WikiDer > Sho'ng'in uchun standart kiyim
Dalgıç sho'ng'in kiyimi, Ozbalt, Sloveniya (1958) | |
| Boshqa ismlar | Og'ir sho'ng'in uskunalari |
|---|---|
| Foydalanadi | Suv ostida sho'ng'in uchun havo bilan ta'minlangan, nafas olish havosi bo'lgan shaxsiy himoya vositalari |
| Ixtirochi | Birodarlar Din va Avgust Sib |
| Ishlab chiqaruvchi | Turli xil, qarang Ishlab chiqaruvchilar |
Sho'ng'in uchun standart kiyim (shuningdek, nomi bilan tanilgan qalpoqcha yoki mis shlyapa uskunalar yoki og'ir uskunalar) ning bir turi sho'ng'in kostyumi ilgari bu suv ostida bo'lgan nisbatan chuqurroq ishlarda ishlatilgan bo'lib, unga nafasni ushlab turish davomiyligi kerak emas edi dengizni qutqarish, qurilish ishi, marvarid qobig'i sho'ng'in va boshqalar savdo sho'ng'in ish va shunga o'xshash narsalar dengizga sho'ng'in ilovalar. Standart sho'ng'in kiyimi asosan engilroq va qulayroq uskunalar bilan almashtirildi.
Standart sho'ng'in kiyimi a dan iborat sho'ng'in zarbasi dan qilingan mis va guruch yoki bronza, an havo shlangi dan sirt bilan ta'minlangan qo'lda ishlaydi nasos yoki past bosimli nafas olish uchun havo kompressori, suv o'tkazmaydigan kanvas kostyumi, a sho'ng'in pichog'iva qarshi turadigan og'irliklar suzish qobiliyati, umuman ko'krak qafasida, orqada va poyabzalda.[1] Keyinchalik modellar g'avvos telefoni bilan jihozlangan ovozli aloqa yuzasi bilan.
Ba'zi bir variantlar sho'ng'in tomonidan olib boriladigan gaz ta'minotidan foydalanishni kengaytirish uchun qayta tiklovchi tizimlardan foydalangan va suv ostida nafas olish apparatlari samarali bo'lgan, boshqalari esa chuqurroq ishlash uchun geliy asosidagi nafas olish gazlaridan foydalanishga yaroqli bo'lgan. G'avvoslar to'g'ridan-to'g'ri ularni qutqarish chizig'i yordamida tushirish yoki ko'tarish orqali joylashtirilishi yoki sho'ng'in sahnasida tashilishi mumkin. Standart kiyinish yordamida sho'ng'in ishlarining ko'pi og'ir, sho'ng'in pastki qismida yurish uchun etarlicha salbiy kuchga ega bo'lganligi sababli amalga oshirildi, ba'zida AQShda standart sho'ng'in kiyimi Dalgıç Danning kiyimi dan xuddi shu nomdagi televizion shou.[iqtibos kerak]
Tarix
Dastlabki tarix
1405 yilda, Konrad Kyeser charm ko'ylagi va ikkita shisha derazali metall dubulg'adan yasalgan sho'ng'in kiyimi tasvirlangan. Ko'ylagi va dubulg'a "havoni ushlab turish" uchun shimgich bilan o'ralgan va charm quvur havo pufagiga ulangan.[2]:693 Sho'ng'in kostyumi dizayni kitobida tasvirlangan Vegetius 1511 yilda.[2]:554
Borelli metall dubulg'a, havoni "qayta tiklash" uchun quvur, charm kostyum va g'avvosni boshqarish vositasidan iborat sho'ng'in uskunalari. suzish qobiliyati.[2]:556 Qisqa muddatli London sho'ng'in kompaniyasi bo'lgan Temza Diverz 1690 yilda Vegetius tipidagi sayoz suvga sho'ng'in libosini namoyish qildi.[2]:557 Klingert 1797 yilda to'la sho'ng'in kiyimi ishlab chiqardi. Ushbu dizayn katta metall dubulg'a va charm kurtka va shim bilan bog'langan xuddi shunday katta metall kamardan iborat edi.[2]:560
Standart sho'ng'in libosini ishlab chiqish
Birinchisi muvaffaqiyatli sho'ng'in dubulg'alari birodarlar tomonidan ishlab chiqarilgan Charlz va Jon Din 1820-yillarda.[3] Yong'in hodisasidan ilhomlanib, u Angliyadagi otxonada guvoh bo'ldi,[4] u 1823 yilda tutun bilan to'ldirilgan joylarda o't o'chiruvchilar tomonidan ishlatilishi mumkin bo'lgan "tutun dubulg'asi" ni ishlab chiqdi va patentladi. Apparat biriktirilgan egiluvchan yoqasi va kiyimi bo'lgan mis dubulg'adan iborat edi. Havoni etkazib berish uchun dubulg'aning orqa tomoniga bog'langan uzun charm shlang ishlatilishi kerak edi - asl kontseptsiya bu er-xotin körük yordamida pompalanadi. Qisqa trubka nafas olayotgan havoning chiqib ketishiga imkon berdi. Kiyim charmdan yoki havo o'tkazmaydigan matolardan tikilib, kamarlar bilan bog'langan.[5]
Birodarlar ushbu uskunani o'zlari qurish uchun mablag 'etishmasligidan, ular patentni ish beruvchisi Edvard Barnardga sotdilar. Faqatgina 1827 yilga kelib, birinchi tutun dubulg'alari nemis tug'ilgan ingliz muhandisi tomonidan qurilgan Augustus Siebe. 1828 yilda ular o'zlarining qurilmalari uchun boshqa dastur topishga qaror qildilar va uni sho'ng'in dubulg'asiga aylantirdilar. Ular dubulg'ani bo'shashgan "sho'ng'in kostyumi" bilan sotishdi, shunda g'avvos qutqarish ishlarini bajarishi mumkin edi, lekin faqat to'liq vertikal holatda, aks holda suv kostyumga kirdi.
1829 yilda aka-uka Dinlar suzib ketishdi Whitstable shaharda sho'ng'in sanoatini tashkil etadigan yangi suv osti apparatlari sinovlari uchun. 1834 yilda Charlz sho'ng'in dubulg'asi va kostyumidan foydalanib, halokatga uchradi Qirollik Jorj da Spithead, shu vaqt ichida u kema to'pining 28 tasini tikladi. 1836 yilda Jon Din yaqinda qayta kashf qilingan qoldiqlardan yog'och, qurol, kamon va boshqa narsalarni topdi. Meri Rouz.
1836 yilga kelib birodarlar Dinlar dunyodagi birinchi sho'ng'in bo'yicha qo'llanmani ishlab chiqdilar, Dean Patentli sho'ng'in apparatlaridan foydalanish usuli bu apparat va nasosning ishlashini, shuningdek xavfsizlik choralarini batafsil bayon qildi.
1830-yillarda aka-uka Dinlar Sibedan suv ostidagi dubulg'a dizaynini yaxshilash uchun o'z mahoratini ishga solishni iltimos qildilar.[6] Boshqa muhandis Jorj Edvards tomonidan ishlab chiqilgan yaxshilanishlarni kengaytirib, Sibe o'z dizaynini ishlab chiqardi; a dubulg'a suv o'tkazmaydigan to'liq uzunlikka o'rnatiladi kanvas sho'ng'in kostyumi. Uskunaning haqiqiy muvaffaqiyati a vana g'avvos qanday harakat qilsa ham suv bosa olmasligini anglatuvchi dubulg'ada. Bu yanada xavfsiz va samaraliroq natijalarga olib keldi suv ostida ish.
Siebe sho'ng'in kiyimi dizayniga turli xil modifikatsiyalarni kiritib, halokat paytida qutqaruv guruhining talablarini qondirdi. HMSQirollik Jorjshu jumladan, dubulg'ani korset; uning takomillashtirilgan dizayni inqilobga uchragan odatiy sho'ng'in kiyimi paydo bo'ldi suv ostida qurilish ishi, suv ostida qutqarish, savdo sho'ng'in va dengizga sho'ng'in.[6]
1860-yillarda Frantsiyada Rouquayrol va Denayrouze ishchi kuchi bilan pompalanadigan sirt bilan ta'minlangan havodan tejamkorroq foydalanish uchun kichik bosimli suv omboriga ega bo'lgan bir bosqichli talab regulyatorini ishlab chiqdilar. Bu dastlab har qanday niqobsiz va dubulg'asiz ishlatilgan, ammo ko'rish qobiliyati yomon bo'lgan va "cho'chqa tumshug'i" mis niqobi 1866 yilda ishlab chiqarilgan bo'lib, bo'yin teshigiga mahkamlangan mis niqobidagi shisha old qoplama orqali aniqroq ko'rinish hosil qilish uchun kostyum. Tez orada bu korset tomonidan qo'llab-quvvatlanadigan uchta boltli dubulg'aga aylantirildi (1867). Keyinchalik versiyalar erkin havo oqimi uchun moslashtirildi.[7]
Keyinchalik chuqur ish uchun geliy aralashmalaridan foydalanish uchun standart dubulg'a o'zgartirildi. Bunga kiritilgan a karbonat angidridni tozalash vositasi gazni qayta ishlash uchun venturi bilan ishlaydigan aylanma tizimiga ega bo'lgan dubulg'aning orqa tomoniga biriktirilgan bo'lib, uni Dräger singari yarim yopiq o'chirib qayta yaratuvchiga aylantiradi. bubikopf dubulg'ani qayta tiklash tizimi.[8]
Oddiy sho'ng'in kiyimi tashqarisidagi o'zgarishlar
Sho'ng'in dubulg'asining so'nggi dizaynlari erkin oqim va talabga javob beradigan dubulg'a sifatida tasniflanishi mumkin. Ular odatda yaratilgan zanglamaydigan po'lat, shisha tola, yoki boshqa kuchli va engil material. Mis dubulg'a va standart sho'ng'in kiyimi hali ham dunyoning ayrim qismlarida keng qo'llanilmoqda, ammo ularning o'rnini asosan engilroq va qulayroq uskunalar egalladi.[iqtibos kerak]
Umumiy tavsif
Standart sho'ng'in kiyimi, agar mos keladigan bo'lsa, 180 metr dengiz suvi chuqurligida ishlatilishi mumkin nafas olish gazi aralashmasi ishlatiladi. Havo yoki boshqa nafas oluvchi gaz qo'l nasoslari, kompressorlar yoki yuqori bosimli saqlash ballonlari qirg'og'idan, odatda sirtdan shlang orqali etkazib berilishi mumkin, ammo ba'zi modellar avtonom, ichki o'rnatilgan dam oluvchilar. 1912 yilda nemis firmasi Drägerwerk Lyubek kompaniyasi o'zining sho'ng'in kiyimi bo'yicha kislorodni qayta ishlab chiqaruvchidan gaz ta'minotidan foydalangan holda va sirtni ta'minlamaydigan o'z versiyasini taqdim etdi. Tizimda mis sho'ng'in zarbasi va standart og'ir sho'ng'in kostyumi ishlatilgan. Nafas olayotgan gaz tsikldagi injektor tizimidan foydalangan holda aylantirildi. Bu bilan yanada ishlab chiqilgan Modell 1915 "Bubikopf" dubulg'a va 20 metrgacha (70 fut) chuqurlik uchun DM20 kislorodni qayta tiklash tizimi va 40 metrgacha (130 fut) gaz etkazib berish uchun kislorod tsilindrni va havo tsilindridan foydalangan DM40 aralash gazni qayta tiklash vositasi.[9]
Boshqa noodatiy o'zgarish - bu Rouquayrol-Denayrouze-ning "cho'chqa-tumshug'i niqobi" bo'lib, unda mis shlemning old qismiga o'xshash tuzilishga o'xshash sho'ng'in kostyumiga mahkamlangan mis yuzli niqob ishlatilgan va xuddi shu tarzda ishlagan. Oldinga o'tirishga moyil edi, chunki bu pastga qarashdan tashqari, noqulay edi, lekin nemis amberlari orasida juda mashhur edi, chunki ular ko'p vaqtlarini pastga qarab qarashgan.[7]
Siqilgan havoning doimiy oqimi dubulg'a bilan ta'minlanadi va atrofdagi suvga chiqindi portidagi atrof-muhit bosimiga juda yaqin bosim ostida,[1] bu g'avvosning normal nafas olishiga imkon beradi. Katta va o'limga olib keladigan siqilishni oldini olish uchun dubulg'a dubulg'aning havo kirish joyida qaytib kelmaydigan valfga ega bo'lishi kerak. Sho'ng'in dubulg'asi juda og'ir bo'lsa ham, katta miqdordagi suvni almashtiradi va kostyumdagi havo bilan birlashganda, sho'ng'in boshi bilan suvdan suzib chiqardi.[2]:33 Buni yengish uchun ba'zi dubulg'alar korselga tortiladi, boshqa g'avvoslar esa korsetga o'tadigan belbog'larga ega bo'lgan vaznli belbog'larni taqishadi. Ba'zi bir sho'ng'inchilar havo kirishining nazorat valfiga ega, boshqalari esa faqat bitta boshqaruvga ega, egzozning orqa bosimi. Dubulg'a sho'ng'inlari, masalan, boshqa g'avvoslar kabi bir xil bosim cheklovlariga duch kelishadi dekompressiya kasalligi va azotli narkoz.[2]:1
To'liq standart sho'ng'in kiyimi 190 kilogrammni (86 kg) tashkil qilishi mumkin.[10]
Kostyum
Dastlabki kostyumlar ixtiro qilgan suv o'tkazmaydigan tuvaldan qilingan Charlz Makintosh. 1800-yillarning oxiridan va 20-asrning aksariyat qismida kostyumlarning aksariyati tan qatlamlari orasidagi qattiq kauchuk qatlamidan iborat edi. dumaloq. Ularning qalinligi vulkanizatsiyalangan kauchuk yoqa qisqich bilan bog'langan korset qo'shma qilish suv o'tkazmaydigan; suvga chidamli. Ichki yoqa (bib) kostyum bilan bir xil materialdan yasalgan va korsetning ichiga va g'avvosning bo'yniga tortilgan. Ko'krak va korset orasidagi bo'shliq ko'p miqdordagi kondensatlanishni va dubulg'adagi mayda qochqinlarni ushlab, g'avvosni quruq holda ushlab turishi mumkin. Yenglarga ajralmas qo'lqoplar yoki bilakning kauchuk muhrlari o'rnatilgan bo'lishi mumkin va kostyum oyoqlari ajralmas paypoq bilan tugagan.[11]
Dvigatel og'ir, o'rta va engil navlarda mavjud edi, og'irligi kabi qo'pol sirtlarga aşınma va teshilishga eng yaxshi qarshilik ko'rsatdi. barnaklar, toshlar va vayronalarning qirrali qirralari. Zaif joylar qo'shimcha mato qatlamlari bilan mustahkamlangan.[11] Yoqa muhrining korsetka chetiga yoki koptok bilan korsetning bo'g'imiga qisilishi va shu maqsadda ishlatiladigan boltlarning soni bilan har xil kiyim turlari aniqlanadi.[12] Ko'tarilgan hajmni cheklash uchun oyoqlari orqa tomondan bog'langan bo'lishi mumkin, bu esa ortiqcha gazning oyoqlarda qolib ketishiga va teskari yo'naltirilgan dayverni yuzaga sudrab chiqishiga yo'l qo'ymasligi mumkin.[2]:56[11] Oddiy Buyuk Britaniyadagi sho'ng'in tijorat faoliyatida oyoqlarda ko'pincha bog'lash imkoniyati bo'lmagan.[iqtibos kerak]
Rezina mato mato, shuningdek, dubulg'a muhri va manjet plombalari singari suv o'tkazmaydigan edi, shuning uchun g'avvos quruq bo'lib qoladi - uzoq sho'ng'in paytida bu katta afzallikdir va suv harorati va kutilgan darajaga qarab isinish uchun etarlicha kiyim kiyadi. kuch sarflash.[11] Odatda kostyum g'avvosga juda yukxalta edi va agar haddan tashqari shishgan bo'lsa, g'avvosni havo bilan ta'minlash va chiqarish uchun nazorat klapanlariga etib borish uchun juda katta hajmga ega bo'lar edi. Bu dekompressiya kasalligi xavfi yuqori bo'lgan, ko'tariluvchan ko'tarilishni keltirib chiqarishi mumkin bo'lgan kostyumni portlatish xavfiga yordam berdi. Ushbu muammoni qo'shimcha qilish uchun qochqin ko'tarilish korsetdagi muhrni yorib yuborish uchun etarli ichki bosimni keltirib chiqarishi mumkin, bu esa suzuvchanlikni yo'qotishiga olib keladi va shikastlangan g'avvos suv ostiga tushgan kostyum bilan pastki qismga qaytib cho'kadi. Binobarin, g'avvoslar ushbu xavfni minimallashtirish uchun suv osti suvlarida etarli darajada salbiy bo'lib qolishlariga kafolat berishadi. Yaroqli, og'ir botinka va suzgichlarning etishmasligi suzishni imkonsiz qildi. G'avvos suv sathida qo'llarni ishlatib, qisqa masofani bosib o'tishi mumkin edi, lekin suv osti qismi odatda pastki qismida yurar va to'siqlardan yuqoriga va pastga ko'tarilib, havo shlangini buzadigan narsaning ostidan o'tib ketishdan saqlanar edi.[11]
Shlem
Dubulg'a odatda ikkita asosiy qismdan tayyorlanadi: g'avvosning boshini qoplagan qopqoq va g'avvosning yelkasidagi dubulg'aning og'irligini qo'llab-quvvatlaydigan korset va suv o'tkazmaydigan muhr hosil qilish uchun kostyumga mahkamlanadi. Kapot korsetka bo'yniga yoki murvat bilan yoki uzilib qolgan vint bilan bog'langan bo'lib, qandaydir qulflash mexanizmiga ega.[13]
Dubulg'a uni kostyumga yoki korselka ushlab turadigan murvat soni va chiroqlar deb nomlanadigan ko'rish portlari soni bilan tavsiflanishi mumkin. Masalan, to'rtta ko'rish porti bo'lgan dubulg'a va korselga kostyumni mahkamlab qo'yadigan o'n ikkita tirnoq "to'rtta engil, o'n ikkita boltli dubulg'a" deb nomlanadi va uchta boltli dubulg'a koptokni korselga mahkamlash uchun uchta boltdan foydalangan , dubulg'aning ikki qismi orasidagi bo'yin muhrining gardishini mahkamlang.[9]
Telefon ixtiro qilinganda, u g'avvos bilan aloqani ancha yaxshilash uchun standart sho'ng'in kiyimiga qo'llanilgan.[12]
Kapot
Kapot (Buyuk Britaniya) yoki dubulg'a (AQSh) odatda a yigirilgan lehimli mis qobiq guruch yoki bronza armatura. U g'avvosning boshini yopadi va sirlangan yuz panelidan va boshqa ko'rinish oynalaridan (derazalardan) qarash uchun boshni burish uchun etarli joy beradi. Old port odatda shamollatish va aloqa uchun, g'avvos kemada bo'lganida, vidalanganda yoki menteşe tomonga silkitib, yopiq holatda rezina qistirmaga qarshi qanotli non bilan mahkamlanganda ochilishi mumkin. Boshqa chiroqlar (ko'rinish oynalari uchun boshqa nom) odatda o'rnatiladi. Umumiy tartib - bu old panel, yon tomonlarda o'ng va chap yonbosh plitalar va old panelning ustki plitasi. Ko'rinish joylari dastlabki dubulg'alarda shisha bo'lib, keyinchalik ba'zi dubulg'alari akrildan foydalanilgan va odatda guruch yoki bronza panjara bilan himoyalangan. Dubulg'ada havo liniyasi va g'avvosning telefonini ulash uchun gozenek armaturalari mavjud, odatda orqa tomonda.[12][13][10]
Eng qadimgi paytlardan tashqari barcha dubulg'alarda aviakompaniya ulangan qaytarilmaydigan valf mavjud bo'lib, bu o'limga olib kelishi mumkin zarbdan siqish agar shlangdagi bosim yo'qolsa. Sirt va g'avvos o'rtasidagi bosimning farqi shunchalik katta bo'lishi mumkinki, agar havo chizig'i yuzada kesilsa va orqaga qaytish valfi bo'lmasa, g'avvos qisman tashqi bosim bilan dubulg'aga siqib qo'yiladi va yaralanadi yoki ehtimol o'ldirilgan.[11]
Shlemlarda shuningdek, ortiqcha havo zarbdan chiqib ketishiga imkon beradigan kamonli egzoz valfi mavjud. Bahor kuchi g'avvos tomonidan kostyumning to'liq parchalanishiga yoki haddan tashqari shishishiga yo'l qo'ymaslik va g'avvosni er yuziga nazoratsiz suzib yurishining oldini olish uchun o'rnatiladi. Egzoz klapani vaqtincha ochilishi yoki yopilishi bilan ichki gardishni iyak bilan bosib ko'proq havo chiqishi uchun yoki valfni yopib ichki hajmni vaqtincha oshirish uchun uni lablar bilan tortib olish mumkin.[11][10] Egzoz valfi odatda faqat ma'lum bir bosim oralig'ida sozlanishi mumkin. Ushbu cheklovdan tashqari u ortiqcha bosimni chiqarishga ochiladi, bu esa sho'ng'in tik turganida portlashning oldini oladi.[10] Ba'zi dubulg'alarda qo'shimcha oddiy egzoz klapanlari bor, ular odatda oddiy chorak burilish valfi bo'lgan. Bu g'avvosga asosiy egzoz to'g'ri ishlamasligi mumkin bo'lgan holatda ortiqcha havoni chiqarib yuborish va egzoz klapanining sozlamasini o'zgartirmasdan kostyumdagi havo hajmiga o'zgartirishlar kiritish imkonini berdi.[10] Tupurg'a ichidan suv so'rilib, ularni buzish uchun tomosha joylariga tupurish mumkin.[11]
Korset
Korset (Buyuk Britaniya), shuningdek ko'krak nishoni (AQSh) deb nomlanuvchi, dubulg'ani qo'llab-quvvatlash va uni kostyumga yopishtirish uchun, odatda mis va guruchdan yasalgan oval yoki to'rtburchaklar shaklidagi elkalariga, ko'kragiga va orqasiga suyanadigan, lekin vaqti-vaqti bilan po'latdir.[9] Dubulg'a, odatda, kostyumning kauchuk bilan ishlangan yoqasi atrofidagi teshiklarni korsetka bo'ylab boltlar (tirgaklar) ustiga qo'yib, so'ngra taroqsimon (yoki o'ralgan) deb nomlanuvchi guruch kamarlarini yoqaga qanotli yong'oq bilan mahkamlash orqali bog'lanadi. suv o'tkazmaydigan plombalash uchun kauchukni korsetka chetidagi metallga bosish uchun.[13][10] Rezinka yukini teng ravishda yoyish uchun shimlarning yuvgichlari taroqsimon uchlari ostida ishlatilgan. Uch yoki ikki boltli sistendagi kostyumning yuqori qismiga bog'langan kauchuk yoqa ustidagi qopqoqni korsetga mahkamlash alternativ usul edi.[9]
Oltita va o'n ikkita boltli dubulg'a koptoklari korselga 1/8 burilishda qo'shiladi uzilgan ip.[13] Dubulg'aning bo'yin ipi korsetning chap tomonidagi g'avvoslarga qaragan bo'yniga joylashtiriladi, u erda iplar tutashmaydi va keyin oldinga burilib, ipni bog'lab, suv o'tkazmaydigan muhr hosil qilish uchun charm qistirmaga o'tiradi. Odatda dubulg'a orqa tomonida xavfsizlik qulfiga ega, bu kapotning orqaga aylanishiga va suv ostida ajralib chiqishiga to'sqinlik qiladi. Qulfni qo'shimcha pim bilan mahkamlash mumkin.[10] Ulanishning boshqa uslublari ham qo'llaniladi, ularning birikmasi qisqich yoki murvat bilan biriktiriladi (odatda uchta, ba'zan ikkita).[9]
Ko'krak nishoni kostyumning ustki qismida joylashgan va qulaylik uchun kostyum ostiga taqilgan ixtiyoriy yostiqli ko'krak bezi yostig'ining ustida joylashgan.[10]
Diverning og'irliklari
Ikkita og'irlik tizimi mavjud, ikkalasi ham hali ham qo'llanilmoqda. Oldingi dubulg'aning og'irliklari juftlikda ishlatiladi. Katta ot poyabzali og'irliklari suzuvchi dubulg'ani ushlab turadi va ko'krak plastinkasining og'irlik tirgaklaridan o'tib ketadigan sakkizinchi ilmoq bilan korsetdan osib qo'yilgan. Yunon shimgichi g'ildiraklari shunchaki egar torbalar singari korsetadan o'tib ketadigan arqonlar bilan og'irliklarga qo'shilishdi. Boshqa tizim - bu og'irlik jabduqlaridir, bu og'irlik kamaridir, bu belni orqa tomondan kesib o'tadigan va elkada ko'krak plastinkasidan o'tib ketadigan belbog'lar bilan bog'lab turadi, ko'pincha jabduqlar ko'tarilguncha jabduqlar ko'tarilmasligi uchun dayver qiyalik holatida ishlaydi. Jabduqlar tizimi vertikal holatni yaxshilash uchun og'irlik markazini pastroqqa qo'yadi va g'avvos noqulay holatlarda ishlashi kerak bo'lganida og'irlikni haddan tashqari siljishini oldini oladi, ammo yelka bilaguzuklari bo'ylab tik turgan holda balast yukini ko'taruvchi dubulg'a to'plamiga qo'llaydi. AQSh harbiy-dengiz kuchlari Mk V vaznli belbog'i shu uslubda bo'lib, taxminan 38 kilogramm (38 kg) vaznga ega edi.[14] ammo savdo kamarlar odatda taxminan 23 funt (50 kg) edi.[iqtibos kerak]
Og'ir vaznli poyabzal
Dubulg'a sho'ng'inchilar pastki qismida ularni ushlab turish uchun og'ir vaznli poyabzallardan foydalanganlar. O'lchangan taglik yog'och ichki taglikka mahkamlangan bo'lib, u o'z navbatida yuqori charm, kanvas yoki kauchukga ega. Qo'rg'oshin eng keng tarqalgan taglik edi va uning jufti 15 kilogrammni tashkil qilishi mumkin edi (ko'proq AQSh dengiz kuchlari Mark V mod 1 gelioks uskunasida). Kanvasdan yasalgan tepadan yasalgan guruchdan yasalgan poyabzal Ikkinchi Jahon Urushida joriy qilingan va hozirgacha ishlatilmoqda. Ba'zi dastlabki guruch poyabzallari sandal deb nomlangan, chunki ular oddiy belbog'lar bilan g'avvosning oyoqlariga ushlab turilgan. Yaponiyalik g'avvoslar ko'pincha temirdan yasalgan poyabzaldan foydalanganlar. G'avvos pastki qismida yurayotganda suvning tortilishiga qarshi oldinga egilishga intiladi va ko'pincha u oyoqlarini qaerga qo'yayotganini ko'ra olmas edi, shuning uchun barmoqlari odatda guruch bilan yopiladi.[iqtibos kerak]
Diverning pichog'i
G'avvosning pichog'i asosan arqonlar, chiziqlar va to'rlar bilan chalkashlikni kesish uchun mo'ljallangan asbobdir. Bundan tashqari, uni qandil va bolg'a qilish uchun, shuningdek kesish uchun ham ishlatish mumkin va bolg'a uchun metall pommel bo'lishi mumkin, ammo professional g'avvos odatda ish uchun mosroq vositalarni olib yuradi va bolg'a yoki vintzadan foydalanadi. bu ish rejalashtirilgan. Pichoqda ko'pincha qalin ip kabi og'ir materiallarni kesib olish uchun pichoqning bir tomoni va monofilamentli baliq ovlash tarmog'i va to'rlar kabi nozik chiziqlarni kesish uchun tekisroq qirrasi bor. An'anaviy g'avvos pichog'ining ikkita umumiy uslubi mavjud; bittasi kamon ushlagichi bilan tekis, ikkinchisida dumaloq qism mavjud akme uch marta boshlanadigan ip, sho'ng'in pichoqni har qanday yo'nalishda kiritishiga imkon beradi, iplarni bog'lash va pichoqni g'ilofga qulflash uchun aylanadi.[15][16]
Havo ta'minoti
Dastlab qo'l bilan ishlaydigan havo bilan ta'minlangan g'avvosning havo pompasi. Keyinchalik mexanizatsiyalashgan kompressorlar tomonidan etkazib berildi, ammo qo'lda nasos 20-asrga qadar variant bo'lib qoldi. Havo shlang orqali ta'minlandi va g'avvosning og'irligini ko'tarish uchun arqonning mustahkamligi qo'shildi. Keyinchalik telefon kabeli qo'shildi va g'avvosning kindigi bu narsalarni birlashtirish natijasi edi. Havo ta'minoti a orqali o'tadi orqaga qaytish valfi dubulg'aga ulanishda, bu shlang kesilsa, orqaga qaytishini oldini oladi.[11]
Dubulg'a ichidagi havo oqimi, dubulg'a egzoz klapanidagi orqa bosimni, odatda kapotning pastki o'ng tomonida qo'l bilan sozlash va aviakompaniyadagi kirish ta'minot klapanini qo'lda sozlash orqali, odatda oldingi pastki qismga o'rnatilishi mumkin. korsetaning chap tomoni.[11] Oqim tezligiga sirtni etkazib berish tizimi va chuqurligi ham ta'sir qiladi. Qo'lda ishlaydigan nasoslar etarli havo etkazib berish uchun zarur bo'lgan tezlikda ishlaydi, bu esa etkazib berish bosimi va g'avvosning fikri bilan baholanishi mumkin. Ko'pgina qo'lda ishlaydigan nasoslarda suv sathining chuqurligi - metr yoki metr suv ustuni bo'yicha kalibrlangan bosim o'tkazgichlari bor edi, bu esa nazoratchiga dalgıç chuqurligining oqilona ko'rsatkichini beradi.
Diverning havo pompasi
Dastlab qo'lda ishlaydigan nasoslar nafas olish havosini etkazib berish uchun ishlatilgan. Keyinchalik quvvatni kompressorlardan havo bilan ta'minlash ham mumkin edi.
Qo'l tizimlari
Uchta asosiy nasos konfiguratsiyasi umumiy foydalanishda bo'lgan. Eng ibtidoiy - bu qo'ltiqni oldinga va orqaga surish orqali bosim hosil bo'lgan körük turi edi, bir zarba körüklerin ichki hajmini oshirib, qaytib zarbani kamaytiradi. orqaga qaytish klapanlari havo oqimini faqat bitta yo'nalishda ta'minlashi mumkin edi, shuning uchun assimilyatsiya zarbasi havoni shamolga tortib olardi, etkazib berish valfi shlangdan orqaga qaytishini oldini oladi va etkazib berish zarbasi havoni shlangga tushiradi va kirish valfi oldini oladi tashqi tomonga qochqin. Körüklü nasoslar bir martalik bo'lishi mumkin, bu erda etkazib berish oqimi qabul qilish paytida to'xtatildi yoki ikkita harakat, fazaning tashqarisida ishlagan, birining assimilyatsiya urishi boshqasining etkazib berish zarbasiga to'g'ri keladi.[17]
Bir yoki ikkita silindrli va bitta yoki ikkita uchli qo'lni qo'l bilan ishlaydigan nasos, silindr o'rniga pistonlar yordamida modifikatsiya qilingan, ammo aks holda xuddi shu tarzda ishlagan.[18] Birdan uchtagacha silindrli, bir yoki ikki marta harakatlanadigan krank nasoslari silindrli nasoslarning rivojlanishi bo'lib, ular pistonlarni boshqarish uchun krank mili va krank mili bilan ishlash uchun volan ustidagi tutqichlardan foydalangan. Volanlardan, bir nechta tsilindrlardan va ikki ta'sirli tsilindrlardan foydalanish operatorlarga nisbatan doimiy harakatlarda silliq havo oqimini ishlab chiqarishni osonlashtirar edi.[19][20]
Quvvatli kompressorlar
Diverni nafas olish havosi bilan ta'minlash uchun quvvatli past bosimli havo kompressorlari ham ishlatilgan.[11]:01:50:00 Harakat quvvati kemada mavjud bo'lgan har qanday narsa bo'lishi mumkin, masalan, kichik ichki yonish dvigatellari, gidravlik, bug 'yoki elektr quvvati.
Havo etkazib beradigan shlang
- Havo liniyasi: Eng dastlabki havo shlanglari teridan qilingan, ammo 1859 yilga qadar rezina ishlatilgan.[21] keyinchalik rezina to'qilgan matoning mustahkam qatlamiga qoplama sifatida ishlatilgan. Bu zarur bo'lgan ichki bosimga bardosh berish uchun kerakli quvvatga erishish uchun qatlamlarda qurilishi mumkin edi, bu g'avvos ishlaydigan chuqurlikka mutanosib edi.[iqtibos kerak]
- Umbilikal: G'avvosning kindigi - bu g'avvosga kerakli barcha xizmatlardan tashkil topgan simi. Ushbu standart sho'ng'in kiyinishining keyingi versiyalari uchun ishlatilganda havo shlangi, shuningdek, sho'ng'inni ko'tarishga qodir bo'lgan quvvat manbai bo'lishi mumkin bo'lgan sho'ng'in telefon kabeli va ba'zan bir yoki bir nechta chiroqlar uchun elektr ta'minoti mavjud. g'avvos.[iqtibos kerak]
Havoni boshqarish valfi
Keyinchalik kostyumlarda dubulg'a ichiga havo oqimining tezligini boshqarish uchun havo shlangida vidalanadigan havo nazorat valfi mavjud edi.[13] Dastlabki dubulg'alarda havo boshqarish klapanlari bo'lmagan va g'avvos arqon yoki havo chizig'ini tortib sirtni ishora qilgan, bu unga ko'proq yoki ozroq havo kerakligini ko'rsatgan va nasos operatorlari nasos tezligini mos ravishda o'zgartirgan.[iqtibos kerak]
Aloqa
G'avvos va sirt o'rtasidagi eng qadimgi aloqa shakli bo'lgan chiziq signallari,[22] va bu suv osti suvi bilan ta'minlangan va bog'langan akvatorlar uchun ovozli aloqa ishlamay qolganda favqulodda signalizatsiya uchun standart bo'lib qolmoqda. Line signallari hayot chizig'idagi uzoq va qisqa tortish guruhlari kodini va signal qabul qilingan va tushunilganligini ko'rsatuvchi javoblar to'plamiga mos keladi. Tizim cheklangan, ammo juda mustahkam. Agar chiziqda chayqalish bo'lsa, u ishlamay qolishi mumkin.
Keyinchalik, 1874 yilda Lui Denayruz tomonidan patentlangan nutq naychalari tizimi sinab ko'rildi; bu tovushni etkazish uchun har bir uchini yopadigan diafragma bilan ikkinchi shlangdan foydalanilgan,[12] ammo bu juda muvaffaqiyatli emas edi.[23] Kam sonli raqam Seibe-Gorman tomonidan ishlab chiqarilgan, ammo bundan ko'p o'tmay telefon tizimi joriy qilingan va u yaxshi ishlagan va xavfsizroq bo'lganligi sababli, tez orada gapirish naychasi eskirgan va aksariyat dubulg'alar fabrikaga qaytarilgan va konvertatsiya qilingan.[24]
20-asrning boshlarida ovozli aloqa sifatini yaxshilaydigan elektr telefon tizimlari yaratildi. Ushbu simlar qutqaruv liniyasiga yoki havo liniyasiga kiritilgan va dubulg'a ichiga o'rnatilgan naushniklar yoki dubulg'aning ichiga o'rnatilgan karnaylardan foydalanilgan.[25] Mikrofonni dubulg'aning old qismiga o'rnatish yoki tomoq-mikrofondan foydalanish mumkin edi.[22] Dastlab g'avvosning yuzaki telefonist bilan gaplashishi mumkin edi, ammo keyinchalik er-xotin telefon tizimlari paydo bo'ldi, bu esa ikki sho'ng'in bir-birlari bilan to'g'ridan-to'g'ri gaplashishga imkon berdi, ularni kuzatuvchi kuzatib turdi. Diver telefonlari Siebe-Gorman, Xaynke, Rene Piel, Mors, Eriksson va Dreyger tomonidan ishlab chiqarilgan.[22]
O'zgarishlar
Dubulg'ani kostyumga yopishtirishning ikkita asosiy tizimi keng tarqalgan bo'lib qo'llanilgan edi: bitta uslubda korsetning perimetri kauchuk qistirmaga 12 boltgacha mahkamlab qo'yilgan, yukni taqsimlash uchun guruch brauzkalar yordamida va shu bilan birga siqish bosimini ta'minlash uchun suv o'tkazmaydigan muhrni qiling. Ushbu uslubda qopqoqni korsetka muhridan kostyum muhridan mustaqil bo'lgan va ko'pincha ipni to'liq bog'lash uchun 45 daraja burilishni o'z ichiga olgan uzilgan ip tizimidan foydalanilgan. Boshqa turda korselning bo'yin teshigiga o'rnatiladigan kauchuk gardish ishlatilgan va uning ustiga kapot odatda ikki yoki uchta murvat bilan bog'langan.[9][13] Shuningdek, kostyumni korsetning chetiga moshinalar bilan bog'lab qo'yish va dubulg'ani korsetga ikkita uchta yoki to'rtta murvat bilan bog'lash juda keng tarqalgan edi, bu esa korsetning gardish qismiga mixlangan bo'lishi mumkin edi.[26] yoki dubulg'a gardishidagi teshiklari bilan bog'langan murvatlarni korsetga bog'lab qo'yilgan.[27]
Uch murvatli uskunalar
Uchta murvat uskunasi, (Tryoxboltovoye snaryazheniye, Ruscha: Trexboltovoe snaryajenie, Ruscha: trexboltovka) ta'minlangan havo shlangidan iborat mis dubulg'a korsetka va suv o'tkazmaydigan kostyumga uchta murvat bilan bog'langan bo'lib, ular kostyumning kauchuk bo'yinli gardish qismini qopqoq va korsetning metall gardishlari orasiga bog'lab, dubulg'a va kostyum o'rtasida suv o'tkazmaydigan muhr hosil qiladi.,[9] ikkita 16 kilogramm (35 funt) qo'rg'oshin ko'kragiga va orqasiga bog'langan og'irliklar, mis va qo'rg'oshindan qilingan og'ir botinkalar va g'avvosning pichog'i.[iqtibos kerak]
Tomonidan uchta murvat uskunasi ishlatilgan Rossiya dengiz floti 19 va 20 asrlarda.[iqtibos kerak]
Uchta boltli uskunalar Frantsiyada Denayrouze-Rouquayrol tomonidan 1874 yoki undan oldin ishlab chiqarilgan,[12] Germaniyada esa 1912 yildan Draegerwerk tomonidan.[9]
O'n ikkita murvat uskunasi
O'n ikkita murvatli uskunada korsetning chekkasi kostyumning qistirmasiga mahkamlanadi, misni taroq yordamida yukni teng ravishda yoyadi.[13]
O'n ikkita murvat uskunasi Buyuk Britaniyada Siebe-Gorman va Xaynke tomonidan, Frantsiyada Rouquayrol-Denayrouze tomonidan va AQShda AQSh dengiz kuchlari uchun bir nechta ishlab chiqaruvchilar tomonidan ishlab chiqarilgan.[12][9][13]
AQSh Dengiz kuchlari Mk V sho'ng'in uskunalari DESCO, Morse Diving, Miller-Dunn va A. Schräder's Son kabi ko'plab etkazib beruvchilar tomonidan ishlab chiqarilgan odatiy harbiy spetsifikatsiya edi. Asosiy tarkibiy qismlar: Yigirilgan mis va bronza bronza, 12 bolt, 4 yengil, 1/8 burilishga mo'ljallangan bo'yinbog 'ko'krak nishoni (korset), qisqichlar (braillar) va qanotli yong'oqlar, vazni 55 funt (25 kg). Teri belbog'idagi qo'rg'oshin og'irliklarining sozlanishi elkama-belbog 'va dumaloq belbog' bilan, 84 funt (38 kg). Qo'rg'oshin taglikdagi poyabzal, barmoqlari guruchdan yasalgan, dantelli mato va charm kamarlar har biri 17,5 funt (7,9 kg).[14] Kiyimning vazni 18,5 funt (8,4 kg), umumiy og'irligi taxminan 190 funt (86 kg).[10] Mk V uskunasi orqaga qaytish valfida 1/2 "havo shlangini tashqi 1 1/16" x 17 suvosti iplari ulanishidan foydalanadi.[28]
Sayoz suv dubulg'alari
Sayoz suv dubulg'alari odatdagi sho'ng'in kiyimi emas, lekin quruq kostyum talab qilinmaydigan joylarda g'avvoslar sayoz ish uchun foydalanganlar. Umuman olganda, sayoz suv dubulg'asi bitta buyum bo'lib, u g'avvosning boshiga tushirilgan va elkalariga suyangan, pastki qismi ochiq bo'lgan, shuning uchun egzoz valfi talab qilinmagan. Dubulg'a oqilona tik turganda havo maydonini saqlab turar edi va agar havo to'kilgan bo'lsa, sho'ng'in tik holatga qaytishi bilanoq to'ldiriladi. U tortishish kuchi bilan ushlab turiladi. Oddiy dubulg'aning kashshofi - Dean dubulg'asi shu turda bo'lgan. Ushbu turdagi uskunalarni faqatgina sho'ng'in uni ko'tarib, favqulodda vaziyatda yuzaga erkin suzish ko'tarilishni amalga oshirishi mumkin bo'lgan chuqurlikda ishlatish xavfsizdir.[29]
Gazning qayta aylanishi
Lyubeklik Bernhard Dräger inyeksiya tizimini ishlab chiqardi, uning yordamida divergent shtutserga yangi gazni yuqori tezlikda quyish orqali g'avvosning kuchini sarf qilmasdan gazni aylantirish uchun nafas olayotgan gazni qayta nafas oluvchining tsikliga solib qo'ydi. 1899 yilga kelib, u portativ qayta yaratuvchi sifatida ishlatilishi mumkin bo'lgan bosqichga qadar ishlab chiqilgan. 1912 yilga kelib u g'avvos tomonidan olib boriladigan tizimga aylantirildi va og'ziga kerak bo'lmagan mis dubulg'ali yarim yopiq sho'ng'inni qayta tiklovchi sifatida ishlatildi. Bu texnik jihatdan standart sho'ng'in kiyimi asosida suv osti nafas olish apparati edi. 1915 "bubikopf"dubulg'a shundan kelib chiqadiki, bu dubulg'aning orqa tomonidagi o'ziga xos balandlikdan foydalanib, pastadir ulanishlarini ixcham ushlab turdi.[9]
Raqobatbardosh rekreather tizimlari Angliyada Siebe-Gorman, & Co. tomonidan ishlab chiqarilgan, ammo unchalik samarali bo'lmagan.[9]
Dreeger rebreather orqa o'rindiqlari mos ravishda 20 m dan oshmagan chuqurlikda toza kislorod qo'shilishi bilan va bir bakdan kislorod va ikkinchisidan 40 m gacha bo'lgan havo bilan birikish uchun ishlatilgan. Ushbu kombinatsiya tizimi samarali ravishda nitroks tizimi edi.[9]
Ikkinchi Jahon urushi davrida AQSh dengiz kuchlari uchun ozgina miqdordagi mis Heliox dubulg'alari ishlab chiqarilgan. Ushbu dubulg'alar katta guruch qo'shilishi bilan o'zgartirilgan Mk Vs edi karbonat angidridni tozalash vositasi orqa tomonda joylashgan va standart modeldan osongina ajralib turadi. Mk V Geliyning vazni 93 kg (42 kg) ni tashkil etadi (kapot, skrubber kanistri va korset)[30] Tomonidan ishlab chiqarilgan ushbu dubulg'alar va shunga o'xshash modellar Kirbi Morgan, Yokohama sho'ng'in apparati kompaniyasi va DESCO used the scrubber as a gas extender, a form of semi-closed rebreather system, where helmet gas was circulated through the scrubber by entraining the helmet gas in the flow from an injector supplying fresh gas, a system pioneered by Dräger in 1912.[31]
Demand systems
The Frenchman Benoit Rouquayrol patented a breathing apparatus in 1860 for firefighting and use in mines, which used a demand regulator similar in principle to the demand valves later used for open-circuit scuba equipment and eventually lightweight demand helmets. In 1864, after collaboration with Auguste Denayrouze of the French navy, the apparatus was modified for underwater use, originally without a helmet, but later adapted for use with standard copper helmets.[7]
Mixed gas systems
Besides the Dräger DM40 nitrox rebreather system, the US Navy developed a variant of the Mark V system for heliox diving. These were successfully used during the rescue of the crew and salvage of the USS Squalus in 1939. The US Navy Mark V Mod 1 heliox mixed gas helmet is based on the standard Mark V Helmet, with a scrubber canister mounted on the back of the helmet and an inlet gas injection system which recirculates the breathing gas through the scrubber to remove carbon dioxide and thereby conserve helium. The helium helmet uses the same breastplate as a standard Mark V except that the locking mechanism is relocated to the front, there is no spitcock, there is an additional electrical connection for heated underwear, and on later versions a two or three-stage exhaust valve was fitted to reduce the risk of flooding the scrubber.[32] The gas supply at the diver was controlled by two valves. The "Hoke valve" controlled flow through the injector to the "aspirator" which circulated gas from the helmet through the scrubber, and the main control valve used for bailout to open circuit, flushing the helmet, and for extra gas when working hard or descending. Flow rate of the injector nozzle was nominally 0.5 cubic foot per minute at 100 psi above ambient pressure, which would blow 11 times the volume of the injected gas through the scrubber.[33]
Aksessuarlar
A few accessories were produced that are specific to Standard diving dress, though similar items are available for other diving systems.
Welding visors were made that clamp over the front viewport of the copper helmet. These would have to be made for a specific model helmet as the details of size and shape could vary considerably.[34]
Oil resistant suits were produced once oil-resistant synthetic rubbers became available to coat the exterior of the suit.[35]
Wrist mount diving compasses and watches, and diving lights, are not restricted to use with standard diving equipment, but were produced for use by divers wearing the equipment before other diving equipment became generally available.[36] Underwater lights included hand held torches with a directed beam, and lantern styles, with all-round illumination, and lamps designed to be mounted off the diver to illuminate the work site.[37]
T-spanners (wrenches) and straight spanners for tightening and loosening the wingnuts of the helmet were available from the helmet manufacturers to suit the pattern of wingnut used by the manufacturer.[36]
Cuff expanders were available to allow the diver's attendants to assist the diver to get his hands out of the rubber cuff seals.[38]
Diver telephone systems were commonly used.[39]
Air control panels were required when power driven compressors were used. These varied in complexity, and were available for one or two divers.[40]
Dressing the diver in and out
The standard diving dress requires an assistant to help with dressing in and out. The cuff seals need an assistant to hold them open to remove the hands. Where lacing is needed, the diver cannot comfortably reach the laces. The corselet seal, fitting of the bonnet and weights are all cumbersome and heavy, and parts cannot be reached by the diver or require inspection from outside. The equipment is heavy and the field of vision restricted, so for safety the diver needs assistance and guidance when moving around with the helmet in place.[10]
Pre-dive checks
Before use the equipment would be checked: The air-supply non-return valve would be tested for leaks, the exhaust valve for spring tension and seal, and smooth action of the chin button, the viewport glass and the faceplate seal for good condition, the spitcock for smooth action and sufficient friction, the locking latch for the helmet thread is working, the bonnet seal gasket is lubricated, the studs secure and wingnuts turn freely, and the brails, helmet and breastplate are a matching set (same serial number) and fit properly. The air supply valve would be checked that it has enough friction to be easily turned by the diver, but not be easily changed by accidental bumps. Other items would be visually inspected to ensure there were no apparent defects.[10] Inspection and testing of the air supply was a separate procedure, which would be done before dressing in the diver.
Dressing in
Standard practice in the US Navy was for two attendants to dress in the diver.[10] In other circumstances one would be considered sufficient. A standardised order of dressing in would generally be followed, as this is less likely to allow errors. Details would vary for other styles of helmet and weighting system: The diver would put on whatever thermal protective clothing was considered appropriate for the planned dive, then pull on the suit, assisted by the tenders where appropriate. Soapy water might be used to assist getting the hands through the rubber cuff seals where present. The tenders laced up the back of the legs where this is needed, and made sure the lace ends were tucked away. The tenders would then fit the weighted shoes, lacing them securely and buckling over the laces. A tender would then place the breastplate cushion on the diver's shoulders and pull the suit bib over it. A tender would then lower the breastplate over the diver's head, pull the rubber seal over the rim and pull the bib into place in the neck opening. Most of the loose cloth of the bib would be folded round the back of the head. The rubber seal would be worked into place over the studs and smoothed down in preparation for clamping. The washers would be placed over the studs which would take the brail joints to protect against tearing and ensure even clamping pressure. The brails would be placed in the correct positions, and wingnuts fitted. The wingnuts intended for use at the brail joints could be identified by having wider flanges. The nuts would be tightened down evenly to ensure a good seal, first by hand, then using the appropriate wrench. After this a tender would remove the lower left front nut where the air supply valve link would later be fitted.[10]
The US Navy system used a weight belt with shoulder straps.[10] Other systems of weighting would be fitted differently. The tenders would bring the weight belt to the diver from the front and pass the shoulder straps round the divers arms and in place over the top of the breastplate, crossing at the front and back. The belt was then buckled at the back and the crotch strap buckled to the belt in front, tensioned sufficiently to ensure that the helmet assembly would stay in place during the dive. If the suit had integral gloves, wrist straps would be fitted to prevent over-inflation, otherwise protective rubber covers (snappers) would be fitted over the wrist seal ends.[10]
Before fitting the helmet, the air supply would be connected and running, and the telephone connected and tested. The helmet would be lowered over the diver's head, turned to the left to allow it to drop between the interrupted neck threads, and rotated to the right to engage the threads. As soon as the helmet is in place the faceplate would be opened for communication, then the locking mechanism secured. Next the lifeline would be secured to the breastplate, and the air supply valve link clamped on using the wingnut removed earlier for this purpose. The diver would then test the air supply and telephone and a tender would set the exhaust valve to the standard setting. The last item before consigning the diver to the water was closing and securing the faceplate.[10]
After the dive, equipment would be removed in roughly the reverse order.[10] Removing the hands from the wrist seals could be facilitated by inserting special cuff expanders, smooth curved metal plates with handles, which could be slid under the rubber cuff seal along the sides of the wrist, then the tenders could pull then away from each other to stretch the seal enough for the diver to remove his hand more easily.[38]
Sho'ng'in ishlari
- Water entry and exit was usually either by a substantial ladder or by lowering the diver into the water and lifting him out on a small platform with handholds known as a diving stage.[11] In earlier days less ergonomically desirable methods have been used, like arqon narvonlari.[21]
- The usual method of descent was for the diver to descend on a shotline. The diver would establish negative buoyancy while holding the line at the surface, then slide down the line, braking as required by holding on with his hands or using a wrap of the shotline round a leg, and with descent speed limited by the tender, who would pay out the umbilical at an appropriate speed. If it was necessary to ascend a bit to assist with ear clearing, the tender could assist on request. Speed of descent was limited by the necessity to equalise and the available flow rate of air to maintain internal volume to avoid suit and helmet squeeze, and adequate exhaust flow to keep carbon dioxide levels down.[11]
- Depth monitoring could be done by monitoring the pressure of the supply air at the pump or panel, which would be slightly greater than the air pressure inside the suit and helmet due to friction losses in the hose. Pressure inside the suit would be the effective depth pressure as this was the pressure of air the diver would be breathing.[11]
- Buoyancy control. The diver controlled buoyancy by adjusting the back pressure of the exhaust valve. The helmet and suit air space were continuous, so air would fill the suit until the deeper parts of the suit exerted sufficient additional pressure to cause the exhaust valve to open. In some helmets, such as the US Navy helmets, the exhaust valve spring pressure could be temporarily overridden by pressing the inside end with the chin to dump or pulling it with the lips to raise the pressure. Longer term adjustments were made by turning the knob on the outside to adjust spring setting. Air volume in the suit would be strongly influenced by posture. Head-up vertical posture was the normal position, and any change from this would require some adjustment of back-pressure to prevent excessive air volume in the suit, which in extreme cases could prevent the diver from reaching control valves, and could lead to a runaway buoyant ascent. Working buoyancy at depth, would normally be slightly to considerably negative. Ascent and descent were done slightly negative, and, where necessary, moving around at the surface would be done buoyant.[11]
- Flushing and flow rate control. Flow rate of the air supply was adjusted to provide sufficient air for the diver depending on work rate. When air was provided by manual cranking of the pump, it was not desirable to overdo the air supply, as this was unnecessary work for the pump crew. If the diver started building up carbon dioxide by working harder than the air supply could compensate, he could either rest for a while, ask for increased flow rate, control the flow rate at the supply valve, or a combination of these options.A 30-second flush on reaching the bottom was a standard procedure for US Navy divers.This would relieve carbon dioxide buildup caused by low exhaust flow during compression.[11]
- Demisting the viewports: Some helmets directed inlet air flow over the inside face of the viewports, which was reasonably effective, but if this was not sufficient, the diver could open the spitcock and suck seawater into his mouth, then spit it onto the inside of a fogged viewport. This would wash off the condensation droplets, and the saliva may have helped defogging, as it is known to be effective as a surfactant for this purpose.[11]
- Ascent: The diver prepared for ascent by setting slightly negative buoyancy so that the tender could pull him up easily and with control of the speed. The diver could hold onto the shotline to control position and speed to some extent.[11]
- Decompression: During the ascent the diver was often required to do in-water decompression stops, which were usually done at constant depth while holding onto the shotline. [11]
- Emergency recompression: If the diver developed symptoms of decompression sickness after surfacing it was possible to treat it by returning the diver to depth in the suit and decompressing more slowly. There was some significant risk to this procedure, but in remote areas such as the pearl shell grounds off northern Australia, it was often the only method of effective treatment available.[41]
Sho'ng'in mashqlari
Around 1943, the US Navy training course for Diver 1st class at the diving school was for 20 weeks. This included theory, work skills and diving with several types of equipment, including the Mark V Mod 1 helmet.Theory subjects listed in the syllabus included:[42]
- Caisson disease – Cause and treatment
- Theory of welding
- Care and upkeep of suits, helmets and attachments
- Diving pumps; care, upkeep, computation of diver air supply and tests of equipment
- Telephones; care and upkeep of various types, elementary theory of circuits, practical work in overhaul, vacuum tube amplification of primary circuit.
- Velocity power tools, practical work
- Bureau of Ships Diving Manual
- Salvage methods and equipment
- Oxygen rescue breathing apparatus; parvarish va texnik xizmat
- Submarine escape apparatus "lung"; parvarish va texnik xizmat
Practical training included dives in the pressure tank up to 300fsw, practical work training including searches and hull cleaning, cutting and welding, and use of the oxygen rescue and submarine escape apparatus.[42]
Ushbu bo'lim kengayishga muhtoj. Siz yordam berishingiz mumkin unga qo'shilish. (2019 yil may) |
Diving Manuals
The US Navy has provided a diving manual for training and operational guidance since 1905:
- 1905 - Manual for Divers - Handbook for Seaman Gunners, published by the Naval Torpedo Station, printed in Washington, DC. The book had seven chapters: Requirement of divers; Description of Diving Apparatus; Accidents That May Happen; Rules for Resuscitation; Signals; Duties of the Person in Charge of the Diver and of the Divers Tenders and Assistants; Preparation and Operation of App[aratus; Method of Instruction; Care and Preservation of Apparatus; Diving Outfit; Pressure at Different Depths.[43]
- 1916 - U.S. Navy Diving Manual, published by the Navy Department, Washington Government Printing Office. Intended for use as an instruction manual as well as for general use.[43]
- 1924 - U.S. Navy Diving Manual – a reprint of Chapter 36 of the Manual of the Bureau of Construction & Repair, Navy Department, which was responsible for US Navy Diving research and development at the time.[43]
- 1943 - U.S. Navy Diving Manual, published by the Navy Department, Bureau of Ships, to supersede the 1924 manual. The book has 21 chapters on all aspects of US Navy diving at the time, including diving on Heliox mixtures, which was a new development. The main focus was on the US Navy Mk V helmet, a typical free-flow copper helmet used with standard diving dress, but shallow water diving equipment is also covered.[43]
- 1952 - U.S. Navy Diving Manual, document identity NAVSHIPS 250–880, also published by the Navy Department, Bureau of Ships, to supersede the 1943 manual. It has nine parts: History and Development of Diving, Basic Principles of Diving, Diving Equipment, Diving Procedures, Medical Aspects of Diving, Diving with Helium-Oxygen Mixtures, Summary of Safety Precautions, Diving Accidents, and Component Parts of Standard Diving Equipment.[43]
- 1959 - U. S. Navy Diving Manual, document NAVSHIPS 250–538, published by the Navy Department, Bureau of Ships to supersede the 1952 manual. This manual is in four parts: General Principles of Diving, Surface Supplied Diving, Self Contained Diving, and Diving Accessories.[43]
- 1963 - U.S. Navy Diving Manual, document NAVSHIPS 250–538, published by the Navy Department, Bureau of Ships. In three parts: General Principles of Diving, Surface Supplied Diving, which refers to standard dress diving, including the use of Helium-Oxygen mixtures, and Self Contained Diving.[43]
Later revisions of the U.S. Navy Diving Manual do not refer to the Mark V equipment.
The Royal Navy originally used the Siebe-Gorman diving manual. Siebe-Gorman was the manufacturer of the standard diving dress used by the RN at the time.
- 1904 – Manual for Divers: With Information and Instruction in the Use of Siebe, Gorman & Co's Diving Apparatus as Used in H. M. Service. Royal Navy Manual G. 14063/04, published by the British Admiralty in 1904. It has chapters covering: Courses of Instruction in Diving, Description of the Apparatus, Directions for Dressing and Working, Practical Hints on Diving, and Temporary Repairs by Divers.[44]
- 1907 – Manual for Divers: Royal Navy Manual G.4358/07, published by the British Admiralty to supersede the 1904 manual. It has chapters covering: Description of the apparatus, its care and maintenance, with rules for testing the pump; The physics and physiology of diving; Dressing the diver and sending him down, and duties of the officer in charge of the diving party; and Hints for the diver and methods of doing work.[44]
- 1910 – Manual for Divers: Royal Navy Manual G.14251/1909, published by the Admiralty in December 1909 to supersede the 1907 manual. It has chapters covering: Description of the apparatus, its care and maintenance, with rules for testing the pump; The physics and physiology of diving; Dressing the diver, attendance and signals; The management of diving, duties of the officer in charge, and rules as to time and coming up; Hints for the diver, and methods for doing work; First aid to the diver in cases of accident; The Hall Rees apparatus; Extracts from regulations, orders concerning divers, and appendices on "Schedules of gear allowed for one and two divers". The 1910 addenda contains instructions for the use of the recompression chamber for divers.[44]
- 1916 – Diving Manual: Royal Navy Manual G. 24974/16, published by the British Admiralty to supersede the 1910 manual. The chapters covered: Description of the apparatus, its care and maintenance with rules for testing the pump; The physics and physiology of diving; Dressing the diver, attendance and signals; The management of diving, duties of the officer in charge, rules as to time and coming up, and Tables I and II; Hints for the diver and methods of doing work; Treatment of caisson disease by recompression and by sending the diver down again, and first aid to the diver in case of accidents. Pattern No. 200 smoke helmet and shallow water diving equipment; Extracts from regulations, orders &c., concerning divers.[44]
- 1936 – The Diving Manual BR155/1936, published by the British Admiralty from 1936 superseded the 1916 manual. The chapters covered: Description of the apparatus, its care and maintenance with rules for testing the pump; The physics and physiology of diving; Dressing the diver, attendance and signals, The management of diving, duties of the officer in charge, rules for decompression in depth up to 200 feet; Hints for the diver and methods of doing work; Diving in deep water using the Davis Submerged Decompression Chamber; Compressed air illness and accidents to the diver; Pneumatic tools and underwater cutting apparatus; Breathing Apparatus Pattern 230 and Oxygen Breathing Apparatus; Orders and regulations concerning divers.[44]
- 1943 – Royal Navy Diving Manual BR155/1943, published by the British Admiralty to supersede BR155/1936. The chapters covered: The physics of diving and their effect on the human body; Description of the apparatus, its care and maintenance; Dressing the diver, attendance and signals;4 Practical work underwater, The management of diving, duties of the officer in charge, rules for decompression in depths up to 200 feet; Diving in deep water, using the Davis Submerged Decompression Chamber, Compressed air illness and accidents to the diver; Under-water tools and tubular construction; Breathing Apparatus Pattern 230 and Oxygen Breathing Apparatus; Orders and regulation concerning divers.[44]
- Royal Navy Diving Manual BR155C/1956, published by the British Admiralty to supersede BR155/1943. Printed as a set of softback booklets in a hard binder, the 8 parts were: The Theory of Diving (1956); Diving Regulations (1956); Self-Contained Diving (1957); Standard Diving (1956); Deep Diving (1957); Practical Diving (1956); Marine Salvage (1960); and Diver's Loudspeaker Intercommunication Equipment (1958).[44]
- Royal Navy Diving Manual BR 155/1964, published by the British Admiralty to supersede BR155/1956, in a loose leaf ring binder. The 8 parts were: Diving Regulations; The Theory of Diving; Ship and Clearance Diving; Surface and Submersible Chambers; Practical Diving; Marine Salvage; Standard Diving; Diver's Loudspeaker Intercommunication Equipment.[44]
- 1972 – BR 2806 Diving Manual, published by the Ministry of Defence, Weapons Department (Naval) in a loose leaf spring clip binder. The 7 sections cover: Theory of Diving; Nizom; Conduct of Diving Operations; Breathing Apparatus, Drill and Operation; Decompression; Divers’ Illnesses and Injuries; and Civilian and Expedition Diving; This is the last RN manual covering standard diving equipment.[44]
Specific hazards
Most of the hazards to which the standard diver was exposed are much the same as those to which any other surface supplied diver is exposed, but there were a few significant exceptions due to the equipment configuration.
Helmet squeeze is an injury that could occur if the air supply hose was ruptured near or above the surface. The pressure difference between the water around the diver and the air in the hose can then be several bar. The non-return valve at the connection to the helmet will prevent backflow if it is working correctly, but if absent, as in the early days of helmet diving, or if it fails, the pressure difference between the diver depth and the break in the hose will tend to squeeze the diver into the rigid helmet, which can result in severe, sometimes fatal, trauma. The same effect can result from a large and rapid increase in depth if the air supply is insufficient to keep up with the increase in ambient pressure. This could occur if the diver fell off a support when there was a lot of slack in the lifeline, or the angle of the lifeline allowed horizontal distance to swing to vertical distance.[45][46][47][48]
Suit blowup occurs when the diving suit is inflated to the point at which the buoyancy lifts the diver faster than he can vent the suit to reduce buoyancy sufficiently to break the cycle of ascent induced expansion. A blowup can also be induced if air is trapped in areas which are temporarily higher than the helmet exhaust valve, such as if the feet are raised and trap air. A blowup can surface the diver at a dangerous rate, and the risk of lung over-inflation injury is relatively high. Risk of decompression sickness is also raised depending on the pressure profile to that point. Blowup can occur for several reasons. Loss of ballast weight is another cause of buoyancy gain which may not be possible to compensate by venting.[47][48] The standard diving suit can inflate during a blowup to the extent that the diver cannot bend his arms to reach the valves, and the over-pressure can burst the suit, causing a complete loss of air, and the diver sinking to the bottom to drown.[11]
The standard diving system had no self contained alternative breathing gas supply. It was possible to switch out air supply hoses underwater, and the air already in the suit and helmet was usually sufficient to keep the diver conscious during the time required to disconnect the old hose and connect the new one, but this procedure could only work if the original hose was still providing an air supply. A severed or blocked hose could not be successfully managed.[11]:17min
Ishlab chiqaruvchilar
- Braziliya:
- Person, of São Paulo.[49]
- Kanada:
- John Date, of Montreal.[50]
- Denmark: There was a particular style of corselet rim sealing clamp used in Danish service patented by Peter Hansen Hessing and built under license by various manufacturers, which used only two clamping bolts. [51]
- Sharqiy Germaniya:
- Medi. 3-bolt helmets [52]
- Frantsiya:
- Rouquayrol-Denayrouze, later Specialites Mecaniques Reunis, then Societe Charles Petit, eventually Rene Piel (several name changes) manufactured both 3-bolt and 12-bolt helmets, and both demand and free-flow air supply systems.[12] Trademarks include Rene Piel of Paris,[53] C H Petit, of Paris.[54]
- Scauda, of Mareilles. [55]
- Germaniya:
- Draeger & Gerling, Lubeck, Established 1889. In 1902 name changed to Draegerwerk, Heinr. & Bernh. Dräger. Draegerwerk produced both rebreather and free-flow helmets.[9][56]
- Clouth Gummiwerke AG ning Cöln Nippes.
- Friedrich Flohr, Kiel. Established 1890. Manufactured apparatus of Denayrouze type with three-bolt helmets and regulator backpacks. Later also produced free-flow helmets.[57][52]
- Niderlandiya:
- Bikkers of Rotterdam[58]
- Italiya:
- Yaponiya:
- Koreya:
- Pusan.[65]
- Russia: 3-bolt, 6-bolt and 12-bolt/3-bolt helmets, including helium helmets.[66]
- Ispaniya:
- Sweden: Some of the Swedish helmets were of the "inverted pot" form, with a substantially cylindrical bonnet with a rounded top.[68]
- United Kingdom: Leading British manufacturers were Siebe Gorman va Xaynke. Siebe Gorman manufactured a wide range of models over several years, including 12-bolt oval and square corselets, 6-bolt oval corselets.[73] 3 or 4 lights, usually with screw in front window, with tinned or copper finish and round or oval side windows. Over their production period they used at least two styles of wingnut, and a rebreather model.[74] Occasionally more unusual options were chosen, such as 8 bolt corselets.[75] No-bolt model used similar rubber flange to 3-bolt helmets, but clamped between the bonnet and corselet which were connected at the back by a hinge and the helmet swung forward over the head to close, and locked by a clamp in front with a locking device to prevent inadvertent opening.[76]
- In the United States, the dominant makers were DESCO, Morse sho'ng'in, Miller–Dunn va Schräder. Among others, Morse Diving Equipment of Boston produced the Mark V Helium MOD 1 rebreather helmet.[77] Some Morse helmets had the air intake on the back of the corselet,[78]
Shuningdek qarang
- Suv osti sho'ng'in tarixi – History of the practice of descending below the water's surface to interact with the environment
- Yuzaki sho'ng'in – Underwater diving breathing gas supplied from the surface
- Sho'ng'in texnologiyasi – A chronological list of notable events in the history of underwater diving
- Ommaviy madaniyatda suv osti sho'ng'inlari – Any aspects of underwater diving in fiction and popular culture
Adabiyotlar
- ^ a b Stillson, GD (1915). "Report in Deep Diving Tests". US Bureau of Construction and Repair, Navy Department. Texnik hisobot. Olingan 2008-08-08.
- ^ a b v d e f g h Devis, RH (1955). Chuqur sho'ng'in va suvosti operatsiyalari (6-nashr). Tolvort, Surbiton, Surrey: Siebe Gorman & Company Ltd.
- ^ Bevan, John (27 May 1996). The Infernal Diver. Submex Ltd. ISBN 0-9508242-1-6.
- ^ "Arxivlangan nusxa". Arxivlandi 2013-10-27 kunlari asl nusxasidan. Olingan 2013-12-18.CS1 maint: nom sifatida arxivlangan nusxa (havola) Scuba Ed's – History of scuba diving
- ^ Newton, William; Partington, Charles Frederick (1825). "Charles Anthony Deane – 1823 patent". Nyutonning London San'at va Fanlar jurnali. W. Newton. 9: 341. Arxivlandi from the original on 2017-02-16.
- ^ a b Acott, C. (1999). "JS Haldane, JBS Haldane, L Hill va Siebe: ularning hayotlari haqida qisqacha ma'lumot". Janubiy Tinch okeanining suv osti tibbiyoti jamiyati jurnali. 29 (3). ISSN 0813-1988. OCLC 16986801. Arxivlandi asl nusxasidan 2011-07-27. Olingan 2008-07-13.
- ^ a b v Dekker, Devid L. "1860. Benoit Rouquayrol – Auguste Denayrouze: Part 1". www.divinghelmet.nl. Arxivlandi asl nusxasidan 2016 yil 20 sentyabrda. Olingan 18 sentyabr 2016.
- ^ Xodimlar. "DESCO 29019 U.S. Navy Helium Diving Helmet w/Double Exhaust Valve (late version)". Commercial Dive Gear » Diving Helmets. Milwaukee, Wisconsin: DESCO. Arxivlandi asl nusxasidan 2017 yil 7 fevralda. Olingan 6 fevral 2017.
- ^ a b v d e f g h men j k l m Dekker, Devid L. "1889. Draegerwerk Lyubek". Gollandiyada sho'ng'in xronologiyasi. www.divinghelmet.nl. Arxivlandi asl nusxasidan 2016 yil 20 sentyabrda. Olingan 17 sentyabr 2016.
- ^ a b v d e f g h men j k l m n o p q "Deep Sea Diving Suit: The Diving Dress 1943 US Navy Training Film" kuni YouTube
- ^ a b v d e f g h men j k l m n o p q r s t siz "U.S. Navy Standard Deep Sea Diving Outfit training film 43424 NA" kuni YouTube
- ^ a b v d e f g Dekker, Devid L. "1860. Benoit Rouquayrol – Auguste Denayrouze: Part 2". www.divinghelmet.nl. Arxivlandi asl nusxasidan 2016 yil 10 martda. Olingan 18 sentyabr 2016.
- ^ a b v d e f g h "Chuqur dengizga sho'ng'in: chuqur dengiz kiyimini yig'ish - 1963 - AQSh harbiy-dengiz kuchlari mashqlari" kuni YouTube
- ^ a b "Mark V". Diver's Institute of Technology. Sietl, Vashington.
- ^ Xodimlar. "Commercial Dive Gear » Diver Accessories: U.S. Navy Divers Knife". www.divedesco.com. Olingan 3 dekabr 2017.
- ^ Pardoe 2016, pp. 208–222.
- ^ Pardoe 2016, p. 186.
- ^ Pardoe 2016, pp. 176, 181–185.
- ^ Double action cylinder delivers on both the up and down-strokes
- ^ Pardoe 2016, pp. 155–176.
- ^ a b Marx, Robert F. (1990). The History of Underwater Exploration. Dover books on earth sciences. Courier Corporation. p.59. ISBN 9780486264875.
- ^ a b v Staff (June 2014). "Method of communication between diver and surface". Divingheritage.com. Olingan 5 sentyabr 2016.
- ^ Xodimlar. "John Player Cigarette Cards - Communications". Diving History. UKDivers.net. Arxivlandi asl nusxasi 2016 yil 24 oktyabrda. Olingan 5 sentyabr 2016.
- ^ Pardoe 2016, p. 39.
- ^ Pardoe 2016, p. 54.
- ^ Pardoe 2016, pp. 93–98.
- ^ Pardoe 2016, 99-104 betlar.
- ^ "Diving Equipment Product Specifications DESCO Diving Helmets Hose Connections". Olingan 7 dekabr 2017.
- ^ Pardoe 2016, p. 20.
- ^ Xodimlar. "DESCO 29019 Mark V Diving Helmet - Navy Helium Helmet with Single Exhaust Valve (early version)". Olingan 2018-02-15.
- ^ "Going deep". www.divingheritage.com. Olingan 2 iyul 2019.
- ^ "Commercial Dive Gear » Diving Helmets: DESCO 29019D Mark V Diving Helmet". Milwaukee, Wisconsin: DESCO Corporation. Olingan 17 yanvar 2019.
- ^ "12". US Navy Diving Manual Revision 1 Navsea-0994-LP001-9020 (PDF). 2. Washington DC: Navy Department. 1981 yil iyul.
- ^ Pardoe 2016, p. 237.
- ^ Pardoe 2016, p.233.
- ^ a b Pardoe 2016, 244-245-betlar.
- ^ Pardoe 2016, pp. 194-207.
- ^ a b Pardoe 2016, p. 224.
- ^ Pardoe 2016, pp. 190–194.
- ^ Pardoe 2016, 188-189 betlar.
- ^ Bailey, John (2001). The White Divers of Broome: The True Story of a Fatal Experiment (qayta nashr etilishi). Pan Makmillan. ISBN 9780732910785.
- ^ a b Qo'shma Shtatlar. Navy Dept. Bureau of Ships, ed. (1943). Diving Manual. AQSh hukumatining bosmaxonasi. p. 3.
- ^ a b v d e f g h men "Royal Navy Diving Manual". Classic Dive Books. Olingan 19 may 2019.
- ^ Barsky, Steven; Neuman, Tom (2003). Investigating Recreational and Commercial Diving Accidents. Santa Barbara, California: Hammerhead Press. pp. 61, 90. ISBN 978-0-9674305-3-9.
- ^ xodimlar. "Incidents". The divers' Association. Olingan 18 may 2017.
- ^ a b Warlaumont, John, ed. (1991). "8.1.5.1 Diver Emergencies". The NOAA Diving Manual: Diving for Science and Technology. DIANE Publishing. ISBN 9781568062310.
- ^ a b "8-7 Operational Hazards - Blowup". U. S. Navy Diving Manual: Air Diving. 1 (Revision 3 ed.). DIANE Publishing. 1999. p. 8-14. ISBN 9780788182600.
- ^ Pardoe 2016, p. 132.
- ^ Pardoe 2016, p. 138.
- ^ Pardoe 2016, 110-113 betlar.
- ^ a b Pardoe 2016, p. 97.
- ^ Pardoe 2016, p. 126.
- ^ Pardoe 2016, p. 127.
- ^ Pardoe 2016, p. 129.
- ^ Pardoe 2016, 88-91 betlar.
- ^ Dekker, Devid L. "1890 Friedrich Flohr, Kiel". www.divinghelmet.nl. Arxivlandi asl nusxasidan 2016 yil 10 martda. Olingan 18 sentyabr 2016.
- ^ Dekker, Devid L. "1841. Bikkers Rotterdam". www.divinghelmet.nl. Arxivlandi asl nusxasidan 2015 yil 24 oktyabrda. Olingan 18 sentyabr 2016.
- ^ Pardoe 2016, p. 121–123.
- ^ Pardoe 2016, p. 125.
- ^ Pardoe 2016, p. 124.
- ^ "Kirish". www.divingheritage.com. 2 iyun 2014 yil. Olingan 7 dekabr 2017.
- ^ Pardoe 2016, p. 137.
- ^ Pardoe 2016, p. 134.
- ^ Pardoe 2016, p. 131.
- ^ Pardoe 2016, 114-120-betlar.
- ^ Pardoe 2016, p. 133.
- ^ Pardoe 2016, 99-102 betlar.
- ^ Pardoe 2016, p. 104.
- ^ Pardoe 2016, p. 102.
- ^ Pardoe 2016, p. 99.
- ^ Pardoe 2016, p. 105.
- ^ Pardoe 2016, pp. 25–44.
- ^ Pardoe 2016, p. 50.
- ^ Pardoe 2016, p. 45.
- ^ "Siebe Gorman no bolt helmets". www.divingheritage.com. 2012 yil 14-dekabr. Olingan 7 dekabr 2017.
- ^ Pardoe 2016, p. 85.
- ^ Pardoe 2016, p. 81.
Manbalar
Xodimlar (2016). The Anthony and Yvonne Pardoe Collection of Diving Helmets and Equipment – illustrated catalogue (PDF). Exeter, UK: Bearnes Hampton & Littlewood.
Tashqi havolalar
| Vikimedia Commons-ga tegishli ommaviy axborot vositalari mavjud Sho'ng'in uchun standart kiyim. |
- The Historical Diving Society
- AQSh dengiz dengiz osti muzeyi
- Diving Heritage
- "Iron Men Under The Sea", January 1931, Popular Mechanics detailed article on salvage divers and diving school in Bremen, Germany
- "Undersea Acrobatics The World Never Sees", December 1931, Popular Mechanics training given divers to go against current on ocean floor pages 974/975
- History of Diving Museum