Yilda matematika , asosiy gipergeometrik qatorlar , yoki q -gipergeometrik qatorlar , bor q - analog ning umumlashtirilishi umumlashtirilgan gipergeometrik qatorlar , va o'z navbatida tomonidan umumlashtiriladi elliptik gipergeometrik qatorlar . Bir qator x n ketma-ket atamalarning nisbati bo'lsa, gipergeometrik deyiladi x n +1 /x n a ratsional funktsiya ning n . Agar ketma-ket atamalarning nisbati ratsional funktsiya bo'lsa q n , keyin qator asosiy gipergeometrik qator deyiladi. Raqam q asos deb ataladi.
Asosiy gipergeometrik qatorlar 2 φ1 (q a ,q β ;q γ ;q ,x ) birinchi tomonidan ko'rib chiqilgan Eduard Xayn (1846 ). U gipergeometrik qatorga aylanadi F (a, b; b;x ) bazada bo'lganda q 1 ga teng
Ta'rif
Asosiy gipergeometrik qatorlarning ikki shakli mavjud bir tomonlama asosiy gipergeometrik qatorlar φ va umumiyroq ikki tomonlama asosiy gipergeometrik qatorlar ψ bir tomonlama asosiy gipergeometrik qatorlar sifatida belgilanadi
j ϕ k [ a 1 a 2 … a j b 1 b 2 … b k ; q , z ] = ∑ n = 0 ∞ ( a 1 , a 2 , … , a j ; q ) n ( b 1 , b 2 , … , b k , q ; q ) n ( ( − 1 ) n q ( n 2 ) ) 1 + k − j z n { displaystyle ; _ {j} phi _ {k} left [{ begin {matrix} a_ {1} & a_ {2} & ldots & a_ {j} b_ {1} & b_ {2} & ldots & b_ {k} end {matrix}}; q, z right] = sum _ {n = 0} ^ { infty} { frac {(a_ {1}, a_ {2}, ldots , a_ {j}; q) _ {n}} {(b_ {1}, b_ {2}, ldots, b_ {k}, q; q) _ {n}}} chap ((- 1) ^ {n} q ^ {n tanlang 2} o'ng) ^ {1 + kj} z ^ {n}} qayerda
( a 1 , a 2 , … , a m ; q ) n = ( a 1 ; q ) n ( a 2 ; q ) n … ( a m ; q ) n { displaystyle (a_ {1}, a_ {2}, ldots, a_ {m}; q) _ {n} = (a_ {1}; q) _ {n} (a_ {2}; q) _ {n} ldots (a_ {m}; q) _ {n}} va
( a ; q ) n = ∏ k = 0 n − 1 ( 1 − a q k ) = ( 1 − a ) ( 1 − a q ) ( 1 − a q 2 ) ⋯ ( 1 − a q n − 1 ) { displaystyle (a; q) _ {n} = prod _ {k = 0} ^ {n-1} (1-aq ^ {k}) = (1-a) (1-aq) (1- aq ^ {2}) cdots (1-aq ^ {n-1})} bo'ladi q - o'zgargan faktorial .Bu eng muhim maxsus holat j = k +1, qachon bo'ladi
k + 1 ϕ k [ a 1 a 2 … a k a k + 1 b 1 b 2 … b k ; q , z ] = ∑ n = 0 ∞ ( a 1 , a 2 , … , a k + 1 ; q ) n ( b 1 , b 2 , … , b k , q ; q ) n z n . { displaystyle ; _ {k + 1} phi _ {k} left [{ begin {matrix} a_ {1} & a_ {2} & ldots & a_ {k} & a_ {k + 1} b_ {1} & b_ {2} & ldots & b_ {k} end {matrix}}; q, z right] = sum _ {n = 0} ^ { infty} { frac {(a_ {1} , a_ {2}, ldots, a_ {k + 1}; q) _ {n}} {(b_ {1}, b_ {2}, ldots, b_ {k}, q; q) _ {n }}} z ^ {n}.} Ushbu seriya deb nomlangan muvozanatli agar a 1 ... a k + 1 = b 1 ...b k q .Bu seriya deyiladi yaxshi tayyor agar a 1 q = a 2 b 1 = ... = a k + 1b k va juda yaxshi tayyor agar qo'shimcha ravishda a 2 = −a 3 = qa 1 1/2 . Bir tomonlama asosli gipergeometrik qator gipergeometrik qatorning q-analogidir
lim q → 1 j ϕ k [ q a 1 q a 2 … q a j q b 1 q b 2 … q b k ; q , ( q − 1 ) 1 + k − j z ] = j F k [ a 1 a 2 … a j b 1 b 2 … b k ; z ] { displaystyle lim _ {q to 1} ; _ {j} phi _ {k} left [{ begin {matrix} q ^ {a_ {1}} & q ^ {a_ {2}} & ldots & q ^ {a_ {j}} q ^ {b_ {1}} & q ^ {b_ {2}} & ldots & q ^ {b_ {k}} end {matrix}}; q, (q -1) ^ {1 + kj} z right] = ; _ {j} F_ {k} chap [{ begin {matrix} a_ {1} & a_ {2} & ldots & a_ {j} b_ {1} & b_ {2} & ldots & b_ {k} end {matrix}}; z right]} ushlaydi (Koekoek va Swarttouw (1996) harvtxt xatosi: maqsad yo'q: CITEREFKoekoekSwarttouw1996 (Yordam bering ) ). The ikki tomonlama asosiy gipergeometrik qatorlar ga mos keladigan ikki tomonlama gipergeometrik qator , deb belgilanadi
j ψ k [ a 1 a 2 … a j b 1 b 2 … b k ; q , z ] = ∑ n = − ∞ ∞ ( a 1 , a 2 , … , a j ; q ) n ( b 1 , b 2 , … , b k ; q ) n ( ( − 1 ) n q ( n 2 ) ) k − j z n . { displaystyle ; _ {j} psi _ {k} left [{ begin {matrix} a_ {1} & a_ {2} & ldots & a_ {j} b_ {1} & b_ {2} & ldots & b_ {k} end {matrix}}; q, z right] = sum _ {n = - infty} ^ { infty} { frac {(a_ {1}, a_ {2}, ldots, a_ {j}; q) _ {n}} {(b_ {1}, b_ {2}, ldots, b_ {k}; q) _ {n}}} chap ((- 1) ^ {n} q ^ {n tanlang 2} o'ng) ^ {kj} z ^ {n}.} Eng muhim maxsus holat bu j = k , qachon bo'ladi
k ψ k [ a 1 a 2 … a k b 1 b 2 … b k ; q , z ] = ∑ n = − ∞ ∞ ( a 1 , a 2 , … , a k ; q ) n ( b 1 , b 2 , … , b k ; q ) n z n . { displaystyle ; _ {k} psi _ {k} left [{ begin {matrix} a_ {1} & a_ {2} & ldots & a_ {k} b_ {1} & b_ {2} & ldots & b_ {k} end {matrix}}; q, z right] = sum _ {n = - infty} ^ { infty} { frac {(a_ {1}, a_ {2}, ldots, a_ {k}; q) _ {n}} {(b_ {1}, b_ {2}, ldots, b_ {k}; q) _ {n}}} z ^ {n}.} Bir tomonlama ketma-ketlikni birini belgilash orqali ikki tomonlama alohida holat sifatida olish mumkin b ga teng o'zgaruvchilar q , hech bo'lmaganda a o'zgaruvchilar kuchidir q bilan barcha shartlar kabi n <0 keyin yo'qoladi.
Oddiy seriyalar
Ba'zi bir qator oddiy iboralar o'z ichiga oladi
z 1 − q 2 ϕ 1 [ q q q 2 ; q , z ] = z 1 − q + z 2 1 − q 2 + z 3 1 − q 3 + … { displaystyle { frac {z} {1-q}} ; _ {2} phi _ {1} left [{ begin {matrix} q ; q q ^ {2} end { matritsa}} ;; q, z o'ng] = { frac {z} {1-q}} + { frac {z ^ {2}} {1-q ^ {2}}} + { frac {z ^ {3}} {1-q ^ {3}}} + ldots} va
z 1 − q 1 / 2 2 ϕ 1 [ q q 1 / 2 q 3 / 2 ; q , z ] = z 1 − q 1 / 2 + z 2 1 − q 3 / 2 + z 3 1 − q 5 / 2 + … { displaystyle { frac {z} {1-q ^ {1/2}}} ; _ {2} phi _ {1} left [{ begin {matrix} q ; q ^ {1 / 2} q ^ {3/2} end {matrix}} ;; q, z right] = { frac {z} {1-q ^ {1/2}}} + { frac { z ^ {2}} {1-q ^ {3/2}}} + { frac {z ^ {3}} {1-q ^ {5/2}}} + ldots} va
2 ϕ 1 [ q − 1 − q ; q , z ] = 1 + 2 z 1 + q + 2 z 2 1 + q 2 + 2 z 3 1 + q 3 + … . { displaystyle ; _ {2} phi _ {1} chap [{ begin {matrix} q ; - 1 - q end {matrix}} ;; q, z right] = 1 + { frac {2z} {1 + q}} + { frac {2z ^ {2}} {1 + q ^ {2}}} + { frac {2z ^ {3}} {1 + q ^ {3}}} + ldots.} The q -binomial teorema
The q -binomiya teoremasi (birinchi marta 1811 yilda nashr etilgan Geynrix Avgust Rot )[1] [2] ta'kidlaydi
1 ϕ 0 ( a ; q , z ) = ( a z ; q ) ∞ ( z ; q ) ∞ = ∏ n = 0 ∞ 1 − a q n z 1 − q n z { displaystyle ; _ {1} phi _ {0} (a; q, z) = { frac {(az; q) _ { infty}} {(z; q) _ { infty}} } = prod _ {n = 0} ^ { infty} { frac {1-aq ^ {n} z} {1-q ^ {n} z}}} bu shaxsni takroran qo'llash orqali keladi
1 ϕ 0 ( a ; q , z ) = 1 − a z 1 − z 1 ϕ 0 ( a ; q , q z ) . { displaystyle ; _ {1} phi _ {0} (a; q, z) = { frac {1-az} {1-z}} ; _ {1} phi _ {0} ( a; q, qz).} Maxsus holat a = 0 bilan chambarchas bog'liq q-eksponent .
Koshi binomial teoremasi Koshi binomial teoremasi - q-binomiya teoremasining alohida hodisasi.[3]
∑ n = 0 N y n q n ( n + 1 ) / 2 [ N n ] q = ∏ k = 1 N ( 1 + y q k ) ( | q | < 1 ) { displaystyle sum _ {n = 0} ^ {N} y ^ {n} q ^ {n (n + 1) / 2} { begin {bmatrix} N n end {bmatrix}} _ { q} = prod _ {k = 1} ^ {N} chap (1 + yq ^ {k} o'ng) qquad (| q | <1)} Ramanujan kimligi
Srinivasa Ramanujan shaxsini berdi
1 ψ 1 [ a b ; q , z ] = ∑ n = − ∞ ∞ ( a ; q ) n ( b ; q ) n z n = ( b / a , q , q / a z , a z ; q ) ∞ ( b , b / a z , q / a , z ; q ) ∞ { displaystyle ; _ {1} psi _ {1} chap [{ begin {matrix} a b end {matrix}}; q, z right] = sum _ {n = - infty} ^ { infty} { frac {(a; q) _ {n}} {(b; q) _ {n}}} z ^ {n} = { frac {(b / a, q, q / az, az; q) _ { infty}} {(b, b / az, q / a, z; q) _ { infty}}}} uchun amal qiladiq | <1 va |b /a | < |z | <1. uchun o'xshash identifikatorlar 6 ψ 6 { displaystyle ; _ {6} psi _ {6}} Beyli tomonidan berilgan. Bunday identifikatorlarni umumiylik deb tushunish mumkin Jakobi uch baravar mahsuloti teorema, uni q-qator yordamida yozish mumkin
∑ n = − ∞ ∞ q n ( n + 1 ) / 2 z n = ( q ; q ) ∞ ( − 1 / z ; q ) ∞ ( − z q ; q ) ∞ . { displaystyle sum _ {n = - infty} ^ { infty} q ^ {n (n + 1) / 2} z ^ {n} = (q; q) _ { infty} ; (- 1 / z; q) _ { infty} ; (- zq; q) _ { infty}.} Ken Ono tegishli narsalarni beradi rasmiy quvvat seriyalari [4]
A ( z ; q ) = d e f 1 1 + z ∑ n = 0 ∞ ( z ; q ) n ( − z q ; q ) n z n = ∑ n = 0 ∞ ( − 1 ) n z 2 n q n 2 . { displaystyle A (z; q) { stackrel { rm {def}} {=}} { frac {1} {1 + z}} sum _ {n = 0} ^ { infty} { frac {(z; q) _ {n}} {(- zq; q) _ {n}}} z ^ {n} = sum _ {n = 0} ^ { infty} (- 1) ^ { n} z ^ {2n} q ^ {n ^ {2}}.} Uotson konturining ajralmas qismi
Ning analogi sifatida Barns integral gipergeometrik qator uchun, Vatson buni ko'rsatdi
2 ϕ 1 ( a , b ; v ; q , z ) = − 1 2 π men ( a , b ; q ) ∞ ( q , v ; q ) ∞ ∫ − men ∞ men ∞ ( q q s , v q s ; q ) ∞ ( a q s , b q s ; q ) ∞ π ( − z ) s gunoh π s d s { displaystyle {} _ {2} phi _ {1} (a, b; c; q, z) = { frac {-1} {2 pi i}} { frac {(a, b; q) _ { infty}} {(q, c; q) _ { infty}}} int _ {- i infty} ^ {i infty} { frac {(qq ^ {s}, cq ^ {s}; q) _ { infty}} {(aq ^ {s}, bq ^ {s}; q) _ { infty}}} { frac { pi (-z) ^ {s} } { sin pi s}} ds} qutblari qaerda ( a q s , b q s ; q ) ∞ { displaystyle (aq ^ {s}, bq ^ {s}; q) _ { infty}} konturning chap tomonida, qolgan qutblar esa o'ng tomonda yotadi. Shunga o'xshash kontur integrali mavjud r +1 φr . Ushbu kontur integral integralning asosiy gipergeometrik funktsiyasining analitik davomini beradi z .
Matritsa versiyasi
Asosiy gipergeometrik matritsa funktsiyasini quyidagicha aniqlash mumkin:
2 ϕ 1 ( A , B ; C ; q , z ) := ∑ n = 0 ∞ ( A ; q ) n ( B ; q ) n ( C ; q ) n ( q ; q ) n z n , ( A ; q ) 0 := 1 , ( A ; q ) n := ∏ k = 0 n − 1 ( 1 − A q k ) . { displaystyle {} _ {2} phi _ {1} (A, B; C; q, z): = sum _ {n = 0} ^ { infty} { frac {(A; q) _ {n} (B; q) _ {n}} {(C; q) _ {n} (q; q) _ {n}}} z ^ {n}, quad (A; q) _ { 0}: = 1, quad (A; q) _ {n}: = prod _ {k = 0} ^ {n-1} (1-Aq ^ {k}).} Nisbat testi shuni ko'rsatadiki, bu matritsa funktsiyasi mutlaqo yaqinlashadi.[5]
Shuningdek qarang
Izohlar
^ Bressoud, D. M. (1981), "Tugatish uchun ba'zi bir o'ziga xosliklar q -series ", Kembrij falsafiy jamiyatining matematik materiallari , 89 (2): 211–223, Bibcode :1981MPCPS..89..211B , doi :10.1017 / S0305004100058114 , JANOB 0600238 .^ Benaum, H. B. "h - Nyuton binomial formulasining analogi ", Fizika jurnali A: matematik va umumiy , 31 (46): L751-L754, arXiv :math-ph / 9812011 , Bibcode :1998 yil JPhA ... 31L.751B , doi :10.1088/0305-4470/31/46/001 .^ Wolfram Mathworld: Koshi Binomial Teorema ^ Gvinet H. Kogan va Ken Ono , Q seriyali identifikator va Hurvits Zeta funktsiyalari arifmetikasi , (2003). Ish yuritish Amerika matematik jamiyati 131 , 719-724-betlar ^ Ahmed Salem (2014) Asosiy Gauss gipergeometrik matritsa funktsiyasi va uning matritsasi q-farq tenglamasi, Lineer va Multilineear Algebra, 62: 3, 347-361, DOI: 10.1080 / 03081087.2013.777437 Tashqi havolalar
Adabiyotlar
Andrews, G. E. (2010), "q-gipergeometrik va bog'liq funktsiyalar" , yilda Olver, Frank V. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Klark, Charlz V. (tahr.), NIST Matematik funktsiyalar bo'yicha qo'llanma , Kembrij universiteti matbuoti, ISBN 978-0-521-19225-5 , JANOB 2723248 VN Beyli, Umumlashtirilgan gipergeometrik qator , (1935) Matematikada va matematik fizikada Kembrij traktlari, №32, Kembrij universiteti matbuoti, Kembrij. Uilyam Y. Chen va Emi Fu, Ikki tomonlama asosiy gipergeometrik ketma-ketlikning yarim-sonli shakllari (2004) Exton , H. (1983), q-gipergeometrik funktsiyalar va ilovalar , Nyu-York: Halstead Press, Chichester: Ellis Xorvud, ISBN 0853124914 , ISBN 0470274530 , ISBN 978-0470274538 Sylvie Corteel va Jeremi Lovejoy, Frobenius bo'limlari va Ramanujanning kombinatorikasi 1 ψ 1 { displaystyle , _ {1} psi _ {1}} Xulosa Fine, Natan J. (1988), Asosiy gipergeometrik qatorlar va qo'llanilishi , Matematik tadqiqotlar va monografiyalar, 27 , Providence, R.I .: Amerika matematik jamiyati , ISBN 978-0-8218-1524-3 , JANOB 0956465 Gasper, Jorj; Rahmon, Mizan (2004), Asosiy gipergeometrik qatorlar , Matematika entsiklopediyasi va uning qo'llanilishi, 96 (2-nashr), Kembrij universiteti matbuoti , doi :10.2277/0521833574 , ISBN 978-0-521-83357-8 , JANOB 2128719 Geyn, Eduard (1846), "Über va Reihe o'ladi 1 + ( q a − 1 ) ( q β − 1 ) ( q − 1 ) ( q γ − 1 ) x + ( q a − 1 ) ( q a + 1 − 1 ) ( q β − 1 ) ( q β + 1 − 1 ) ( q − 1 ) ( q 2 − 1 ) ( q γ − 1 ) ( q γ + 1 − 1 ) x 2 + ⋯ { displaystyle 1 + { frac {(q ^ { alfa} -1) (q ^ { beta} -1)} {(q-1) (q ^ { gamma} -1)}} x + { frac {(q ^ { alfa} -1) (q ^ { alfa +1} -1) (q ^ { beta} -1) (q ^ { beta +1} -1)} {( q-1) (q ^ {2} -1) (q ^ { gamma} -1) (q ^ { gamma +1} -1)}} x ^ {2} + cdots} " , Journal für die reine und angewandte Mathematik , 32 : 210–212 Viktor Kac , Pokman Cheung, Kvant hisobi, Universitext, Springer-Verlag, 2002 yil. ISBN 0-387-95341-8 Andrews, G. E., Askey, R. va Roy, R. (1999). Maxsus funktsiyalar, matematika entsiklopediyasi va uning qo'llanilishi, 71-jild, Kembrij universiteti matbuoti . Eduard Xayn , Theorie der Kugelfunctionen , (1878) 1 , 97-125 bet.Eduard Xayn, Handbuch Kugelfunctionen tomonidan o'ladi. Theorie und Anwendung (1898) Springer, Berlin.