WikiDer > Uilson bosh
| Nomlangan | Jon Uilson |
|---|---|
| Nashr yili | 1938[1] |
| Nashr muallifi | Emma Lemmer |
| Yo'q ma'lum atamalar | 3 |
| Birinchi shartlar | 5, 13, 563 |
| Ma'lum bo'lgan eng katta atama | 563 |
| OEIS indeks |
|
A Uilson boshnomi bilan nomlangan Ingliz tili matematik Jon Uilson, a asosiy raqam p shu kabi p2 ajratadi (p - 1)! + 1, bu erda "!" belgisini bildiradi faktorial funktsiya; bilan solishtiring Uilson teoremasi, bu har bir eng yaxshi deb ta'kidlaydi p ajratadi (p − 1)! + 1.
Faqat ma'lum bo'lgan Uilson tublari 5, 13va 563 (ketma-ketlik A007540 ichida OEIS); agar boshqalar bo'lsa, ular 2 dan katta bo'lishi kerak×1013.[2] Bo'ldi taxmin qilingan cheksiz sonda Uilson tub sonlari mavjud bo'lib, intervalda Uilson tub sonlari soni [x, y] log haqida (log (y) / log (x)).[3]
Uilsonning yangi sonlarini topish umidida bir nechta kompyuter qidiruvlari o'tkazildi.[4][5][6]The Ibercivis tarqatilgan hisoblash loyiha Uilson tublarini qidirishni o'z ichiga oladi.[7] Da boshqa qidiruv ishlari muvofiqlashtirildi Mersenne Prime Internet-ni ajoyib qidirish forum.[8]
Umumlashtirish
Uilson tartiblari n
Uilson teoremasini umuman quyidagicha ifodalash mumkin har bir butun son uchun va asosiy . Umumlashtirilgan Uilson tartiblari n tub sonlar p shu kabi ajratadi .
Har bir tabiiy son uchun n, tartibning cheksiz ko'p sonli Uilsonlari mavjud n.
| asosiy shu kabi ajratadi (1000000 gacha tekshirilgan) | OEIS ketma-ketlik | |
|---|---|---|
| 1 | 5, 13, 563, ... | A007540 |
| 2 | 2, 3, 11, 107, 4931, ... | A079853 |
| 3 | 7, ... | |
| 4 | 10429, ... | |
| 5 | 5, 7, 47, ... | |
| 6 | 11, ... | |
| 7 | 17, ... | |
| 8 | ... | |
| 9 | 541, ... | |
| 10 | 11, 1109, ... | |
| 11 | 17, 2713, ... | |
| 12 | ... | |
| 13 | 13, ... | |
| 14 | ... | |
| 15 | 349, 41341, ... | |
| 16 | 31, ... | |
| 17 | 61, 251, 479, ... | A152413 |
| 18 | 13151527, ... | |
| 19 | 71, 621629, ... | |
| 20 | 59, 499, 43223, 214009, ... | |
| 21 | 217369, ... | |
| 22 | ... | |
| 23 | ... | |
| 24 | 47, 3163, ... | |
| 25 | ... | |
| 26 | 97579, ... | |
| 27 | 53, ... | |
| 28 | 347, 739399, ... | |
| 29 | ... | |
| 30 | 137, 1109, 5179, ... |
Eng kam umumiy Uilson buyurtma n bor
Uilsonga yaqin primes
| p | B |
|---|---|
| 1282279 | +20 |
| 1306817 | −30 |
| 1308491 | −55 |
| 1433813 | −32 |
| 1638347 | −45 |
| 1640147 | −88 |
| 1647931 | +14 |
| 1666403 | +99 |
| 1750901 | +34 |
| 1851953 | −50 |
| 2031053 | −18 |
| 2278343 | +21 |
| 2313083 | +15 |
| 2695933 | −73 |
| 3640753 | +69 |
| 3677071 | −32 |
| 3764437 | −99 |
| 3958621 | +75 |
| 5062469 | +39 |
| 5063803 | +40 |
| 6331519 | +91 |
| 6706067 | +45 |
| 7392257 | +40 |
| 8315831 | +3 |
| 8871167 | −85 |
| 9278443 | −75 |
| 9615329 | +27 |
| 9756727 | +23 |
| 10746881 | −7 |
| 11465149 | −62 |
| 11512541 | −26 |
| 11892977 | −7 |
| 12632117 | −27 |
| 12893203 | −53 |
| 14296621 | +2 |
| 16711069 | +95 |
| 16738091 | +58 |
| 17879887 | +63 |
| 19344553 | −93 |
| 19365641 | +75 |
| 20951477 | +25 |
| 20972977 | +58 |
| 21561013 | −90 |
| 23818681 | +23 |
| 27783521 | −51 |
| 27812887 | +21 |
| 29085907 | +9 |
| 29327513 | +13 |
| 30959321 | +24 |
| 33187157 | +60 |
| 33968041 | +12 |
| 39198017 | −7 |
| 45920923 | −63 |
| 51802061 | +4 |
| 53188379 | −54 |
| 56151923 | −1 |
| 57526411 | −66 |
| 64197799 | +13 |
| 72818227 | −27 |
| 87467099 | −2 |
| 91926437 | −32 |
| 92191909 | +94 |
| 93445061 | −30 |
| 93559087 | −3 |
| 94510219 | −69 |
| 101710369 | −70 |
| 111310567 | +22 |
| 117385529 | −43 |
| 176779259 | +56 |
| 212911781 | −92 |
| 216331463 | −36 |
| 253512533 | +25 |
| 282361201 | +24 |
| 327357841 | −62 |
| 411237857 | −84 |
| 479163953 | −50 |
| 757362197 | −28 |
| 824846833 | +60 |
| 866006431 | −81 |
| 1227886151 | −51 |
| 1527857939 | −19 |
| 1636804231 | +64 |
| 1686290297 | +18 |
| 1767839071 | +8 |
| 1913042311 | −65 |
| 1987272877 | +5 |
| 2100839597 | −34 |
| 2312420701 | −78 |
| 2476913683 | +94 |
| 3542985241 | −74 |
| 4036677373 | −5 |
| 4271431471 | +83 |
| 4296847931 | +41 |
| 5087988391 | +51 |
| 5127702389 | +50 |
| 7973760941 | +76 |
| 9965682053 | −18 |
| 10242692519 | −97 |
| 11355061259 | −45 |
| 11774118061 | −1 |
| 12896325149 | +86 |
| 13286279999 | +52 |
| 20042556601 | +27 |
| 21950810731 | +93 |
| 23607097193 | +97 |
| 24664241321 | +46 |
| 28737804211 | −58 |
| 35525054743 | +26 |
| 41659815553 | +55 |
| 42647052491 | +10 |
| 44034466379 | +39 |
| 60373446719 | −48 |
| 64643245189 | −21 |
| 66966581777 | +91 |
| 67133912011 | +9 |
| 80248324571 | +46 |
| 80908082573 | −20 |
| 100660783343 | +87 |
| 112825721339 | +70 |
| 231939720421 | +41 |
| 258818504023 | +4 |
| 260584487287 | −52 |
| 265784418461 | −78 |
| 298114694431 | +82 |
Uyg'unlikni qondiradigan asosiy p (p - 1)! B - 1 +Bp modp2 kichik bilan |B| deb atash mumkin Uilson yaqinidagi bosh vazir. Uilsonga yaqin primes B = 0 Uilson tub sonlarini ifodalaydi. Quyidagi jadvalda shunday barcha asosiy sonlar keltirilgan |B| ≤ 100 10 dan6 4 gacha×1011:[2]
Uilson raqamlari
A Uilson raqami tabiiy son n shu kabi V(n) ≡ 0 (mod n2), qaerda doimiy e = 1 agar va faqat agar n bor ibtidoiy ildizaks holda, e = -1[9] Har bir tabiiy son uchun n, V(n) ga bo'linadi nva takliflar (umumlashtirilgan deb nomlanadi Uilsonning so'zlari) ro'yxatida keltirilgan OEIS: A157249. Uilson raqamlari
- 1, 5, 13, 563, 5971, 558771, 1964215, 8121909, 12326713, 23025711, 26921605, 341569806, 399292158, ... (ketma-ketlik) A157250 ichida OEIS)
Agar Uilson raqami bo'lsa n u asosiy hisoblanadi n Uilsonning bosh vaziri. 5 gacha bo'lgan 13 ta Uilson raqamlari mavjud×108.[10]
Shuningdek qarang
Izohlar
- ^ Lexmer, Emma (1938 yil aprel). "Bernulli raqamlari va Fermat va Uilsonning kvotentsiyalari bilan bog'liq kelishuvlar to'g'risida" (PDF). Matematika yilnomalari. 39 (2): 350–360. doi:10.2307/1968791. JSTOR 1968791. Olingan 8 mart 2011.
- ^ a b Uilson tublarini qidirish 2012 yil 2-noyabrda olingan.
- ^ Bosh lug'at: Wilson prime
- ^ McIntosh, R. (2004 yil 9 mart). "UILSONNING STATUSI (1999 yil fevral)". Elektron pochta Pol Zimmermann. Olingan 6 iyun 2011.
- ^ Wieferich va Wilson asoslarini qidirish, p 443
- ^ Ribenboim, P.; Keller, V. (2006). Die Welt der Primzahlen: Geheimnisse und Rekorde (nemis tilida). Berlin Heidelberg Nyu-York: Springer. p. 241. ISBN 978-3-540-34283-0.
- ^ Ibercivis sayti
- ^ Uilson primes uchun tarqatilgan qidiruv (mersenneforum.org saytida)
- ^ qarang Gaussning Uilson teoremasini umumlashtirishi
- ^ Agoh, Takashi; Dilcher, Karl; Skula, Ladislav (1998). "Uilson kompozitsion modullarni taklif qilmoqda" (PDF). Matematika. Hisoblash. 67 (222): 843–861. doi:10.1090 / S0025-5718-98-00951-X.
Adabiyotlar
- Beeger, N. G. W. H. (1913-1914). "Quelques remarques sur les congruences rp−1 ≡ 1 (mod.)p2) va (p - 1!) ≡ −1 (mod p.)2)". Matematikaning xabarchisi. 43: 72–84.
- Goldberg, Karl (1953). "Uilson kotirovkalari jadvali va uchinchi Uilsonning asosiy". J. London matematikasi. Soc. 28 (2): 252–256. doi:10.1112 / jlms / s1-28.2.252.
- Ribenboim, Paulu (1996). Asosiy raqamlar yozuvlarining yangi kitobi. Springer-Verlag. pp.346. ISBN 978-0-387-94457-9.
- Crandall, Richard E.; Dilcher, Karl; Pomerance, Karl (1997). "Wieferich va Wilson asoslarini qidirish". Matematika. Hisoblash. 66 (217): 433–449. doi:10.1090 / S0025-5718-97-00791-6.
- Crandall, Richard E.; Pomerance, Karl (2001). Asosiy sonlar: hisoblash istiqbollari. Springer-Verlag. p. 29. ISBN 978-0-387-94777-8.
- Pearson, Erna H. (1963). "Uchrashuvlar to'g'risida (p - 1)! ≡ −1 va 2p−1 ≡ 1 (mod.)p2)" (PDF). Matematika. Hisoblash. 17: 194–195.
Tashqi havolalar
- Bosh lug'at: Wilson prime
- Vayshteyn, Erik V. "Wilson prime". MathWorld.
- Wilson primerlarini qidirish holati