namunasida topadi". NASA.
  366. ^ a b Vebster, Yigit; Braun, Dueyn (2013 yil 26 sentyabr). "Ilm-fan turli xil qo'nish maydonidan qiziqishni kuchaytiradi". NASA.
  367. ^ a b Chang, Kennet (2013 yil 1-oktabr). "Marsda pay kirlarni urish". Nyu-York Tayms.
  368. ^ a b Meslin, P.-Y .; va boshq. (2013 yil 26 sentyabr). "ChemCam tomonidan Marsning Geyl kraterida kuzatilgan tuproq xilma-xilligi va gidratatsiyasi". Ilm-fan. 341 (6153): 1238670. Bibcode:2013Sci ... 341E ... 1M. doi:10.1126 / science.1238670. PMID 24072924. S2CID 7418294.
  369. ^ Stolper, EM; Beyker, MB; Nyukombe, M.E .; Shmidt, M.E .; Treman, A.H .; Amakivachcha, A .; Dyar, MD; Fisk, M.R .; Gellert, R .; King, P.L .; Leshin, L .; Moris, S .; Maklennan, SM; Minitti, M.E .; Perret, G.; Roulend, S .; Sautter, V .; Vienz, RC .; MSL ScienceTeam (2013). "Jake_M Petrokimyosi: Marslik Mugearit" (PDF). Ilm-fan. AAAS. 341 (6153): 1239463. Bibcode:2013Sci ... 341E ... 4S. doi:10.1126 / science.1239463. PMID 24072927. S2CID 16515295.
  370. ^ Vebster, Yigit; Nil-Jons, Nensi; Braun, Dvayn (2014 yil 16-dekabr). "NASA Rover Marsda faol va qadimiy organik kimyo topadi". NASA. Olingan 16 dekabr, 2014.
  371. ^ Chang, Kennet (2014 yil 16-dekabr). "'Ajoyib lahza ': Rover Mars hayot kechirishi mumkin bo'lgan izni topdi ". Nyu-York Tayms. Olingan 16 dekabr, 2014.
  372. ^ Maxafi, P. R .; va boshq. (2014 yil 16-dekabr). "Mars Atmosferasi - Marsdagi Hesperian gil minerallari D / Hidagi atmosfera evolyutsiyasining izi" (PDF). Ilm-fan. 347 (6220): 412–414. Bibcode:2015Sci ... 347..412M. doi:10.1126 / fan.1260291. PMID 25515119. S2CID 37075396.
  373. ^ Rincon, Pol (2015 yil 13-aprel). "Marsda topilgan suyuq suv dalillari". BBC yangiliklari. Olingan 15 aprel, 2015.
  374. ^ Klavin, Uitni (2015 yil 8 oktyabr). "NASA ning Curiosity Rover jamoasi Marsdagi qadimiy ko'llarni tasdiqladi". NASA. Olingan 9 oktyabr, 2015.
  375. ^ Grotzinger, JP (9 oktyabr, 2015). "Qadimgi ko'l konining yotqizilishi, eksgumatsiyasi va paleoklimati, Geyl krateri, Mars". Ilm-fan. 350 (6257): aac7575. Bibcode:2015Sci ... 350.7575G. doi:10.1126 / science.aac7575. PMID 26450214. S2CID 586848.
  376. ^ Amerika Geologik Jamiyati (2018 yil 3-noyabr). "To'fon toshqinining dalillari Marsning boshida suv ko'pligidan dalolat beradi". EurekAlert!. Olingan 5-noyabr, 2018.
  377. ^ Xaydari, Ezat; va boshq. (2018 yil 4-noyabr). "Gale krateridagi toshqin depozitlarining ahamiyati, Mars". Amerika Geologik Jamiyati. Olingan 5-noyabr, 2018.
  378. ^ Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R (25.07.2018). "Marsda subglasiyali suyuq suvning radiolokatsion dalillari". Ilm-fan. 361 (3699): 490–493. Bibcode:2018Sci ... 361..490O. doi:10.1126 / science.aar7268. hdl:11573/1148029. PMID 30045881. S2CID 206666385.
  379. ^ Xelton, Meri (25.07.2018). "Marsda suyuq suvli" ko'l "aniqlandi". BBC yangiliklari. Olingan 25 iyul, 2018.

Bibliografiya

  • Boyz, Jozef, M. (2008). Smitsonning Mars kitobi; Konecky & Konecky: Old Saybrook, KT, ISBN 978-1-58834-074-0
  • Karr, Maykl, H. (1996). Marsdagi suv; Oksford universiteti matbuoti: Nyu-York, ISBN 0-19-509938-9.
  • Karr, Maykl, H. (2006). Mars yuzasi; Kembrij universiteti matbuoti: Kembrij, Buyuk Britaniya, ISBN 978-0-521-87201-0.
  • Xartmann, Uilyam, K. (2003). Marsga sayohatchilar uchun qo'llanma: Qizil sayyoraning sirli manzaralari; Ishchi: Nyu-York, ISBN 0-7611-2606-6.
  • Hanlon, Maykl (2004). Haqiqiy Mars: Ruh, Imkoniyat, Mars Ekspresi va Qizil sayyorani o'rganish uchun izlanish; Konstable: London, ISBN 1-84119-637-1.
  • Kargel, Jeffri, S. (2004). Mars: Issiqroq Wetter sayyorasi; Springer-Praksis: London, ISBN 1-85233-568-8.
  • Morton, Oliver (2003). Marsni xaritalash: fan, tasavvur va dunyoning tug'ilishi; Pikador: Nyu-York, ISBN 0-312-42261-X.
  • Sheehan, Uilyam (1996). Mars sayyorasi: Kuzatish va kashfiyot tarixi; Arizona universiteti matbuoti: Tusson, AZ, ISBN 0-8165-1640-5.
  • Viking Orbiter Imaging Team (1980). Viking Orbiterning Marsga qarashlari, Spritser, Ed .; NASA SP-441: Vashington shahar.

Tashqi havolalar

  1. ^ Shtayvervald, Bill (25.07.2018). "Hozirgi texnologiya yordamida Marsni o'zgartirish mumkin emas". NASA. Olingan 26-noyabr, 2018.