Matematikada elliptik gipergeometrik qatorlar  a seriyaliv n   shunday nisbativ n  /v n −1  bu elliptik funktsiya  ning n , o'xshash umumlashtirilgan gipergeometrik qatorlar  bu erda nisbati a ratsional funktsiya  ning n va asosiy gipergeometrik qatorlar  bu erda nisbat kompleks sonning davriy funktsiyasi n . Ular Date-Jimbo-Kuniba-Miwa-Okado (1987) va Frenkel va To'rayev (1997)  elliptikani o'rganishda 6-j belgilar .
Elliptik gipergeometrik qatorlarni tadqiq qilish uchun qarang Gasper va Rahmon (2004) ,  Spiridonov (2008)  yoki Rosengren (2016) .
Ta'riflar  
The q-pochhammer belgisi  bilan belgilanadi 
                              (           a           ;           q                       )                           n             =                       ∏                           k               =               0                            n               −               1             (           1           −           a                       q                           k             )           =           (           1           −           a           )           (           1           −           a           q           )           (           1           −           a                       q                           2             )           ⋯           (           1           −           a                       q                           n               −               1             )           .        {displaystyle displaystyle (a; q) _ {n} = prod _ {k = 0} ^ {n-1} (1-aq ^ {k}) = (1-a) (1-aq) (1-aq) ^ {2}) cdots (1-aq ^ {n-1}).}                                 (                       a                           1             ,                       a                           2             ,           …           ,                       a                           m             ;           q                       )                           n             =           (                       a                           1             ;           q                       )                           n             (                       a                           2             ;           q                       )                           n             …           (                       a                           m             ;           q                       )                           n             .        {displaystyle displaystyle (a_ {1}, a_ {2}, ldots, a_ {m}; q) _ {n} = (a_ {1}; q) _ {n} (a_ {2}; q) _ { n} ldots (a_ {m}; q) _ {n}.}   O'zgartirilgan Yakobi teta argument bilan ishlaydi x  va nom  p  bilan belgilanadi
                              θ           (           x           ;           p           )           =           (           x           ,           p                       /            x           ;           p                       )                           ∞          {displaystyle displaystyle heta (x; p) = (x, p / x; p) _ {infty}}                                 θ           (                       x                           1             ,           .           .           .           ,                       x                           m             ;           p           )           =           θ           (                       x                           1             ;           p           )           .           .           .           θ           (                       x                           m             ;           p           )        {displaystyle displaystyle heta (x_ {1}, ..., x_ {m}; p) = heta (x_ {1}; p) ... heta (x_ {m}; p)}   Elliptik siljigan faktorial quyidagicha aniqlanadi
                              (           a           ;           q           ,           p                       )                           n             =           θ           (           a           ;           p           )           θ           (           a           q           ;           p           )           .           .           .           θ           (           a                       q                           n               −               1             ;           p           )        {displaystyle displaystyle (a; q, p) _ {n} = heta (a; p) heta (aq; p) ... heta (aq ^ {n-1}; p)}                                 (                       a                           1             ,           .           .           .           ,                       a                           m             ;           q           ,           p                       )                           n             =           (                       a                           1             ;           q           ,           p                       )                           n             ⋯           (                       a                           m             ;           q           ,           p                       )                           n          {displaystyle displaystyle (a_ {1}, ..., a_ {m}; q, p) _ {n} = (a_ {1}; q, p) _ {n} cdots (a_ {m}; q, p) _ {n}}   Teta gipergeometrik qator r +1E r   bilan belgilanadi
                                                                     r               +               1                         E                           r             (                       a                           1             ,           .           .           .                       a                           r               +               1             ;                       b                           1             ,           .           .           .           ,                       b                           r             ;           q           ,           p           ;           z           )           =                       ∑                           n               =               0                            ∞                                                       (                                   a                                       1                   ,                 .                 .                 .                 ,                                   a                                       r                     +                     1                   ;                 q                 ;                 p                                   )                                       n                                  (                 q                 ,                                   b                                       1                   ,                 .                 .                 .                 ,                                   b                                       r                   ;                 q                 ,                 p                                   )                                       n                            z                           n          {displaystyle displaystyle {} _ {r + 1} E_ {r} (a_ {1}, ... a_ {r + 1}; b_ {1}, ..., b_ {r}; q, p; z ) = sum _ {n = 0} ^ {infty} {frac {(a_ {1}, ..., a_ {r + 1}; q; p) _ {n}} {(q, b_ {1} , ..., b_ {r}; q, p) _ {n}}} z ^ {n}}   Gipergeometrik ketma-ketliklar juda yaxshi r +1V r   bilan belgilanadi
                                                                     r               +               1                         V                           r             (                       a                           1             ;                       a                           6             ,                       a                           7             ,           .           .           .                       a                           r               +               1             ;           q           ,           p           ;           z           )           =                       ∑                           n               =               0                            ∞                                                       θ                 (                                   a                                       1                                     q                                       2                     n                   ;                 p                 )                                θ                 (                                   a                                       1                   ;                 p                 )                                                        (                                   a                                       1                   ,                                   a                                       6                   ,                                   a                                       7                   ,                 .                 .                 .                 ,                                   a                                       r                     +                     1                   ;                 q                 ;                 p                                   )                                       n                                  (                 q                 ,                                   a                                       1                   q                                   /                                    a                                       6                   ,                                   a                                       1                   q                                   /                                    a                                       7                   ,                 .                 .                 .                 ,                                   a                                       1                   q                                   /                                    a                                       r                     +                     1                   ;                 q                 ,                 p                                   )                                       n                (           q           z                       )                           n          {displaystyle displaystyle {} _ {r + 1} V_ {r} (a_ {1}; a_ {6}, a_ {7}, ... a_ {r + 1}; q, p; z) = sum _ {n = 0} ^ {infty} {frac {heta (a_ {1} q ^ {2n}; p)} {heta (a_ {1}; p)}} {frac {(a_ {1}, a_ { 6}, a_ {7}, ..., a_ {r + 1}; q; p) _ {n}} {(q, a_ {1} q / a_ {6}, a_ {1} q / a_ {7}, ..., a_ {1} q / a_ {r + 1}; q, p) _ {n}}} (qz) ^ {n}}   Ikki tomonlama teta gipergeometrik qator r G r   bilan belgilanadi
                                                                     r                         G                           r             (                       a                           1             ,           .           .           .                       a                           r             ;                       b                           1             ,           .           .           .           ,                       b                           r             ;           q           ,           p           ;           z           )           =                       ∑                           n               =               −               ∞                            ∞                                                       (                                   a                                       1                   ,                 .                 .                 .                 ,                                   a                                       r                   ;                 q                 ;                 p                                   )                                       n                                  (                                   b                                       1                   ,                 .                 .                 .                 ,                                   b                                       r                   ;                 q                 ,                 p                                   )                                       n                            z                           n          {displaystyle displaystyle {} _ {r} G_ {r} (a_ {1}, ... a_ {r}; b_ {1}, ..., b_ {r}; q, p; z) = sum _ {n = -infty} ^ {infty} {frac {(a_ {1}, ..., a_ {r}; q; p) _ {n}} {(b_ {1}, ..., b_ { r}; q, p) _ {n}}} z ^ {n}}   Qo'shimcha elliptik gipergeometrik qator ta'riflari  
Elliptik sonlar quyidagicha aniqlanadi 
                    [         a         ;         σ         ,         τ         ]         =                                                             θ                                   1                 (               π               σ               a               ,                               e                                   π                   men                   τ                 )                                            θ                                   1                 (               π               σ               ,                               e                                   π                   men                   τ                 )          {displaystyle [a; sigma, au] = {frac {heta _ {1} (pi sigma a, e ^ {pi i au})} {heta _ {1} (pi sigma, e ^ {pi i au}) }}}   qaerda Jacobi theta funktsiyasi  bilan belgilanadi
                              θ                       1           (         x         ,         q         )         =                   ∑                       n             =             −             ∞                        ∞           (         −         1                   )                       n                     q                       (             n             +             1                           /              2                           )                               2                       e                       (             2             n             +             1             )             men             x         {displaystyle heta _ {1} (x, q) = sum _ {n = -infty} ^ {infty} (- 1) ^ {n} q ^ {(n + 1/2) ^ {2}} e ^ {(2n + 1) ix}}   Qo'shimcha elliptik siljigan faktoriallar quyidagicha aniqlanadi
                    [         a         ;         σ         ,         τ                   ]                       n           =         [         a         ;         σ         ,         τ         ]         [         a         +         1         ;         σ         ,         τ         ]         .         .         .         [         a         +         n         −         1         ;         σ         ,         τ         ]       {displaystyle [a; sigma, au] _ {n} = [a; sigma, au] [a + 1; sigma, au] ... [a + n-1; sigma, au]}                       [                   a                       1           ,         .         .         .         ,                   a                       m           ;         σ         ,         τ         ]         =         [                   a                       1           ;         σ         ,         τ         ]         .         .         .         [                   a                       m           ;         σ         ,         τ         ]       {displaystyle [a_ {1}, ..., a_ {m}; sigma, au] = [a_ {1}; sigma, au] ... [a_ {m}; sigma, au]}   Qo'shimcha teta gipergeometrik qator r +1e r   bilan belgilanadi
                                                                     r               +               1                         e                           r             (                       a                           1             ,           .           .           .                       a                           r               +               1             ;                       b                           1             ,           .           .           .           ,                       b                           r             ;           σ           ,           τ           ;           z           )           =                       ∑                           n               =               0                            ∞                                                       [                                   a                                       1                   ,                 .                 .                 .                 ,                                   a                                       r                     +                     1                   ;                 σ                 ;                 τ                                   ]                                       n                                  [                 1                 ,                                   b                                       1                   ,                 .                 .                 .                 ,                                   b                                       r                   ;                 σ                 ,                 τ                                   ]                                       n                            z                           n          {displaystyle displaystyle {} _ {r + 1} e_ {r} (a_ {1}, ... a_ {r + 1}; b_ {1}, ..., b_ {r}; sigma, au; z ) = sum _ {n = 0} ^ {infty} {frac {[a_ {1}, ..., a_ {r + 1}; sigma; au] _ {n}} {[1, b_ {1}, ..., b_ {r}; sigma, au] _ {n}}} z ^ {n}}   Qo'shimcha teta gipergeometrik qatorni juda yaxshi yaratgan r +1v r   bilan belgilanadi
                                                                     r               +               1                         v                           r             (                       a                           1             ;                       a                           6             ,           .           .           .                       a                           r               +               1             ;           σ           ,           τ           ;           z           )           =                       ∑                           n               =               0                            ∞                                                       [                                   a                                       1                   +                 2                 n                 ;                 σ                 ,                 τ                 ]                                [                                   a                                       1                   ;                 σ                 ,                 τ                 ]                                                        [                                   a                                       1                   ,                                   a                                       6                   ,                 .                 .                 .                 ,                                   a                                       r                     +                     1                   ;                 σ                 ,                 τ                                   ]                                       n                                  [                 1                 ,                 1                 +                                   a                                       1                   −                                   a                                       6                   ,                 .                 .                 .                 ,                 1                 +                                   a                                       1                   −                                   a                                       r                     +                     1                   ;                 σ                 ,                 τ                                   ]                                       n                            z                           n          {displaystyle displaystyle {} _ {r + 1} v_ {r} (a_ {1}; a_ {6}, ... a_ {r + 1}; sigma, au; z) = sum _ {n = 0} ^ {infty} {frac {[a_ {1} + 2n; sigma, au]} {[a_ {1}; sigma, au]}} {frac {[a_ {1}, a_ {6}, ... , a_ {r + 1}; sigma, au] _ {n}} {[1,1 + a_ {1} -a_ {6}, ..., 1 + a_ {1} -a_ {r + 1} ; sigma, au] _ {n}}} z ^ {n}}   Qo'shimcha o'qish  
Spiridonov, V. P. (2013). "Elliptik gipergeometrik funktsiyalarning aspektlari". Berndtda Bryus C. (tahrir). Srinivasa Ramanujan merosi Ramanujan tavalludining 125 yilligini nishonlash bo'yicha xalqaro konferentsiya materiallari; Dehli universiteti, 2012 yil 17-22 dekabr . Ramanujan matematik jamiyati ma'ruzalar seriyasi. 20 . Ramanujan matematik jamiyati. 347–361 betlar. arXiv :1307.2876  . Bibcode :2013arXiv1307.2876S . ISBN  9789380416137  . Rosengren, Xjalmar (2016). "Elliptik gipergeometrik funktsiyalar". arXiv :1608.06161   [math.CA ]. Adabiyotlar  
Frenkel, Igor B.; To'rayev, Vladimir G. (1997), "Yang-Baxter tenglamasining elliptik echimlari va modulli gipergeometrik funktsiyalar", Arnold-Gelfand matematik seminarlari  , Boston, MA: Birkäuzer Boston, 171–204 betlar, ISBN  978-0-8176-3883-2  , JANOB  1429892  Gasper, Jorj; Rahmon, Mizan (2004), Asosiy gipergeometrik qatorlar , Matematika entsiklopediyasi va uning qo'llanilishi, 96  (2-nashr), Kembrij universiteti matbuoti , ISBN  978-0-521-83357-8  , JANOB  2128719  Spiridonov, V. P. (2002), "Teta gipergeometrik qatorlar", Matematik fizikaga tatbiq etilgan asimptotik kombinatorika (Sankt-Peterburg, 2001) , NATO ilmiy. Ser. II matematika. Fizika. Kimyoviy., 77 , Dordrext: Kluwer Acad. Publ., 307-377 betlar, arXiv :matematik / 0303204  , Bibcode :2003 yil ...... 3204S , JANOB  2000728  Spiridonov, V. P. (2003), "Teta gipergeometrik integrallar", Rossiĭskaya Akademiya Nauk. Algebra i Analiz , 15  (6): 161–215, arXiv :matematik / 0303205  , doi :10.1090 / S1061-0022-04-00839-8 , JANOB  2044635  Spiridonov, V. P. (2008), "Elliptik gipergeometrik funktsiyalar nazariyasining insholari", Rossiĭskaya Akademiya Nauk. Moskovskoe Matematicheskoe Obshchestvo. Uspekhi Matematicheskikh Nauk , 63  (3): 3–72, arXiv :0805.3135  , Bibcode :2008RuMaS..63..405S , doi :10.1070 / RM2008v063n03ABEH004533 , JANOB  2479997  Warnaar, S. Ole (2002), "Elliptik gipergeometrik qatorlar uchun yig'indisi va o'zgarishi formulalari", Konstruktiv yaqinlashtirish. Yaqinlashish va kengaytirish bo'yicha xalqaro jurnal , 18  (4): 479–502, arXiv :matematik / 0001006  , doi :10.1007 / s00365-002-0501-6 , JANOB  1920282