Yilda matematik tahlil , Russo-Vallois integrali uchun kengaytma stoxastik jarayonlar klassik Riemann-Stieltjes integral
∫ f d g = ∫ f g ′ d s {displaystyle int f, dg = int fg ', ds} mos funktsiyalar uchun f {displaystyle f} va g {displaystyle g} . Ushbu fikrni almashtirish lotin g ′ {displaystyle g '} farq miqdori bo'yicha
g ( s + ε ) − g ( s ) ε {displaystyle g (s + varepsilon) -g (s) ustidan varepsilon} va integralni chegarasini tortib olish uchun. Bundan tashqari, konvergentsiya turini o'zgartiradi.Ta'riflar
Ta'rif: Ketma-ketlik H n {displaystyle H_ {n}} ning stoxastik jarayonlar yaqinlashadi bir xilda ixcham to'plamlar jarayonga ehtimolligi H , {displaystyle H,}
H = ucp- lim n → ∞ H n , {displaystyle H = {ext {ucp -}} lim _ {nightarrow infty} H_ {n},} agar, har bir kishi uchun ε > 0 {displaystyle varepsilon> 0} va T > 0 , {displaystyle T> 0,}
lim n → ∞ P ( sup 0 ≤ t ≤ T | H n ( t ) − H ( t ) | > ε ) = 0. {displaystyle lim _ {nightarrow infty} mathbb {P} (sup _ {0leq tleq T} | H_ {n} (t) -H (t) |> varepsilon) = 0.} Bir to'plam:
Men − ( ε , t , f , d g ) = 1 ε ∫ 0 t f ( s ) ( g ( s + ε ) − g ( s ) ) d s {displaystyle I ^ {-} (varepsilon, t, f, dg) = {1 ustidan varepsilon} int _ {0} ^ {t} f (s) (g (s + varepsilon) -g (s)), ds } Men + ( ε , t , f , d g ) = 1 ε ∫ 0 t f ( s ) ( g ( s ) − g ( s − ε ) ) d s {displaystyle I ^ {+} (varepsilon, t, f, dg) = {1 ustidan varepsilon} int _ {0} ^ {t} f (s) (g (s) -g (s-varepsilon)), ds } va
[ f , g ] ε ( t ) = 1 ε ∫ 0 t ( f ( s + ε ) − f ( s ) ) ( g ( s + ε ) − g ( s ) ) d s . {displaystyle [f, g] _ {varepsilon} (t) = {1 varepsilon ustiga} int _ {0} ^ {t} (f (s + varepsilon) -f (s)) (g (s + varepsilon)) - g (s)), ds.} Ta'rif: Oldinga integral integralning ucp-limiti sifatida aniqlanadi
Men − {displaystyle I ^ {-}} : ∫ 0 t f d − g = ucp- lim ε → ∞ ( 0 ? ) Men − ( ε , t , f , d g ) . {displaystyle int _ {0} ^ {t} fd ^ {-} g = {ext {ucp -}} lim _ {varepsilon tightarrow infty (0?)} I ^ {-} (varepsilon, t, f, dg) .} Ta'rif: Orqaga integral integralning ucp-limiti sifatida aniqlanadi
Men + {displaystyle I ^ {+}} : ∫ 0 t f d + g = ucp- lim ε → ∞ ( 0 ? ) Men + ( ε , t , f , d g ) . {displaystyle int _ {0} ^ {t} f, d ^ {+} g = {ext {ucp -}} lim _ {varepsilon ightarrow infty (0?)} I ^ {+} (varepsilon, t, f, dg).} Ta'rif: Umumiy qavs ucp-limit sifatida belgilanadi
[ f , g ] ε {displaystyle [f, g] _ {varepsilon}} : [ f , g ] ε = ucp- lim ε → ∞ [ f , g ] ε ( t ) . {displaystyle [f, g] _ {varepsilon} = {ext {ucp -}} lim _ {varepsilon ightarrow infty} [f, g] _ {varepsilon} (t).} Uzluksiz uchun yarim timsollar X , Y {displaystyle X, Y} va a cdlàg funktsiyasi H, Russo-Valloisning ajralmas tasodiflari bilan odatiy Bu ajralmas :
∫ 0 t H s d X s = ∫ 0 t H d − X . {displaystyle int _ {0} ^ {t} H_ {s}, dX_ {s} = int _ {0} ^ {t} H, d ^ {-} X.} Bu holda umumlashtirilgan qavs klassik kovaryatsiyaga teng. Maxsus holatda, bu jarayon degan ma'noni anglatadi
[ X ] := [ X , X ] {displaystyle [X]: = [X, X],} ga teng kvadratik o'zgarish jarayoni .
Shuningdek, Russo-Vallois uchun ajralmas an Ito formulasi ushlaydi: Agar X {displaystyle X} doimiy semimartingale va
f ∈ C 2 ( R ) , {displaystyle fin C_ {2} (mathbb {R}),} keyin
f ( X t ) = f ( X 0 ) + ∫ 0 t f ′ ( X s ) d X s + 1 2 ∫ 0 t f ″ ( X s ) d [ X ] s . {displaystyle f (X_ {t}) = f (X_ {0}) + int _ {0} ^ {t} f '(X_ {s}), dX_ {s} + {1 dan 2} gacha int _ {0 } ^ {t} f '' (X_ {s}), d [X] _ {s}.} Ikkilik natijasi bo'yicha Triebel ning optimal sinflarini ta'minlash mumkin Besov bo'shliqlari , bu erda Russo-Valuaz integralini aniqlash mumkin. Besov makonidagi norma
B p , q λ ( R N ) {displaystyle B_ {p, q} ^ {lambda} (mathbb {R} ^ {N})} tomonidan berilgan
| | f | | p , q λ = | | f | | L p + ( ∫ 0 ∞ 1 | h | 1 + λ q ( | | f ( x + h ) − f ( x ) | | L p ) q d h ) 1 / q {displaystyle || f || _ {p, q} ^ {lambda} = || f || _ {L_ {p}} + left (int _ {0} ^ {infty} {1 over | h | ^ { 1 + lambda q}} (|| f (x + h) -f (x) || _ {L_ {p}}) ^ {q}, dhight) ^ {1 / q}} uchun taniqli modifikatsiya bilan q = ∞ {displaystyle q = yaroqsiz} . Keyin quyidagi teorema mavjud:
Teorema: Aytaylik
f ∈ B p , q λ , {displaystyle fin B_ {p, q} ^ {lambda},} g ∈ B p ′ , q ′ 1 − λ , {displaystyle gin B_ {p ', q'} ^ {1-lambda},} 1 / p + 1 / p ′ = 1 va 1 / q + 1 / q ′ = 1. {displaystyle 1 / p + 1 / p '= 1 {ext {and}} 1 / q + 1 / q' = 1.} Keyin Russo-Valuaz integrali
∫ f d g {displaystyle int f, dg} mavjud va bir muncha doimiy uchun v {displaystyle c} bittasi bor
| ∫ f d g | ≤ v | | f | | p , q a | | g | | p ′ , q ′ 1 − a . {displaystyle left | int f, dgight | leq c || f || _ {p, q} ^ {alfa} || g || _ {p ', q'} ^ {1-alfa}.} E'tibor bering, bu holda Russo-Vallois integrali bilan mos keladi Riemann-Stieltjes integral va bilan Yosh integral bilan funktsiyalar uchun cheklangan p-variatsiya .
Adabiyotlar
Russo, Franchesko; Vallois, Per (1993). "Oldinga, orqaga va nosimmetrik integratsiya". Prob. Th. va Rel. Maydonlar . 97 : 403–421. doi :10.1007 / BF01195073 . Russo, F.; Vallois, P. (1995). "Umumlashtirilgan kovaryatsiya jarayoni va Ito-formulasi". Stoch. Proc. va Appl . 59 (1): 81–104. doi :10.1016 / 0304-4149 (95) 93237-A . Zahle, Martina (2002). "Oldinga integrallar va stoxastik differentsial tenglamalar". In: Stoxastik tahlil, tasodifiy maydonlar va ilovalar bo'yicha seminar III . Probda rivojlanish. Vol. 52. Birkxauzer, Bazel. 293-302 betlar. doi :10.1007/978-3-0348-8209-5_20 . Adams, Robert A.; Fournier, John J. F. (2003). Sobolev bo'shliqlari (ikkinchi nashr). Elsevier.