Yilda matematika, a kvadratik integral bu ajralmas shaklning

Buni baholash mumkin kvadratni to'ldirish ichida maxraj.

Ijobiy-diskriminant ish
Deb o'ylang diskriminant q = b2 − 4ak ijobiy. Bunday holda, aniqlang siz va A tomonidan
,
va

Endi kvadrat integralni quyidagicha yozish mumkin

The qisman fraksiya parchalanishi

integralni baholashga imkon beradi:

Shuni taxmin qilish kerakki, asl integral uchun yakuniy natija q > 0, bo'ladi

Salbiy-diskriminant ish
- Ushbu (shoshilib yozilgan) bo'lim e'tiborga muhtoj bo'lishi mumkin.
 
Agar shunday bo'lsa diskriminant q = b2 − 4ak manfiy, ikkinchi atama in mahrum qiluvchi

ijobiy. Keyin integral bo'ladi
![{ displaystyle { begin {aligned} & {}  qquad { frac {1} {c}}  int { frac {du} {u ^ {2} + A ^ {2}}}  [9pt ] & = { frac {1} {cA}}  int { frac {du / A} {(u / A) ^ {2} +1}}  [9pt] & = { frac {1} {cA}}  int { frac {dw} {w ^ {2} +1}}  [9pt] & = { frac {1} {cA}}  arctan (w) +  mathrm {constant}  [9pt] & = { frac {1} {cA}}  arctan  left ({ frac {u} {A}}  right) + { text {constant}}  [9pt] & = { frac {1} {c { sqrt {{ frac {a} {c}} - { frac {b ^ {2}} {4c ^ {2}}}}}}} arctan  left ( { frac {x + { frac {b} {2c}}} { sqrt {{ frac {a} {c}} - { frac {b ^ {2}} {4c ^ {2}}}} }}  o'ng) + { text {constant}}  [9pt] & = { frac {2} { sqrt {4ac-b ^ {2} ,}}}  arctan  left ({ frac) {2cx + b} { sqrt {4ac-b ^ {2}}}}  o'ng) + { text {doimiy}}.  End {hizalangan}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/72deb5f42b3056c7638fe8fe77020939b24ff668)
Adabiyotlar
- Vayshteyn, Erik V.Kvadratik integral"Dan MathWorld- Wolfram veb-resursi, unda quyidagilar havola qilinadi:
 - Gradshteyn, Izrail Sulaymonovich; Rijik, Iosif Moiseevich; Geronimus, Yuriy Veniaminovich; Tseytlin, Mixail Yulyevich; Jeffri, Alan (2015) [2014 yil oktyabr]. Tsvillinger, Doniyor; Moll, Viktor Gyugo (tahrir). Integrallar, seriyalar va mahsulotlar jadvali. Scripta Technica, Inc tomonidan tarjima qilingan (8 nashr). Academic Press, Inc. ISBN 978-0-12-384933-5. LCCN 2014010276.