WikiDer > Bo'ri evolyutsiyasi

Evolution of the wolf
Pleistotsen ichida topilgan bo'ri kraniumining tasviri Kents Kavern, Torquay, Angliya[1]

The bo'ri evolyutsiyasi sodir bo'ldi geologik vaqt shkalasi kamida 300 ming yillik. Kulrang bo'ri Canis lupus atrof muhitda mavjud bo'lishga qodir bo'lgan va butun dunyo bo'ylab keng tarqaladigan yuqori moslashuvchan tur Holarktika. Zamonaviy kulrang bo'rilarni o'rganish natijasida bir-biriga yaqin joyda yashaydigan alohida sub-populyatsiyalar aniqlandi.[2][3] Pastki populyatsiyalarning bunday o'zgarishi kranio-dental plastisitga ta'sir qiluvchi yashash joylari - yog'ingarchilik, harorat, o'simlik va o'lja ixtisoslashuvi farqlari bilan chambarchas bog'liq.[4][5][6][7]

Arxeologik va paleontologik yozuvlar kamida 300 ming yil ichida kulrang bo'rining doimiy mavjudligini ko'rsatadi.[8] Ushbu doimiy mavjudlik genomik tahlillarga qarama-qarshi bo'lib, barcha zamonaviy bo'rilar va itlar ajdodlarimizning umumiy bo'ri populyatsiyasidan kelib chiqishini taklif qiladi.[9][10][11] 20000 yil oldin mavjud bo'lgan.[9] Ushbu tahlillar a aholining tiqilishi, so'ngra ota-bobolar populyatsiyasining bir vaqtning o'zida yoki bir ozdan keyin tez nurlanishi Oxirgi muzlik maksimal darajasi. Bu shuni anglatadiki, bo'ri populyatsiyasining o'rniga ularning o'rnini egallagan bo'ri yangi turi bilan raqobatlashmagan. Biroq, bu nurlanishning geografik kelib chiqishi ma'lum emas.

Qadimgi toshlar

Canis etruscus bosh suyagi Montevarchi Paleontologik muzey

Qadimgi umurtqali hayvonlarning fotoalbomlari kamdan kam uchraydigan bo'laklardan iborat bo'lib, ulardan genetik material olishning iloji yo'q. Tadqiqotchilar cheklangan morfologik tahlil ammo vaqt va joy bo'yicha namunalar o'rtasida mavjud bo'lgan turlar ichidagi va turlararo xilma-xillik va munosabatlarni taxmin qilish qiyin. Ba'zi kuzatishlar har doim ham rozi bo'lmaydigan tadqiqotchilar tomonidan muhokama qilinadi va ba'zi mualliflar tomonidan qo'llab-quvvatlanadigan farazlar boshqalari tomonidan e'tiroz bildiriladi.[12]

Eng qadimiy yozuv bo'yicha umumiy kelishuv mavjud bo'lib, buni ko'rsatib turibdi feliformlar va kaniformalar super-oila ichida paydo bo'lgan Yirtqich hayvon 43 million hozirgi yillargacha (YBP).[13] Kaniformalar tulkiga o'xshash turni o'z ichiga olgan Leptotsion ularning xilma-xil turlari 34 million YBP dan 11,9 million YBPga bo'linmasdan oldin mavjud bo'lgan Vulpes (tulkilar) va Kanini (itlar). Oqsoqol Evson Shimoliy Amerikada 10 million YBP dan va mavjud bo'lgan Ilk pliosen qarag'ayga o'xshash 6-5 million YBP Eucyon davisi[14] Evrosiyoni bosib oldi. Shimoliy Amerikada u erta paydo bo'ldi Kanis birinchi bo'lib paydo bo'lgan Miosen (6 million YBP) AQShning janubi-g'arbiy qismida va Meksikada. 5 million YBP ga kattaroq Canis lepophagus o'sha mintaqada paydo bo'lgan.[15]:p58

Shimoliy Amerikadan Evrosiyoga ko'chib kelgan kanidlar - Evson, Vulpesva Nyctereutes - oxirgi miosen va erta pliyotsen davrida kichik va o'rta kattalikdagi yirtqichlar bo'lgan, ammo ular eng katta yirtqichlar emas edi. Kanidlarning joylashuvi kelishi bilan o'zgaradi Kanis bo'ylab dominant yirtqichga aylanish Holarktika. Bo'ri kattaligi C. chihliensis Shimoliy Xitoyda O'rta Pliosen davrida 4–3 million YBP atrofida paydo bo'lgan.[15]:p148 Katta bo'ri Kanis o'rtalarida paydo bo'lgan Plyotsen taxminan 3 million yil oldin Yusshe havzasida, Shanxi Viloyat, Xitoy. 2,5 million yil oldin uning qatoriga Niyavan havzasi kiritilgan Yangyuan okrugi, Xebey, Xitoy va Kuruksoy, Tojikiston.[16] Buning ortidan portlash sodir bo'ldi Kanis Evroosiyo bo'ylab dastlabki pleystotsen davrida 1,8 million YBP atrofida odatda evolyutsiya bo'ri hodisasi. Bu shakllanishi bilan bog'liq mamont dasht va kontinental muzlik. Kanis shakllarida Evropaga tarqaldi C. arnensis, C. etruskva C. falconeri.[15]:p148

Fosil qoldiqlari to'liq emas, ammo bo'rilar mayda, erta kanidlar populyatsiyasidan paydo bo'lgan.[17]:p241 Morfologik dalillar[17]:p239[18] va genetik dalillar[19] ikkalasi ham bo'rilar davrida rivojlangan deb taxmin qilishadi Plyotsen va erta Pleystotsen xuddi shu nasldan bo'lgan davrlar ham qo'yga olib kelgan,[17]:p239 toshbo'ron va bo'ri 1,5 million yil oldin umumiy ajdoddan ajralib chiqqanligini ko'rsatuvchi fotoalbom namunalar bilan.[17]:p240[18] Shoqolning ajdodi va boshqa avlod vakillari Kanis bu vaqtgacha nasabdan ajralib chiqqan edi.[17]:p240

Umumiy ajdoddan ajralib chiqqandan so'ng, bo'ri va koyotning keyingi evolyutsiyasida ishtirok etgan deb hisoblangan turlar va ba'zilarining e'tiqodlari. paleontologlar - ajratilgan.[17]:p240 Bir qator tadqiqotchilarning fikricha, C. priscolatrans, C. etrusk, C. rufus va C. qizilcha zamonaviy bo'ri va koyotga olib keladigan qaysidir ma'noda ishtirok etgan komponentlar edi.[17]:p240[20][21][22][23][24][25]

Bo'ri evolyutsiyasi
Canis lepophagus
Canis latranslari (Koyot)

Itlar, shoqollar, bo'rilar va tulkilar (IX plastinka) .jpg

Canis priscolatrans

yo'q bo'lib ketgan taksonlar

Canis armbrusteri
Canis dirus (Dire bo'ri)

Amerika muzeyi jurnali (c1900- (1918)) (Canis dirus) .jpg

Canis nehringi

Katta o'lchamdagi canid icon.jpg

Canis gezi

Katta o'lchamdagi canid icon.jpg

Canis etruscus

Canis variabilisCanis lupus variabilis.jpg

Canis mosbachensis
Canis rufus (qizil bo'ri)

Itlar, shoqollar, bo'rilar va tulkilar (V plastinka) C. l. rufus mod.jpg

Canis lupus (kulrang bo'ri)

Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .jpg

Kanis tanish (it)

Tibet mastifi (oq fon) .jpg

Tavsiya etilgan evolyutsiya va naslning dallanishi Kanis bo'ri tomon.[17]:p240

Canis lepophagus

Canis lepophagus Shimoliy Amerikadagi dastlabki pliosen davrida yashagan.[15] Kurten deb taklif qildi Blankan Lepofagus[26] kichikroqdan olingan Miosen Kanis Shimoliy Amerikadagi turlar. Keyin u butun Evrosiyo bo'ylab keng tarqaldi, u erda u xuddi shu bilan yoki u bilan chambarchas bog'liq edi. C. arnensis Evropa.[17]:p241[27][28]

Johnston tasvirlaydi Lepofagus zamonaviy koyotnikiga qaraganda ingichka bosh suyagi va skeletlari bor.[29]:385 Robert M.Novak dastlabki populyatsiyalarda kichkina chakalaklarga o'xshagan va ajdodlari kabi ko'rinadigan mayda, nozik va tor mutanosib bosh suyaklari borligini aniqladi. C. latranslar.[17]:p241 Jonson, Cita Canyon (Texas) da topilgan ba'zi namunalarda bosh suyagi kattaroq va kengroq bo'lganligini ta'kidladi.[29] va boshqa qismlar bilan birga Novak bular bo'rilarga aylanib bormoqda deb taxmin qildi.[17]:p241[18]

Tedford avvalgi mualliflar bilan rozi bo'lmagan va uning kraniostomatologik morfologiyasi ba'zi xususiyatlarga ega emasligini aniqladi C. qizilcha va C. latranslarva shuning uchun yaqin munosabatlar yo'q edi, lekin bu shuni ko'rsatdi Lepofagus ikkala bo'ri va bo'rilarning ajdodi edi.[30]:p119

Canis priscolatrans

Canis priscolatrans Shimoliy Amerikadagi pliosen-erta pleystotsen davrida yashagan.[18] Birinchi aniq bo'ri Kech paydo bo'ldi Blankan/ Erta Irvingtonian,[17]:p240[18][31] va nomlangan C. priscolatrans bu juda yaqin edi[27][28] yoki uchun sinonim Canis edwardii.[17]:p241[18]:82[32][33] U o'xshash edi C. rufus kranial kattaligi va nisbati bilan, ammo murakkab tish protezi bilan.[17]:p241 Biroq, toshqotgan toshlar yo'q C. rufus kech Rancholabrean qadar.[17]:p242

Kurten agar bo'lsa noaniq edi C. priscolatrans dan olingan Lepofagus va C. arnensis,[28] lekin bunga ishongan C. priscolatrans ajdodlari bo'lgan katta koyot populyatsiyasi edi Rancholabrean va yaqinda C. latranslar. U buni ta'kidladi C. arnensis Evropaning ajoyib o'xshashliklari namoyon bo'ldi C. priscolatransva ular ilgari koyotlarning holarktik populyatsiyasi bo'lganligini anglatishi mumkin edi.[27]:p27 Nowak bunga qo'shilmadi va bunga ishondi C. priscolatrans evropalikka hamkasb bo'lgan C. etrusk.[18] Keyinchalik Kurten ikkalasini ham taklif qildi C. priscolatrans va C. etrusk olib kelgan guruhning bir qismi bo'lgan C. qizilcha lekin ular alohida rivojlanganligiga amin emas edim Lepofagus yoki kelib chiqishi mumkin bo'lgan umumiy ajdod Lepofagus.[28]

Kattaroq koyotga o'xshash qoldiqlar Canis edwardii keyinchalik topilgan Plyotsen bilan birga AQShning janubi-g'arbiy qismida Lepofagus, bu tushishni bildiradi.[15]:p60 Tedford tan oldi C. edwardii[34] va kranio-dental morfologiyasi ekanligini aniqladi C. priscolatrans ichiga tushdi C. edwardii turlarning nomi C. priscolatrans shubhali edi (nomli dubium).[30]:p131

Canis armbrusteri

Shimoliy Amerika bo'rilari kattalashdi, tish namunalari buni ko'rsatib berdi C. priscolatrans katta bo'rining ichiga kirib ketdi C. armbrusteri.[17]:p242[35] Shimoliy Amerikadagi O'rta Pleystosen davrida.[18] Robert A. Martin bu fikrga qo'shilmadi va bunga ishondi C. armbrusteri[36] edi C. qizilcha.[23] Nowak Martinning fikriga qo'shilmadi va buni taklif qildi C. armbrusteri bilan bog'liq bo'lmagan C. qizilcha lekin C. priscolatrans, keyinchalik bu sabab bo'ldi C. dirus. Tedford janubiy amerikalikni taklif qildi C. gezi va C. nehringi giperkarnivoriya uchun ishlab chiqilgan tish va kranial o'xshashliklarni baham ko'ring C. armbrusteri ning umumiy ajdodi edi C. gezi, C. nehringi va C. dirus.[30]:148

Canis dirus

1908 yilda paleontolog Jon Kempbell Merriam Rancho La'dan katta bo'rining ko'plab toshbo'ron qilingan suyak qismlarini olishni boshladi Brea smola chuqurlari. 1912 yilga kelib u ushbu va ilgari topilgan namunalarni rasmiy ravishda tanib olish uchun etarli darajada to'liq skelet topdi. S dirus (Leydi 1858).

Canis dirus[37] Shimoliy va Janubiy Amerikada Pleistosenning oxirlarida, Golotsenning boshlarida yashagan [38] va eng kattasi edi Kanis turlari.[15]:52 1987 yilda yangi gipoteza, sutemizuvchilar populyatsiyasi oziq-ovqat ko'p bo'lgan davrda gipermorf deb ataladigan katta shaklni keltirib chiqarishi mumkin edi, ammo keyinchalik oziq-ovqat kam bo'lganida gipermorf kichikroq shaklga moslashishi yoki yo'q bo'lib ketishi mumkin edi. Ushbu gipoteza so'nggi pleystotsen sutemizuvchilarida uchraydigan tanadagi katta o'lchamlarni zamonaviy o'xshashlariga nisbatan tushuntirib berishi mumkin. Ham yo'q bo'lib ketish, ham spetsifikatsiya - eskisidan ajraladigan yangi tur - iqlim sharoiti davrida birgalikda paydo bo'lishi mumkin.[39][40] Gloriya D. Gyulet Martin bilan rozi bo'ldi va bundan keyin ushbu gipotezaning to'satdan paydo bo'lishini tushuntirishi mumkin deb taxmin qildi S dirus Shimoliy Amerikada va bu ularning bosh suyagi shakllari o'xshashligi tufayli S lupus ga sabab bo'ldi S dirus mo'l-ko'l o'yin, barqaror muhit va katta raqobatchilar tufayli gipermorf.[41] Nowak, Kurten va Berta Gyuletning fikriga qo'shilmadilar va buni taklif qildilar C. dirus dan olinmagan C. qizilcha.[18][28][42] Uchala paleontolog Xiaoming Vang, R. X. Tedford va R. M. Novak hammasi buni taklif qilishdi C. dirus dan rivojlangan edi C. armbrusteri,[15]:p52[30]:181 Novak bilan Merilend shtatidagi Kamberlend g'oridan namunalar borligini ta'kidlab C. armbrusteri ajralib chiqish C. dirus.[17]:p243[43] Ikki takson bir qator xususiyatlarga ega (sinapomorfiya) ning kelib chiqishini taklif qiladi C. dirus oxirida Irvingtonian o'rta qit'adagi ochiq erlarda, keyin esa sharq tomon kengayib, ajdodini ko'chirgan C. armbrusteri.[30]:181

dirus-lupus duragaylar

Belgilangan asosiy xususiyatlarga ega bo'ri bosh suyagi diagrammasi

Merriam Ranchodan tiklangan namunalar asosida 3 ta noodatiy turni nomladi La Brea smola chuqurlari. Ular Nowak tomonidan ko'rib chiqilgan taksonomik sinonimlar uchun Canis lupus.[18]

Canis occidentalis furlongi (Merriam 1910)[44] dahshatli bo'ridan ancha kichik va yog'och bo'ri bilan chambarchas bog'liq bo'lgan bo'ri sifatida tasvirlangan Canis lupus occidentalis. Biroq, uning premolar P4 (yuqori tana go'shti) juda katta edi va gipokon ning molyar M1 dahshatli bo'ridan kattaroq edi. Bitta namunaning tishlari va tanglaylari dahshatli bo'ri va o'rtasida ekanligi tasvirlangan Canis lupus occidentalis.[44] Nowak bu nomni taklif qildi Canis lupus furlongi u kulrang bo'rining pastki turi ekanligiga ishonganidek.[18] Chegaraviy hududlarda yashovchi bo'rilar dahshatli bo'ri / kulrang bo'rining duragaylariga olib kelish ehtimoli mavjud.[45]

Canis milleri (Merriam 1912),[46] Miller bo'ri, xuddi yog'och bo'ri kabi katta edi, lekin boshi qisqaroq va og'irroq edi. Uning bosh suyagi va tish qismi o'rtasida oraliq deb ta'riflangan Canis lupus occidentalis va dahshatli bo'ri. Uning bosh suyagi farq qiladi occidentalis Boshsuyagi kengligi tufayli, ayniqsa tanglayda va P4 va M1 ning kattaligi har qanday ma'lum bo'lgan yog'och bo'ridan ancha kattaroq edi, P4 esa dahshatli bo'rining kattaligiga yaqinlashdi.[47] Bu Nowak tomonidan taksonomik sinonim sifatida qaraladi Canis lupus furlongi.[18]

Aenotsyon milleri (Merriam 1918)[48] dahshatli bo'ridan kichikroq kattaligi, past sagittal tepasi va unchalik taniqli bo'lmagan inioni bilan ajralib turadigan, ammo dahshatli bo'riga yog'och bo'ridan ko'ra yaqinroq bo'ri sifatida tasvirlangan. Faqat bitta namuna topildi. Bu Nowak tomonidan taksonomik sinonim sifatida qaraladi Canis lupus furlongi.[18]

Canis mosbachensis

Boshsuyagi C. mosbachensis dan Atapuerka tog'lari Ispaniyada

Canis mosbachensis, ba'zan Mosbax bo'ri deb ham ataladi, yo'q bo'lib ketgan kichik bo'ri, bir vaqtlar Evroosiyoda yashagan O'rta ga Kech pleystotsen.[49] Hozirgacha mavjud bo'lgan bo'rining filogenetik kelib chiqishi C. qizilcha dan C. etrusk orqali C. mosbachensis keng tarqalgan.[49][17]:239–245 2010 yilda bir tadqiqot shuni ko'rsatdiki, xilma-xilligi Kanis oxirigacha guruh kamaydi Dastlabki pleystotsen ga O'rta pleystotsen va Evrosiyoda faqat kichik bo'rilar bilan cheklangan edi C. mosbaxensis - C. variabilis mavjud bo'lganlarga taqqoslanadigan kattalik bo'lgan guruh Hind bo'ri (Canis lupus pallipes) va katta giperkarnivor Kanis (ksenotsyon) likaonoidlari bu shimoliy kulrang bo'rilar bilan solishtirish mumkin edi.[8]

Canis variabilis

2012 yilda bo'riga o'xshash tadqiqot Kanis qadimgi Xitoyning Xiaoming Vang boshchiligidagi turlari bularning barchasi juda yaqin ekanligini aniqladi C. qizilcha bundan tashqari tish va kranialdan keyingi o'lchamlarda Canis variabilis, bu boshqalarga nisbatan "juda g'alati" edi Kanis Xitoyda oldingi va keyingi turlarga qaraganda ancha kichik kranio-dental o'lchamlarga ega edi.[50] Tadqiqot natijalariga ko'ra, «Bu tur uy itining ajdodi bo'lishi ehtimoli katta Kanis tanish, oldingi mualliflar tomonidan taklif qilingan gipoteza. "[51][52][53][54][55]

Canis chihliensis

Bo'ri evolyutsiyasi - muqobil taklif
Evson davisi
Canis lepophagus

yo'q bo'lib ketgan taksonlar

Canis edwardii
Canis aureus (Oltin shoqol)

Itlar, shoqollar, bo'rilar va tulkilar (X plastinka) .jpg

Canis latranslari (koyot)

Itlar, shoqollar, bo'rilar va tulkilar (IX plastinka) .jpg

Canis chihliensis
Canis armbrusteri
Canis dirus

Amerika muzeyi jurnali (c1900- (1918)) (Canis dirus) .jpg

Canis nehringi

Katta o'lchamdagi canid icon.jpg

Canis gezi

Katta o'lchamdagi canid icon.jpg

Canis lupus
Kulrang bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .jpg

Uy iti

Tibet mastifi (oq fon) .jpg

Canis falconeri
Yo'qolib ketgan taksonlar

Cynotherium sardous restoration.jpg

Ksenotsion
Cuon (Dhole)

Itlar, shoqollar, bo'rilar va tulkilar (XLI plastinka) .jpg

Lycaon (Afrikalik ovchi it)

Itlar, shoqollar, bo'rilar va tulkilar (XLIV plastinka) .jpg

Tavsiya etilgan evolyutsiya va undan dallanma Evson bo'ri tomon.[15]:p148[30]:p181

Vang va Tedford deb taklif qildi Kanis koyotga o'xshaganlarning avlodi edi Evson davisiva uning qoldiqlari birinchi marta paydo bo'lgan Miosen (6 million YBP) AQSh va Meksikaning janubi-g'arbiy qismida. Tomonidan Plyotsen (5 million YBP), qanchalik katta bo'lsa Canis lepophagus o'sha mintaqada va tomonidan paydo bo'lgan Dastlabki pleystotsen (1 million YBP) Canis latranslari (the koyot) mavjud edi. Ular rivojlanishni taklif qilishdi Eucyon davisi ga Lepofagus koyotga chiziqli evolyutsiya bo'lgan.[15]:p58 Qo'shimcha ravishda, C. edwardii, C. latranslar va C. aureus birgalikda kichik bir qoplama hosil qiling va chunki C. edwardii Blankaning o'rtalarida (Pliyotsenning oxirlarida) Irvington (pleystotsen oxirigacha) oxirigacha paydo bo'lgan va ajdod sifatida taklif qilingan.[30]:p175,180

Novak va Tedford ham buning iloji borligiga ishonishgan C. qizilcha oldin va undan alohida bo'lgan miosen yoki pliosen kanidlari chizig'idan olingan bo'lishi kerak Lepofagus.[18][31] Xitoydan kelgan morfologiya asosida Plyotsen bo'ri C. chihliensis ikkalasining ham ajdodi bo'lgan bo'lishi mumkin C. armbrusteri va C. qizilcha ularning Shimoliy Amerikaga ko'chishidan oldin.[15]:p148[30]:p181 C. chihliensis ga qaraganda ancha ibtidoiy va kichikroq ko'rinadi C. qizilcha, va uning bosh suyagi va tishlarining o'lchovlari o'xshash C. qizilcha ammo uning postkranial elementlari kichikroq.[50] C. armbrusteri Shimoliy Amerikada paydo bo'lgan O'rta pleystotsen va har qandayidan kattaroq bo'riga o'xshash shakl Kanis shu vaqtda.[18] So'nggi 30,000 yil ichida eng so'nggi muzlik chekinishi oxirida, isinish natijasida Shimoliy Kanadadagi muzlik to'siqlari erib, Arktik sutemizuvchilar Shimoliy Amerikaning o'rta kengliklarida, shu jumladan, elk, karibu, bizon va kulrang bo'rini o'z oralig'ini kengaytirishga imkon berdi.[15]:p61

Evrosiyoda O'rta Pleystosen davrida, C. falconeri giperkarnivor turini keltirib chiqardi Ksenotsion, keyinchalik bu turni keltirib chiqardi Cuon (dhole) va tur Lycaon (afrikalik ovchi it).[15]:p105,149 Paydo bo'lishidan oldin C. dirus, Shimoliy Amerikani turlar bosib oldi Ksenotsion kabi katta edi C. dirus va ko'proq giperkarnivor. Qadimgi toshlar ularni kamdan-kam uchraydi va ular yangi olingan narsalar bilan raqobatlasha olmagan deb taxmin qilinadi C. dirus.[15]:p60 Katta bo'ri C. antonii kech plyotsendan pleystotsenning boshigacha bo'lgan davrga qadar Xitoy o'zgaruvchanlik sifatida baholandi C. chihliensis,[30]:p197 va katta bo'ri C. falconeri erta pleystotsen davrida Evropada to'satdan sodir bo'lgan, ehtimol uning g'arbiy kengayishini anglatadi C. antonii.[30]:p181

Canis lupus

Eng qadimgi Canis lupus namunasi topilgan fotoalbom tish edi Old Crow, Yukon, Kanada. Namuna 1 million YBP bo'lgan cho'kindidan topilgan,[30] ammo bu cho'kmaning geologik xususiyati shubha ostiga olinadi.[30][56] Biroz yoshroq namunalar Cripple Creek Sump-da topilgan, Feyrbanks, Alyaskada, 810,000 YBPga oid qatlamlarda. Ikkala kashfiyot ham bu bo'rilarning sharqda kelib chiqishiga ishora qilmoqda Beringiya davomida O'rta pleystotsen.[30]

Frantsiyada pastki turlari C. l. lunellensis Bonifay, 1971 yil[57] da topilgan Lunel-Viel, Ero 400-350.000 YBPga tegishli, C. l. santenaisiensis Argant, 1991 yil[58] dan Santenay, Kot-d'Or 200,000 YBPga tegishli va C. lupus maximus Boudadi-Maligne, 2012 yil[59] Jaurens g'oridan, Nespouls, Korze 31000 YBPga teng, hajmi tobora o'sib borishini ko'rsatadi va shunday bo'lishi tavsiya etiladi xrono-pastki turlari.[60][12] Italiyada, eng qadimgi Canis lupus namunalari Rimdan 20 km shimoliy-g'arbiy qismida joylashgan La Polledrara di Cekanibbioda 340,000–320,000 YBP qatlamlarida topilgan.[61] 2017 yilda o'tkazilgan tadqiqotlar shuni ko'rsatdiki, italiyalik bo'rilarning dastlabki golotsen bo'rining yuqori va pastki karnasiyal tishlarining o'lchamlari ularnikiga yaqin C. l. maximus. Hajmi bo'yicha tebranishlar C. qizilcha karnasiyal tishlar megafauna tarqalishi bilan o'zaro bog'liq. Uyg'onish davrida Italiyada qizil kiyikning yo'qolishi bilan italiyalik bo'ri tana hajmini pasaytirdi.[12] Tavsiya etilgan nasl:

C. etruscus → C. mosbachensis → C. l. lunellensis → C. l. santenaisiensis → C. l. maksimal → C. l. lupus[12]

2020 yilda bo'rining yangi turi C. borjgali yilda topilgan Gruziya. Ushbu bo'ri keyingi evolyutsion qadam bo'lishi taklif etiladi C. mosbachensis va ajdodi C. qizilcha nasab.[62]

Canis c.f. tanish bo'lganlar (Paleolit ​​"iti")

Yaqinda kashf etilgan bir qator namunalar mavjud bo'lib, ular mavjud Paleolit ​​itlari, ammo ularning taksonomiyasi muhokama qilinadi. Ular Evropada yoki Sibirda topilgan va 40,000-17,000 YBPga teng. Ular o'z ichiga oladi Hohle Fels Germaniyada, Goyet g'orlari Belgiyada, Predmosti Chexiyada va Rossiyadagi to'rtta sayt: Razboinichya g'ori, Kostyonki-8, Ulaxon Sular va Eliseevichi 1. Paw-printlar Chauvet g'ori Frantsiyada 26000 YBP sanasi itning iti deb taxmin qilinmoqda, ammo ularni bo'ri tashlab qo'ydi.[63] Paleolitik itlar Evropadagi odam ovi lagerlari bilan to'g'ridan-to'g'ri 30000 dan ortiq (YBP) bog'langan va ularni xonakilashtirish tavsiya etilgan. Shuningdek, ular proto-it va uy itining ajdodi yoki ilmga noma'lum bo'rining turi bo'lish taklif etiladi.[64]

Canis lupus tanish (uy iti)

Bulldog bosh suyagi - eskiz
Evropa bo'ri bosh suyagi - eskiz
Canis lupus Boshsuyagi: 1 - maxilla, 2 - frontal, 3 - lakrimal, 4 - palatin, 5 - jugal, 6 - burun, 7 - premaksilla, 8 - parietal, 9 - interparietal, 10 - skuamozal, 11 - oksipital, 12 - mandible

2002 yilda Eliseevichi-I-da bir paytlar mamont suyakli kulbasi bo'lgan eshik eshigidan bir necha metr narida ko'milgan holda topilgan ikkita yirik maydanozning suyak suyaklarini o'rganish ishlari olib borildi. Yuqori paleolit sayt Bryansk viloyati Rossiya tekisligida va mahalliylashtirishning qabul qilingan morfologik asoslangan ta'rifidan foydalanib, ularni "muzlik davri itlari" deb e'lon qildi. Uglerodni taqqoslash yiliga 16,945-13,905 YBP oralig'idagi kalendar yilni taxmin qildi.[65] 2013 yilda ushbu bosh suyaklaridan birini o'rganish natijasida uning mitoxondriyal DNK ketma-ketligi aniqlandi Canis lupus tanish.[66]

2015 yilda zooarxeolog "fenotiplar nuqtai nazaridan itlar va bo'rilar bir-biridan tubdan farq qiluvchi hayvonlardir" deb ta'kidlagan.[67]

1986 yilda bosh suyagi morfologiyasini o'rganish natijasida uy iti morfologik jihatdan bo'riga o'xshash kanidlardan tashqari barcha boshqa kanidlardan ajralib turishi aniqlandi. "Ba'zi zotlarning kattaligi va nisbati o'rtasidagi farq har qanday yovvoyi avlod orasida bo'lgani kabi katta, ammo barcha itlar bir xil turdagi a'zolardir."[68] 2010 yilda itlarning bosh suyagi shaklini o'rganish bilan solishtirganda o'rganish yirtqichlar "Itlarning zotlari orasidagi eng katta masofa Carnivora turlarining maksimal divergentsiyasidan yaqqol ustundir. Bundan tashqari, uy itlari yovvoyi yirtqichlar domenidan tashqarida bir qator yangi shakllarni egallaydi".[69]

Uy iti bo'ri bilan taqqoslaganda bosh suyagi (Evans 1979) hajmi va shakli bo'yicha 7 dan 28 sm gacha bo'lgan eng katta o'zgarishni ko'rsatadi (McGreevy 2004). Bo'rilar dolichocephalic (uzun bosh suyagi), ammo ba'zi itlar va rus bo'ri itlari kabi haddan tashqari emas (McGreevy 2004). It braksefali (kalta bosh suyagi) faqat uy itlarida uchraydi va u bilan bog'liq paedomorfoz (Goodwin 1997). Kuchukchalar qisqa tumshug'i bilan tug'iladi, dolichosefalik itlarning uzunroq bosh suyagi keyingi rivojlanishda paydo bo'ladi (Coppinger 1995). Braksefalik va dolichocefalik itlar orasidagi bosh shaklidagi boshqa farqlarga kraniofasiyal burchakning o'zgarishi kiradi ( bazilar o'qi va qattiq tanglay) (Regodón 1993), morfologiyasi temporomandibulyar qo'shma (Dickie 2001) va radiografik anatomiyasi kribriform plitasi (Shvarts 2000).[70]

Nowak shuni ko'rsatdiki, ko'z uyasi orbital burchagi it va bo'ri o'rtasidagi farqni belgilaydigan muhim xususiyat bo'lib, bo'ri pastki burchakka ega. Nowak to'rtta Shimoliy Amerikaning orbital burchaklarini taqqosladi itlar (shu jumladan hind iti) va darajalarda quyidagi qiymatlarni ishlab chiqardi: koyot-42,8, bo'ri-42,8, it-52,9 dahshatli bo'ri-53,1. Ko'z teshigining orbital burchagi itda, bo'rilar va bo'rilarga qaraganda aniqroq katta edi; nima uchun u dahshatli bo'ri bilan deyarli bir xil edi sharhlanmadi.[18]

Ko'pgina mualliflar, voyaga etgan bo'ri bilan taqqoslaganda, kattalar uy itida minbar (bosh suyagining old qismi) nisbatan qisqartirilgan, ko'tarilgan degan xulosaga kelishdi. peshona suyagi, kengroq tomoq, kengroq bosh suyagiva undan kichikroq tishlar (Hildebrand1954; Clutton-Brock, Corbet & Hills 1976; Olsen 1985; Ueyn 1986; Hemmer 1990; Morey 1990). Boshqa mualliflar bu fikrga qo'shilmadilar va bu xususiyatlar bir-biriga to'g'ri kelishi va har xil bo'lishi mumkinligini ta'kidladilar (Crockford 1999; Harrison 1973). Bo'ri bolalari bosh suyagining nisbiy nisbatlariga kattalar itlariga o'xshashdir va bu uy iti a ekanligining isboti sifatida taklif qilingan neotenik bo'ri. Bu voyaga etmaganlarning tashqi qiyofasi uchun inson tanlanishi yoki a pleiotropik Voyaga etmaganlarning xatti-harakatlari uchun tanlov natijasi (Klutton-Brok 1977; Belyaev 1979; Ueyn 1986; Coppinger va Shnayder 1995). Ueyn (1986) itning namunalarida bo'rilarga nisbatan minbarning nisbiy qisqarishi yo'q degan xulosaga keldi va bu identifikatsiya xususiyatini shubha ostiga qo'ydi.[51] 2004 yilda o'tkazilgan 100 ta naslni ifodalovchi 310 bo'ri va 700 dan ortiq itlarning bosh suyaklaridan foydalangan holda olib borilgan tadqiqot natijalariga ko'ra, itlarning bosh suyaklarining evolyutsiyasini umuman olganda neoteniya kabi heteroxronik jarayonlar bilan ta'riflab bo'lmaydi, ammo ba'zi pedomorfik itlarning balog'at yoshidagi bo'rilarga o'xshash bosh suyaklari mavjud.[71] "Itlar paedomorfik bo'rilar emas".[72]

Bo'ri bilan taqqoslaganda, itlarning tish tishlari nisbatan kuchliroq emas (Olsen 1985; Hemmer 1990), bu bo'rilar komensal tozalagichga aylanganda tabiiy tanlanishning bo'shashishi yoki sun'iy selektsiya bilan bog'liq (Olsen 1985; Klutton-Brok 1995). . Biroq, Kieser va Groeneveld (1992) shoqollarning mandibulo-stomatologik o'lchovlarini taqqosladilar (C. adustus, C. mesomelas) va Keyp tulkilari (Vulpes chama) ekvivalenti kattalikdagi itlarga nisbatan va boshqa kanidlarning itlari itlarga nisbatan bir oz kichikroq va ularning ikkinchi molarlari kattaroq ekanligi aniqlandi, aks holda ularning nisbati barcha turlarda bir xil edi. Ular "... kanidlarning tishlari bir-biri bilan uyg'un holda rivojlangan va dimorfizm, kattalik yoki funktsional talablar farqlaridan nisbatan mustaqil ravishda rivojlangan ko'rinadi" degan xulosaga kelishdi. Bu yaqinda o'tkazilgan selektsiya tufayli it tishlari nisbatan kichkina degan taxminni shubha ostiga qo'yadi va it tishining bo'ridan kichikroq bo'lgan ajdoddan plesiomorfik ekanligini anglatadi.[51]

Erta itning bo'ri bilan solishtirganda tanasi kichrayganligi, joy tanlash tufayli (Olsen 1985; Morey 1992; Coppinger & Coppinger 2001). Morey (1992: 199) "natijalar ... erta uy itlari evolyutsion paedomorflar, ontogenetik jihatdan kanalizatsiya hajmini qisqartirish va reproduktiv vaqtni o'zgartirish uchun kuchli selektsiya mahsulotidir, degan yangi farovonlikka mos keladi" deb ta'kidlaydi yangi turmush tarzi.[51] Biroq, mahalliylashtirish tajribasida, uyga chiqarilgan tulkilar tanlanmagan tulkilar bilan bir xil darajada qoldi (Trutt 1999: 167).[67]

Ueyn (1986) it bosh suyagi morfologiyasiga yaqinroq degan xulosaga keldi C. latrans, C. aureus, C. adustus, C. mesomelas, Cuon alpinus va Lycaon pictus bo'ridan ko'ra. Dahr (1942) itning miyasi ishining shakli bo'ridan ko'ra bo'ridan ko'ra kapalaknikiga yaqinroq degan xulosaga keldi. Manuell va Beyker (1983) Dahrning kanidlar uchun tish ma'lumotlarini qo'shib ishlarini ko'rib chiqdilar va itning ajdodi, ehtimol, 13,6-20,5 kg oralig'ida bo'lgan degan xulosaga kelishdi, bu esa hozirgi bo'rilar uchun 27-54 kg oralig'idan kichik (Mech 1970) ) bilan solishtirish mumkin Dingo.[51]

Eshitish bulla itning bo'rinikiga qaraganda nisbatan kichikroq va yassi (Harrison 1973; Clutton-Brock, Corbet & Hill 1976; Nowak 1979; Olsen 1985; Ueyn 1986), bu it sifatida uy sharoitida bo'lganligi sababli bo'shashgan tanlov tufayli bo'lishi mumkin. endi bo'rining keskin eshitishini talab qilmadi. Shu bilan birga, bulla shakli o'ziga xos chastotalarga nisbatan sezgirlikni oshirishga yordam beradi, ammo shakli va hajmi keskinlik bilan bog'liq bo'lmasligi mumkin (Ewer 1973). Shuning uchun, kuzatilgan farq it bulla ajdodlar shaklini saqlab qolgan bo'lishi mumkin.[51]

Itning ventral qirrasi gorizontal pastki jag 'ramusi bo'rida bo'lmagan qavariq egri chiziqqa ega (Olsen 1985; Clutton-Brock 1995) va adabiyotda bu farq haqida hech qanday bahs topilmadi. Biroq, Biknevicius va Van Valkenburg (1997) suyaklarni qayta ishlaydigan yirtqichlarning gorizontal ramusi nuqtada dorso-ventral jihatdan qalinroq bo'lganligini payqashdi. kaudal suyaklarni qayta ishlash joyiga. Ushbu qalinlashish itning ajdodlari tomonidan uyaga moslashish vazifasi bo'lishi mumkin.[51]

Shoqollarning yuzaki miya morfologiyasining tavsifi (C. mesomelas, C. aureus), bo'rilar (C. latranslar), bo'rilar (C. lupus, C. rufus) va itlar buni ko'rsatdi serebellum itning chaqqallar bilan chambarchas bog'langan chakalaknikiga yaqinlashishi va bo'rilar boshqa turlardan farq qiluvchi ko'plab miya xususiyatlarini namoyish etishadi (Atkins va Dillon 1971). Bo'rilarning itlardan farq qiluvchi serologik va biokimyoviy xususiyatlari ham bor (Leone and Wiens 1956; Lauer, Kuyt & Baker 1969).[51]

Oxirgi muzlik maksimumida katta bo'ri bo'lgan genetik xilma-xillik bugungi kunga qaraganda,[9][66] Pleistosen kulrang bo'ri populyatsiyasida mahalliy muhit o'rtasidagi farqlar genetik, morfologik va ekologik jihatdan bir-biridan farq qiladigan bir qator bo'ri ekotiplarini rag'batlantirgan bo'lar edi.[73] Mualliflardan biri itning bo'riga nisbatan turlicha morfologik xususiyatlarini tushuntirish, itning ajdodi bo'ridan farqli o'laroq, boshqa joyga moslashib ketganligi bilan bog'liq.[51]

Genetik yozuv

DNK ketma-ketliklari

The mitoxondriya har birida hujayra kichik dumaloqning ko'p nusxalarini o'z ichiga oladi DNK genomi sut emizuvchilarda esa 16000–18000 ga teng tayanch juftliklari uzunligi bo'yicha. Hujayra yuzlab yoki minglab mitoxondriyalarni o'z ichiga oladi va shuning uchun genlar mitoxondriyalarda mavjud bo'lib, hujayraning yadrosida uchraydigan genlarga qaraganda ko'proq.[74][75] Ko'pligi mitoxondrial DNK (mDNA) DNK buzilib ketgan qadimiy qoldiqlarni genetik tahlil qilish uchun foydalidir.[75][76]

Mitoxondrial DNK ketma-ketliklari yuqori darajaga ega mutatsiya darajasi yadro genlarining mutatsion darajasidan va sutemizuvchilar uchun bu ko'rsatkich 5-10 baravar tezroq.[75][77][78] Mitokondriyal oqsillarni kodlovchi genlar ancha tez rivojlanadi va oilalar, nasllar va turlar kabi toifalar darajalarida evolyutsiya tarixini aniqlash uchun kuchli belgilar hisoblanadi. Biroq, ular boshqa DNK belgilariga qaraganda tezroq rivojlangan va uning molekulyar soatlarida vaqt farqi bor, uni boshqa manbalarga nisbatan tasdiqlash kerak. Noaniq turlarning taksonomik holati ulardan foydalanish yo'li bilan yaxshiroq hal qilinadi yadroviy DNK yaqin tarixni tahlil qilish uchun ko'proq mos bo'lgan hujayraning yadrosidan.[79] Ko'pgina hollarda mDNA ona ajdodidan meros bo'lib o'tgan.[75][80] Shuning uchun, filogenetik tahlil turlar ichidagi mDNA ketma-ketliklari, a sifatida ifodalanishi mumkin bo'lgan onalik nasllari tarixini beradi filogenetik daraxt.[75][81][82]

Filogenetik daraxt
umumiy ajdod

Oltin shoqol Itlar, shoqollar, bo'rilar va tulkilar (X plastinka) .jpg

Koyot Itlar, shoqollar, bo'rilar va tulkilar (IX plastinka) .jpg

Kulrang bo'ri Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .jpg

It Tibet mastifi (oq fon) .jpg

To'rt kanid o'rtasidagi filogenetik munosabatlar.[83][84]

Ushbu 4da farq qiladigan mutatsiyalar ketma-ketliklar raqamlangan va qalin qilib yozilgan. Ushbu mutatsiyalardan keyin a hosil qilish uchun foydalanish mumkin filogenetik daraxt to'rtta kanid uchun. Ushbu misolda it va kul bo'ri ikkita almashtirish bilan farqlanadi (qizil rang bilan ajratilgan) va ularning har biri koyotdan to'rtta almashtirish bilan farq qiladi.[75]

 1 2 3 4 5 67

Oltin shoqol A-G-C-T-G-T-C-GA-T-TC-CA

Koyot  A-G-C-T-A-T-C-GA-A-TC-GA

Bo'ri  T-G-C-T-A-T-G-GA-T-TC-KT

It  T-G-G-T-A-T-G-GA-T-TC-CA

It va bo'rining mDNA ketma-ketligi 261 taglik jufti ichida atigi 0-12 almashtirish bilan farq qiladi, itlar esa har doim qarag'ay va shoqollardan kamida 20 almashtirish bilan farq qilar edi.[75][85] Ushbu topilma itning bo'ridan kelib chiqqanligini va orqaga qaytish takrorlanganligini anglatadi.[85] yoki itning eng yaqin qarindoshi zamonaviy bo'ri bo'lgan, endi yo'q bo'lib ketgan kanid turidan kelib chiqqan bo'lishi mumkin.[86]

Marker muammosi

Tanlangan namunalar, ishlatilgan texnologiya va tadqiqotchilar tomonidan qilingan taxminlar tufayli turli xil DNK tadqiqotlari qarama-qarshi natijalarga olib kelishi mumkin.[87] Panelidan har qanday kishi genetik belgilar tadqiqotda foydalanish uchun tanlanishi mumkin. Amaldagi texnikalar ekstrakt, topmoq va taqqoslash genetik ketma-ketlikni texnologiyaning yutuqlaridan foydalangan holda qo'llash mumkin, bu tadqiqotchilarga uzoqroq uzunliklarni kuzatish imkonini beradi tayanch juftliklari Yaxshilash uchun ko'proq ma'lumot beradigan filogenetik qaror.[88] Filogenetik daraxtlar turli xil yordamida tuzilgan genetik belgilar bo'ri, it va koyot o'rtasidagi munosabatlarga qarama-qarshi natijalar berdi. Bir tadqiqot SNPlar[89] (bitta) mutatsiya) va boshqasiga asoslangan yadro geni ketma-ketliklar[90] (dan olingan hujayra yadrosi), bo'rilaridan ajratilgan va bo'rilaridan ajratilgan itlarni ko'rsatdi. SNPS-ga asoslangan yana bir tadqiqotda bo'rilar kapalaklar bilan itlarga ajratilganligini ko'rsatdi.[91] Bir qator markerlarga asoslangan boshqa tadqiqotlar, bo'rilarning bo'rilardan itlardan klasterlashning keng tarqalgan natijasini ko'rsatadi.[85][92] Ushbu natijalar shuni ko'rsatadiki, genetik belgilar bilan ta'minlangan natijalarni talqin qilishda ehtiyot bo'lish zarur.[89]

Vaqt masalasi

Turlarning xilma-xilligi vaqtini belgilash uchun ikkita asosiy taxmin mavjud: avlod vaqti va genetik mutatsiya darajasi avlodga. Bo'rilar uchun nasllar orasidagi vaqt mavjud kul bo'ri asosida uch yil, mavjud itga asoslangan it uchun ikki yil deb qabul qilinadi.[83] Yaqinda o'tkazilgan bir yirik tadqiqot shuni anglatadiki, 10 000 yil oldin it uchun 2 yil nasl berish vaqtini taxmin qildi va bundan oldin 3 yil (bo'ri bilan bir xil) ni tashkil etdi, bundan oldin ikkalasi o'rtasidagi farqlanish vaqtini hisoblash uchun .[9] 2017 yilda bo'ri tadqiqotchisi olim L. Devid Mech nega evolyutsion biologlar itning bo'ridan naslga o'tishini taxminiy vaqtini uch yil davomida bo'rilar paydo bo'lish vaqtini hisoblab chiqayotganligi haqida so'radi, katta ma'lumotlar to'plamlari yordamida nashr etilgan asarlar 4.2-4.7 yilni ko'rsatadi. Ular o'zlarining kelishmovchilik sanalarini mos ravishda qayta hisoblab chiqishga undashdi.[93]

DNK tadqiqotlari o'tkaziladi, ammo "mutatsiyaning tezligi noaniqlikning asosiy manbai sifatida".[9] 2005 yilda Lindblad-Toh mavjud itning birinchi qoralama genomini ketma-ketlashtirdi va 1x10 mutatsiyani taklif qildi.−8 avlod uchun mutatsiyalar.[83] 2015 yilda Skoglund 35000 YBP ning birinchi qoralama genomini ketma-ketlashtirishga muvaffaq bo'ldi Taymir bo'ri va 0,4x10 genetik mutatsiya tezligini tasdiqlash uchun uning radio-uglerod sanasidan foydalangan−8 avlod uchun mutatsiyalar.[10] Farq vaqtni hisoblash koeffitsienti 2,5 ga teng, ammo boshqa bir tadqiqot shuni ko'rsatdiki, hozirgacha faqat bitta pleystotsen bo'ri namunasi ketma-ketlikda tuzilgan, natijada natijaga ehtiyotkorlik bilan munosabatda bo'lish kerak, shunda ushbu tadqiqot natijasida ikkala taxmin ham taqdim etilib, taklif qilingan divergentsiya vaqtlarini hisoblash bo'ri va it.[11] Biroq, 2016 yilda 4.800 YBP ning mutatsion darajasi Newgrange iti Taymir bo'ri bilan mos tushdi.[94]

Bo'ri kabi kanidlar

Bo'ri kabi kanidlar (kanid subfamily Kaninae) genetik jihatdan chambarchas bog'liq bo'lgan yirik yirtqichlar guruhidir, chunki ular xromosomalar soni 78. Guruhga turkum kiradi Kanis, Cuon va Lycaon. A'zolar it (C. lupus tanishis), kulrang bo'ri (C. qizilcha), koyot (C. latranslar), oltin shoqol (C. aureus), Efiopiya bo'ri (C. simensis), qora chakal (C. mezomelalar), yonbosh chiziqli shoqol (C. adustus), teshik (Cuon alpinus) va Afrikalik yovvoyi it (Lycaon pictus).[95][96][97] Yangi taklif qilingan a'zolarga quyidagilar kiradi qizil bo'ri (Canis rufus), sharqiy bo'ri (Canis lycaon) va Afrikalik oltin bo'ri (C. antus). Ular 78 ta xromosomaga ega bo'lganligi sababli, barcha avlod vakillari Kanis (koyot, bo'ri, shoqol) kariologik jihatdan bir-biridan va dhole va afrikalik ovchi itdan farq qilmaydi.[75]:p279[98] A'zolari Kanis mumkin aralashgan[86] va Efiopiya bo'ri itlar bilan duragaylashganiga oid dalillar mavjud.[99] Zoologning so'zlariga ko'ra Reginald Pokok, oltin chakal bilan aralashtirilgan dhole.[100] Afrikalik ovchi it katta, juda harakatchan, katta masofalarga tarqalishi ma'lum va ularning geografik doiralarida kam uchraydi,[101] duragaylash imkoniyatlarini qiyinlashtirmoqda. Onalikni o'rganish mitoxondrial DNK qora chakalakning dalili topilmadi genotiplar eng ehtimol sheriklardan - yon chiziqli chaqqal yoki oltin shoqol - bu qora tanli erkak chaqqallar bu bilan ko'paymaganligini bildiradi.[102] Ilmiy adabiyotlarni qidirib topishda kamdan-kam uchraydigan yonbag'irli shoqolning duragaylanishiga oid dalillar topilmadi.

Bo'ri o'xshash kanidlar uchun DNK ketma-ketligi hizalanishi natijasida filogenetik daraxt kulrang bo'ri va it bilan eng yaqin qarindosh bo'lib, keyinchalik koyot, oltin chakal va Efiopiya bo'ri bilan yaqin aloqada bo'lib, it yovvoyi tabiatda gibridlashi mumkin. bu uch tur. Ushbu guruhga eng yaqin joylashgan dhole va afrikalik yovvoyi it, ikkalasi ham o'ziga xos go'sht kesuvchi tishlarga ega bo'lib, keyinchalik bu moslashuv boshqa a'zolar tomonidan yo'qolganligini anglatadi.[83] Afrikalik ikkita shoqol eng ko'p ko'rsatilgan bazal bu daraxtning a'zolari, ya'ni bu daraxt afrika kelib chiqishini bildiradi.[83][103] Daraxt genotip-fenotipni ajratish, qaerda a genotip organizm to'la irsiy ma'lumotlar va a fenotip kabi organizmning haqiqiy kuzatiladigan xususiyatlari morfologiya, rivojlanish, yoki xulq-atvor. Fenotip bo'yicha dhole (jins) Cuon) va afrikalik ovchi it (tur) Lycaon) turkum a'zolari deb tasniflanmagan Kanis, lekin genotipi bo'yicha ular itlarga, bo'rilarga va kaplanlarga ikki jinsga qaraganda yaqinroq Kanis shoqollar - yonbosh chiziqli chakal (C. adustus) va qora tanli shoqol (C. mezomelalar).

2015 yilda Afrika va Evroosiyo kanidlarining mitoxondriyal genomlari ketma-ketliklari va yadro genomlari ketma-ketligini o'rganish shuni ko'rsatdiki, mavjud bo'lgan bo'riga o'xshash kanidlar Afrikadan Plyotsen va Pleystosen davomida kamida 5 marta Afrikani mustamlaka qilgan, bu esa toshbo'ron qilingan dalillarga mos keladi. Afrikaning turli xil xilma-xilligi evroosiyo ajdodlarining immigratsiyasi natijasida kelib chiqqan, bu quruq va nam sharoitlar o'rtasidagi plio-pleystotsen iqlim tebranishlariga to'g'ri keladi.[84]


Filogenetik daraxt mavjud bo'riga o'xshash kanidlardan,[a] turni ifodalovchi pushti soyali bilan Canis lupus.


3,5 mya

3,0 mya

2,5 mya

2,0 mya

1,5 mya

1,0 mya

0,5 mya

Hozir














Yon chiziqli shoqol

Itlar, shoqollar, bo'rilar va tulkilar (XIII plastinka) .png


Qora orqa chaqqol

Itlar, shoqollar, bo'rilar va tulkilar (XII plastinka) .png

2,62 mya





Afrikalik yovvoyi it

Itlar, shoqollar, bo'rilar va tulkilar (XLIV plastinka) .png





Dhol

Itlar, shoqollar, bo'rilar va tulkilar (XLI plastinka) .png





Efiopiya bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (Plitalar VI) .png




Oltin shoqol

Itlar, shoqollar, bo'rilar va tulkilar (X plastinka) .png




Afrikalik oltin bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (XI plastinka) .jpg





Koyot

Itlar, shoqollar, bo'rilar va tulkilar (IX plastinka) .png





Himoloy bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .png





Hind
tekislik bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .png





Kech pleystotsen
bo'ri

Amerika muzeyi jurnali (c1900- (1918)) (Canis dirus) shaffof fon.png




Zamonaviy kul bo'ri

Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .png


It

Tibet mastifi (shaffof fon) .png

25 kya

80 kya

120 kya

240 kya

380 kya

600 kya

960 kya

2,0 mya

2,5 mya

3,0 mya

3,5 mya

Yo'qolib ketgan noma'lum kanid bilan aralashma

Uzoq o'tmishda kanis gibridizatsiyasi[104]

2018 yilda, butun genom ketma-ketligi turkum vakillarini taqqoslash uchun foydalanilgan Kanisdhole bilan birga (Cuon alpinus) va afrikalik ovchi it (Lycaon pictus). Oralarida genlar oqimining dalillari mavjud Afrikalik oltin bo'rilar, oltin shoqollarva kulrang bo'rilar. Tadqiqot shuni ko'rsatadiki, afrikalik oltin bo'ri genetik jihatdan avloddir aralashtirilgan kanid 72% kulrang bo'ri va 28% Efiopiya bo'ri ajdodlari va Efiopiya bo'ri bir vaqtlar Afrikada kengroq bo'lgan. Misrliklardan bitta afrikalik oltin bo'ri Sinay yarim oroli Afrika va Evroosiyo qit'alari o'rtasidagi quruqlik ko'prigining kanid evolyutsiyasidagi rolini ta'kidlab, Yaqin Sharqdagi kulrang bo'rilar va itlar bilan yuqori aralashmani namoyish etdi. Oltin shoqollar va O'rta Sharqdagi bo'rilar orasida genlar oqimi borligi, kamroq Evropa va Osiyo bo'rilari bilan, eng kamida Shimoliy Amerika bo'rilari bilan. Tadqiqot shuni ko'rsatadiki, Shimoliy Amerika bo'rilarida topilgan oltin shoqol ajdodlari Evroosiyo va Shimoliy Amerika kul bo'rilarining divergentsiyasidan oldin sodir bo'lishi mumkin. Tadqiqot shuni ko'rsatadiki, koyot va kulrang bo'ri genetik jihatdan mavjud aralashtirilgan bilan arvohlar populyatsiyasi yo'q bo'lib ketgan noma'lum kanid. Kanid genetik jihatdan ularga yaqin teshik and has evolved after the divergence of the African hunting dog from the other canid species. The bazal bo'ri bilan taqqoslaganda koyotning pozitsiyasi koyotning bu noma'lum kanidning mitoxondriyal genomini ko'proq saqlab qolishidan kelib chiqadi.[104]

A genomic study on the wolves of China included museum specimens of wolves from southern China that were collected between 1963 and 1988. The wolves in the study formed 3 clades: north Asian wolves that included those from northern China and eastern Russia, Himoloy bo'rilari Tibet platosidan va janubiy Xitoydan noyob aholi. Bitta namunasi janubi-sharqda joylashgan Tszansi viloyatida Tibetga tegishli bo'rilar va Xitoydagi boshqa bo'rilar o'rtasida qo'shilib ketganligi haqida dalillar mavjud. Bitta namuna Chjetszyan Xitoyning sharqidagi provinsiya janubiy Xitoydan kelgan bo'rilar bilan genlar oqimini birgalikda bo'lishiga qaramay, uning genomi dhole bo'lishi mumkin bo'lgan kanid yoki dhole genetik farqlanishidan oldin paydo bo'lgan noma'lum kanid bilan aralashgan. Xitoyning janubidan kelgan bo'ri populyatsiyasi hali ham o'sha mintaqada mavjud deb ishoniladi.[118]

Two wolf haplogroups

A haplotip (gaploid genotip) guruhidir genlar bitta ota-onadan birgalikda meros bo'lib o'tgan organizmda.[119][120] A haplogroup is a group of similar haplotypes that share a common ancestor with a bitta nukleotidli polimorfizm (a mutatsiya).[121][122] Mitochondrial DNA passes along a maternal lineage that can date back thousands of years.[121]

In 2010, a study compared DNK ketma-ketliklari that were 230 tayanch juftliklari in length from the mitokondriyal nazorat mintaqasi of 24 ancient wolf specimens from western Europe dated between 44,000–1,200 YBP with those of modern gray wolves. Most of the sequences could be represented on a filogenetik daraxt. However, the haplotypes of the Himoloy bo'ri va Indian gray wolf could not because they were 8 mutations apart from the other wolves,[111] indicating distinct lineages which had previously been found in other studies.[111][108][109] The study found that there were 75 different gray wolf mDNA haplotypes that include 23 in Europe, 30 in Asia, 18 in North America, 3 in both Europe and Asia, and 1 in both Europe and North America.[111] These haplotypes could be allocated into two haplogroups[113][111] that were separated from each other by 5 mutatsiyalar. Haplogroup 1 formed a monofiletik qoplama (indicating that they all carried the same mutation inherited from a single female ancestor). All other haplotypes were basal in the tree, and these formed 2–3 smaller clades that were assigned to haplogroup 2 that was not monophyletic.[111][123]

Haplogroups 1 and 2 could be found spread across Eurasia but only haplogroup 1 could be found in North America. The ancient wolf samples from western Europe differed from modern wolves by 1 to 10 mutations, and all belonged to haplogroup 2 indicating a haplogroup 2 predominance in this region for over 40,000 years before and after the Oxirgi muzlik maksimal darajasi. A comparison of current and past frequencies indicated that in Europe haplogroup 2 became outnumbered by haplogroup 1 over the past several thousand years[113] but in North America haplogroup 2 became extinct and was replaced by haplogroup 1 after the Oxirgi muzlik maksimal darajasi.[111][123] Access into North America was available between 20,000–11,000 years ago after the Viskonsin muzligi had retreated but before the Bering quruqlik ko'prigi became inundated by the sea.[124] Therefore, haplogroup 1 was able to enter into North America during this period.

Barqaror izotoplarni tahlil qilish conducted on the bone of a specimen allows researchers to form conclusions about the diet, and therefore the ecology, of extinct wolf populations. This analysis suggests that the Pleistocene wolves from haplogroup 2 found in Beringiya and Belgium preyed mainly on Pleistocene megafauna,[64][111][110] which became rare at the beginning of the Holocene 12,000 years ago.[111][125] One study found the Beringian wolf to be bazal to all other gray wolves except for the extant Indian gray wolf va mavjud bo'lgan Himoloy bo'ri.[110] The Pleistocene Eurasian wolves have been found to be morphologically and genetically comparable to the Pleistocene eastern-Beringian bo'rilar,[126] with some of the ancient European and Beringian wolves sharing a common haplotype (a17),[111][110] which makes ecological similarity likely.[111] Two ancient wolves from the Ukraine dated around 30,000 YBP and the 33,000 YBP "Oltoy iti" had the same sequence as six Beringian wolves, and another from the Czech Republic dated 44,000 YBP had the same sequence as two Beringian wolves.[110]

It has been proposed that the Pleistocene wolves across northern Eurasia and northern North America represented a continuous and almost panmiktika population that was genetically and probably also ecologically distinct from the wolves living in this area today.[111][127] The specialized Pleistocene wolves did not contribute to the genetic diversity of modern wolves, and the modern wolf populations across the Holarctic are likely to be the descendants of wolves from populations that came from more southern refuges.[127] Extant haplogroup 2 wolves can be found in Italy, the Balkans and the Carpathian Mountains but rare elsewhere in Europe. In Asia, only four haplotypes have been identified as belonging to this haplogroup, and two of them occur in the Middle East.[128] Haplogroup 2 did not become extinct in Europe, and if before the Oxirgi muzlik maksimal darajasi haplogroup 2 was exclusively associated with the wolf ecomorph specialized in preying on megafauna, it would mean that in Europe it was capable of adapting to changing prey.[111]

In 2013, a mitochondrial DNA sequencing of ancient wolf-like canids revealed another separate lineage of 3 haplotypes (forming a haplogroup) that was found in 3 Late Pleistocene specimens from Belgium; however, it has not been detected in extant wolves.[66][128] Ulardan biri "Goyet iti".[66]

Dissenting view

mDNA filogenetik daraxt for wolves. Clades are denoted I–XIX. Key regions/haplotypes are indicated and new haplotypes are displayed in bold. Late Pleistocene samples are represented by the numbers 1–10. Beringian bo'ri (Alaska 28,000 YBP) haplotype found in the modern clade XVI from China.

In 2016, a study was undertaken due to concerns that previous mDNA studies may have been conducted with insufficient genetic resolution or limited geographical coverage and had not included sufficient specimens from Russia, China, and the Middle East. The study compared a 582 asosiy juftlik ketma-ketlik ning mitokondriyal nazorat mintaqasi which gave twice the phylogenetic resolution of the 2010 study.[111] The study compared the sequences of both modern wolves and ancient wolf specimens, including specimens from the remote areas of North America, Russia and China. The study included the Taimyr wolves, Goyet "dog", Altai "dog", Beringian wolves, and other ancient specimens.[105]

The study found 114 different wolf haplotypes among 314 sequences, with the new haplotypes being found in Siberia and China. The phylogenetic tree resolved into 19 clades that included both modern and ancient wolves, which showed that the most basal clades included the Indian gray wolf va Himoloy bo'ri, with a subclade of wolves from China and Mongolia falling within the Himalayan wolf clade. The two most basal North American haplotypes included the Meksikalik bo'ri va Vankuver orolidagi bo'ri, however the Vancouver Island wolf showed the same haplotype as a dog which indicates admixture,[105] with the dog lineage basal to all extant North American subspecies.[11] In Europe, the two most genetically distinct haplotypes form the Iberian bo'ri and separately the Italiya bo'ri that was positioned close to the ancient wolves. The Greenland wolves all belonged to one haplotype that had been previously found among North American wolves and which indicates their origin from North America. The Eastern wolf was confirmed as a coyote/wolf hybrid. Wolves found in the regions of the Chukotka Peninsula, the North Korean border, Amur viloyati va Xakasiya showed the greatest genetic diversity and with close links to all other wolves found across the holarctic. One ancient haplotype that had been found in Alaska (Eastern Beringia 28,000 YBP) and Russia (Medvezya "Bear" Cave, Pechora area, Northern Urals 18,000 YBP) was shared with some modern wolves found in China and Mongolia.[105]

The previous finding of two wolf haplogroups[111] was not clearly delineated in this study but it agreed that the genetic diversity of past wolves has been lost at the beginning of the Holocene in Alaska, Siberia, and Europe with limited overlap with modern wolves. For the ancient wolves of North America, instead of an extinction/replacement model suggested by a previous study,[110] this study found substantial evidence of a population bottleneck in North America in which the ancient wolf diversity was almost lost around the beginning of the Holocene (no further elaboration in the study). In Eurasia, the loss of ancient lineages could not be simply explained and appears to have been slow across time with the reasons unclear.[105]

Into America and Japan

Bering quruqlik ko'prigining qisqarishi
Japanese archipelago 20,000 years ago with Hokkaido island bridged to the mainland, thin black line indicates present-day shoreline

In 2016, a study built on the work of another major study[66] and analyzed the sequences of 12 genes that are located on the heavy strand of the mitochondrial genome of extinct and modern C. qizilcha. The study excluded the sequences of the divergent Himoloy bo'ri va Indian gray wolf. Qadimgi namunalar edi radiokarbon eskirgan va stratagraphically dated, and together with the sequences generated a time-based phylogenetic tree. From the tree, the study was able to infer the most recent common ancestor for all other C. qizilcha specimens – modern and extinct – was 80,000 YBP and this date concurred with the earlier study.[66][115] The study could find no evidence of a population bottleneck for wolves until a few thousand years ago.[115]

The phylogenetic tree showed the polifil of American wolves, the Mexican wolf was divergent from other North American wolves, and these other North American wolves formed two closely related clades. A scenario consistent with the phylogenetic, ice sheet and sea-level data was that during the Ice Age when sea levels were at their lowest, there was a single wave of wolf colonization into North America starting with the opening of the Bering quruqlik ko'prigi 70,000 YBP and closing during the Late Glacial Maximum of the Yukon corridor that ran through the division between the Laurentide muz qatlami va Cordilleran muz qatlami 23,000 YBP. Mexican wolves were part of the single wave and either diverged from the other wolves before entering North America or once in North America due to the change in its environment.

As wolves had been in the fossil record of North America but modern wolves could trace their ancestry back only 80,000 years, the wolf haplotypes that were already in North America were replaced by these invaders, either through competitive displacement or through admixture.[115] The replacement in North America of a basal population of wolves by a more recent one supported the findings of earlier studies.[111][123][110][115] There possibly existed a panmictic wolf population with gene flow spanning Eurasia and North America until the closing of the ice sheets.[111][127][115] Once the sheets closed, the southern wolves were isolated and north of the sheets only the Beringian bo'ri mavjud edi. The land bridge became inundated by the sea 10,000 YBP, the sheets receded 12,000–6,000 YBP, the Beringian wolf went extinct and the southern wolves expanded to recolonize the rest of North America. All North American wolves are descended from those that were once isolated south of the ice sheets. However, much of their diversity was later lost during the twentieth century.[115]

Studies using mitoxondrial DNK qirg'oq janubi-sharqiy Alyaskaning bo'rilari genetik jihatdan ichki kulrang bo'rilardan ajralib turishini va bu boshqa taksonlarda ham kuzatilganligini ko'rsatdi. Ular janubdan (Oklaxoma) chiqarib yuborilgan bo'rilar bilan filogenetik munosabatlarni ko'rsatib, bu bo'rilar bir paytlar keng tarqalib ketgan guruhning so'nggi qoldiqlari bo'lib, o'tgan asrda asosan yo'q qilinganligini va Shimoliy Amerikaning shimoliy bo'rilari dastlab kengayganligini ko'rsatmoqdalar. ostidagi janubiy qochqinlar Viskonsin muzligi oxirida muzlar eritilgandan keyin Oxirgi muzlik maksimal darajasi.[129][130][131] A butun genom DNA study indicated that all North American wolves were monofiletik and therefore are the descendants of a common ancestor.[132]

During the same period, the Soya bo'g'ozi o'rtasida Xokkaydo va Saxalin oroli was dry for 75,000 years and it was proposed that the extinct Ezo bo'ri (C. l. xattay) arrived on Hokkaido from Sakhalin.[133][115][134] However, the sequences indicated that it arrived in Hokkaido less than 10,000 YBP. The Ezo wolf was closely related to one of the North American clades,[133][115][135] but different to the more southerly Yaponiya bo'ri (C. l. hodofilaks) that was basal to modern wolves.[133][115] The Japanese wolf inhabited Kyushu, Shikoku, and Honshu islands[136][137] but not Hokkaido Island.[137] This indicates that its ancestor may have migrated from the Asian continent through the Korean Peninsula into Japan.[133][137] The past sea levels of the Korean Strait together with the timing of the Japanese wolf sequences indicated that it arrived to the southern islands less than 20,000 YBP.[115]

The dog was a very successful invader of North America and had established a widespread ekologik joy by the Early–Middle Holocene. There was no overlap in niche between the dog and the wolf in comparison to the dog and other North American canids. By the Late Holocene, the dog's niche area was less in size than researchers had expected to find, indicating that it was limited by biotik omillar. These regions include the northeast and northwest of the United States that correlate with the greatest densities of early human occupation, indicating that the dog had "defected" from the wolf niche to the human niche and explains why the dog's niche area was not as large as expected. The separation between dog and wolf may reflect the rapid rate in which domestication occurred,[138] including the possibility of a second domestication event occurring in North America.[139][138] Packs of wolves and hunter-gatherers hunt similar prey in a similar way within a similar group social structure that may have facilitated wolf domestication.[140][52]

The wolf was exterminated in the southern part of their historic geographical range in North America by the middle of the 20th century. An mDNA study of 34 wolf remains from North America dated between 1856 and 1915 found their genetic diversity to be twice that of modern wolves in these regions, and two thirds of the haplotypes identified were unique. These results indicate that a historic population of several hundred thousand wolves once existed in Mexico and the western US.[141][113]

Beringiya

Grey wolves suffered a species-wide population bottleneck (reduction) approximately 25,000 YBP during the Last Glacial Maximum. This was followed by a single population of modern wolves expanding out of a Beringia refuge to repopulate the wolf's former range, replacing the remaining Late Pleistocene wolf populations across Eurasia and North America as they did so.[114][116][117] This source population probably did not give rise to dogs, but admixed with dogs which allowed them to gain coat colour genes that are also related to immunity, and provided dogs with genes which allowed them to adapt to high-altitude environments (e.g. Tibet). This suggests that the genetic divergence of European and East Asian dogs could be based on admixture with different sub-populations of wolves.[117]

There is little genetic information available on the ancient wolves that existed prior to the bottleneck. However, studies show that one or more of these ancient populations is more directly ancestral to dogs than are modern wolves, and conceivably these were more prone to domestication by the first humans to invade Eurasia.[117]

Divergence with the coyote

In 1993, a study proposed that the wolves of North America display skull traits more similar towards the coyote than those wolves from Eurasia.[41] 2016 yilda, a butun genom Shimoliy Amerikadagi barcha bo'ri va bo'rilar umumiy ajdoddan 6000–117000 yil ilgari ajralib chiqqan degan taxminlarga asoslanib DNKni o'rganish. Tadqiqot shuni ko'rsatdiki, barcha Shimoliy Amerika bo'rilarida katta miqdordagi koyot ajdodi va barcha bo'rilarning ma'lum darajada bo'ri nasabiga ega ekanligi va qizil bo'ri va sharqiy bo'ri are highly aralashtirilgan kulrang bo'ri va koyot ajdodlarining turli nisbatlari bilan. One test indicated a wolf/coyote divergence time of 51,000 years before present that matched other studies indicating that the extant wolf came into being around this time. Another test indicated that the red wolf diverged from the coyote between 55,000–117,000 years before present and the Great Lakes region wolf 32,000 years before present. Other tests and modelling showed various divergence ranges and the conclusion was a range of less than 6,000 and 117,000 years before present.[132][142] This finding conflicts with the fossil record that indicates a coyote-like specimen dated to 1 million years before present.[15]

The modern gray wolf expanded out of Beringia 25,000 years ago. This implies that if the coyote and red wolf were derived from this invasion, their histories date only tens of thousands and not hundreds of thousands of years ago, which is consistent with other studies.[117]

Uy iti

The domestic dog (Canis lupus tanish) is the most widely abundant large carnivore.[66][11][143] Over the past million years, numerous wolf-like forms existed but their turnover has been high, and modern wolves are not the lineal ancestors of dogs.[66][9][11][141] Although research had suggested that dogs and wolves were genetically very close relatives,[85][86][95] keyinroq filogenetik tahlil strongly supported the hypothesis that dogs and wolves are reciprocally monophylic taksonlar that form two sister qoplamalar.[85][9][144] This suggests that none of the modern wolf populations are related to the wolves that were first domesticated and the wolf ancestor of dogs is therefore presumed extinct.[9][144] Yaqinda mitoxondrial DNK analyses of ancient and modern gray wolf specimens supports a pattern of population reduction and turnover.[66][111][110] An alternate proposal is that during the ecological upheavals of the Late Pleistocene all of the remaining members of a dwindling lineage joined humans.[145][67]

In 2016, a study investigated for the first time the population subdivisions, demography, and the relationships of gray wolves based on their butun genom ketma-ketliklari. The study indicated that the dog was a divergent subspecies of the gray wolf and was derived from a now-extinct arvohlar populyatsiyasi of Late Pleistocene wolves,[66][9][11] and the dog and the dingo are not separate species.[11] The genome-wide filogenetik daraxt ko'rsatilgan genetik divergensiya between New World and Old World wolves, which was then followed by a divergence between the dog and Old World wolves 27,000YBP[10][11] – 29,000 YBP.[11] The dog forms a sister taxon with Eurasian gray wolves but not North American wolves. The dog had considerable pre-ancestry after its divergence from the Old World wolves before it separated into distinct lineages that are nearly as distinct from one another as they are from wolves.[11] The study suggested that previous datings based on the divergence between wolves and coyotes of one million years ago using fossils of what appeared to be coyote-like specimens may not reflect the ancestry of the modern forms.[84][9][10][11]

Gray wolf divergence and timing
wolf/dog ancestor
New World clade

Meksika Itlar, shoqollar, bo'rilar va tulkilar (IV plastinka) C. l. baileyi mod.jpg

5,400 [13,000] YBP

North America/Hokkaido Itlar, shoqollar, bo'rilar va tulkilar (V plastinka) .jpg

12,500 [31,000] YBP
Old World clade
Old World wolves

Asian highland Itlar, shoqollar, bo'rilar va tulkilar (Plitalar III) .jpg

Asian lowland Itlar, shoqollar, bo'rilar va tulkilar (IV plastinka) .jpg

11,000 [27,500] YBP

Yaqin Sharq Itlar, shoqollar, bo'rilar va tulkilar (IV plastinka) C. l. arablar mod.jpg

Evropa Itlar, shoqollar, bo'rilar va tulkilar (I tovoq) .jpg

Ancestral dog

It Tibet mastifi (oq fon) .jpg

10,300 [25,700] YBP

Dingo Itlar, shoqollar, bo'rilar va tulkilar (XXXVII plastinka) .jpg

Basenji Itlar, shoqollar, bo'rilar va tulkilar (XXXVII plastinka) .jpg

11,700 [29,000] YBP
Butun genom filogenetik tree – extant gray wolf populations,[11] with divergence times calculated using an assumed mutation rate of Lindblad-Toh (1x10−8)[83] yoki [Skoglund] (0.4x10−8).[10] The dog is a genetically divergent subspecies of the gray wolf, with substantial divergence between the dog lineages as nearly as distinct from one another as wolves are from dogs, which may reflect more admixture and wolf ancestry retained in their genome.[11]

The study indicated that the Meksikalik bo'ri was also a divergent form of gray wolf, suggesting that may have been part of an early invasion into North America.[11][141] The Tibetan wolf was found to be the most highly divergent of the Old World wolves, had suffered a historical population bottleneck and had only recently recolonized the Tibetan Plateau. Glaciation may have caused its habitat loss, genetic isolation then local adaption.[11]

The study indicated that there has been extensive genetik aralashma between domestic dogs and wolves, with up to 25% of the genome of Old World wolves showing signs of dog ancestry, possibly as the result of gen oqimi from dogs into wolves that were ancestral to all modern wolves. There was evidence of significant gene flow between the European wolves plus the Israeli wolf with the basenji va bokschi, which suggests admixture between the lineages ancestral to these breeds and wolf populations.[9][11] For the lowland Asian wolves: the Central Russian and East Russian wolves and all of the lowland Chinese wolves had significant gene flow with the Chinese indigenous dogs, the Tibet mastifi va dingo. For the highland Asian wolves: The Tibetan wolves did not show significant admixture with dogs; ammo Tsinxay wolves had gene flow with the dingo and one of them had gene flow with the Chinese dogs. The New World wolves did not show any gene flow with the boxer, dingo or Chinese indigenous dogs but there was indication of gene flow between the Mexican wolf and the African basenji.[11] Jins tarkibidagi barcha turlar Kanis, bo'riga o'xshash kanidlar, are phylogenetically closely related with 78 xromosomalar va mumkin interbreed.[86] There was indication of gene flow into the oltin shoqol from the population ancestral to all wolves and dogs (11.3%–13.6%) and much lower rates (up to 2.8%) from extant wolf populations.[9][11]

The data indicated that all wolves shared similar population trajectories, followed by population decline that coincided with the expansion of modern humans worldwide and their technology for capturing large game.[11][146] Late Pleistocene carnivores would have been social living in large prides, clans and packs in order to hunt the larger game available at that time, and these larger groups would have been more conspicuous targets for human persecutors.[146] Large dogs accompanying the humans may have accelerated the rate of decline of carnivores that competed for game,[11][147] therefore humans expanded across Eurasia, encountered wolves, domesticated some and possibly caused the decline of others.[11]

The study concluded that admixture had confounded the ability to make inferences about the place of dog domestication. Past studies based on SNPs, genome-wide similarities with Chinese wolves, and lower linkage disequilibrium might reflect regional admixture between dogs with wolves and gene flow between dog populations, with divergent dog breeds possibly maintaining more wolf ancestry in their genome. The study proposed that analysis of ancient DNA might be a better approach.[11]

In the same year, a study found that there were only 11 fixed genes that showed variation between wolves and dogs. These genes are thought to affect tameness and emotional processing ability.[148] Another study provided a listing of all of the gray wolf and dog mDNA haplotypes combined in the one phylogenetic tree.[149]

2018 yilda bir tadqiqot 61000 ketma-ketligini taqqosladi Single-nucleotide polymorphisms (mutatsiyalar) kulrang bo'rilar genomidan olingan. The study indicated that there exists individual wolves of dog/wolf ancestry in most of the wolf populations of Eurasia but less so in North America. The hybridization has been occurring across different time scales and was not a recent event. Low-level hybridization did not reduce the wolf distinctiveness.[150]

Dingo

Proposed route for the ancient migration of dogs based on mDNA. Haplotype A29 relates most to the Australian Dingo and the New Guinea Singing Dog, the qadimiy Polineziya Arc2 to modern Polynesian, Indonesian and ancient New Zealand dogs, and the ancient Polynesian Arc1 is indistinguishable from a number of widespread modern haplotypes.[151]

The dingo (Canis lupus dingo) refers to the dog found in Avstraliya. The dingo is a divergent subspecies of the gray wolf and is not a separate species,[11] and is considered genetically to be a bazal uy itlari guruhining a'zosi.[11][84][9] The genetic evidence indicates that the dingo originated from East Asian domestic dogs and was introduced through the South-East Asian archipelago into Australia,[152][153] with a common ancestry between the Australian dingo and the Yangi Gvineya qo'shiqchi iti.[153][154]

Taimyr wolf

The Grenlandiya iti carries 3.5% shared genetic material (and perhaps up to 27%) with the extinct 35,000 YBP Taimyr wolf

In May 2015 a study was conducted on a partial rib-bone of a wolf specimen (named "Taimyr-1") found near the Bolshaya Balakhnaya River in the Taymir yarim oroli Arktikaning Shimoliy Osiyo, that was AMS radiokarbon eskirgan to 34,900 YBP. The sample provided the first draft genom ning hujayra yadrosi for a Pleistocene yirtqich, and the sequence was identified as belonging to Canis lupus.[10]

Using the Taimyr-1 specimen's radiocarbon date, its genome sequence and that of a modern wolf, a direct estimate of the genome-wide mutation rate in dogs / wolves could be made to calculate the time of divergence. The data indicated that the previously unknown Taimyr-1 lineage was a wolf population separate to modern wolves and dogs and indicated that the Taimyr-1 genotype, gray wolves and dogs diverged from a now-extinct common ancestor[10][73][155] before the peak of the Last Glacial Maximum, 27,000–40,000 years ago. The separation of the dog and wolf did not have to coincide with selective breeding by humans.[10][156] Such an early divergence is consistent with several paleontological reports of dog-like canids dated up to 36,000 YBP, as well as evidence that domesticated dogs most likely accompanied early colonizers into the Americas.[10]

Comparison to the gray wolf lineage indicated that Taimyr-1 was basal to gray wolves from the Middle East, China, Europe and North America but shared a substantial amount of history with the present-day gray wolves after their divergence from the coyote. This implies that the ancestry of the majority of gray wolf populations today stems from an ancestral population that lived less than 35,000 years ago but before the inundation of the Bering Land Bridge with the subsequent isolation of Eurasian and North American wolves.[10]

A comparison of the ancestry of the Taimyr-1 lineage to the dog lineage indicated that some modern dog breeds have a closer association with either the gray wolf or Taimyr-1 due to aralashma. The Saarloos wolfdog showed more association with the gray wolf, which is in agreement with the documented historical crossbreeding with gray wolves in this breed. Taimyr-1 shared more alleles (gene expressions) with those breeds that are associated with high latitudes: the Sibir husky va Grenlandiya iti[10][155] that are also associated with arctic human populations, and to a lesser extent the Shar Pei va Finnish spitz. An admixture graph of the Greenland dog indicates a best-fit of 3.5% shared material, although an ancestry proportion ranging between 1.4% and 27.3% is consistent with the data. This indicates admixture between the Taimyr-1 population and the ancestral dog population of these four high-latitude breeds. These results can be explained either by a very early presence of dogs in northern Eurasia or by the genetic legacy of Taimyr-1 being preserved in northern wolf populations until the arrival of dogs at high latitudes. Bu introressiya could have provided early dogs living in high latitudes with phenotypic variation beneficial for adaption to a new and challenging environment. It also indicates that the ancestry of present-day dog breeds descends from more than one region.[10]

An attempt to explore admixture between Taimyr-1 and gray wolves produced unreliable results.[10]

As the Taimyr wolf had contributed to the genetic makeup of the Arctic breeds, a later study suggested that descendants of the Taimyr wolf survived until dogs were domesticated in Europe and arrived at high latitudes where they mixed with local wolves, and these both contributed to the modern Arctic breeds. Based on the most widely accepted oldest zooarchaeological dog remains, domestic dogs most likely arrived at high latitudes within the last 15,000 years. The mutation rates calibrated from both the Taimyr wolf and the Newgrange dog genomes suggest that modern wolf and dog populations diverged from a common ancestor between 20,000–60,000 YBP. This indicates that either dogs were domesticated much earlier than their first appearance in the archaeological record, or they arrived in the Arctic early, or both.[157]

The finding of a second wolf specimen from the same area (“Taimry-2”) and dated to 42,000 YBP has also been sequenced but yielded only mitochondrial DNA.[158]

Canis variabilis

2015 yilda bir tadqiqot mitokondriyal nazorat mintaqasi Arktikaning shimoliy-sharqiy Sibiridagi beshta joydan 13 qadimiy kanid qoldiqlari va bitta zamonaviy bo'ri ketma-ketligi. O'n to'rtta kanid to'qqiz mitoxondriyani aniqladi haplotiplar, ulardan uchtasi ro'yxatga olingan, qolganlari bundan oldin xabar bermagan. Ketma-ketlikdan hosil bo'lgan filogen daraxt shuni ko'rsatdiki, 28000 YBPgacha bo'lgan to'rtta Sibir kanidlari va bittasi Canis c.f. variabilis yil 360,000 YBP juda xilma-xil edi. Dan S805 (28000 YBP) deb belgilangan haplotip Yana daryosi bu zamonaviy bo'ri va uy itlarining nasl-nasabining A kleydini ifodalovchi boshqa S902 (8000 YBP) haplotipidan bir mutatsiya edi. Closely related to this haplotype was one that was found in the recently extinct Yaponiya bo'ri. Several ancient haplotypes were oriented around S805, including Canis c.f. variabilis (360,000 YBP), Belgiya (36,000 YBP - "Goyet iti"), Belgiya (30,000 YBP) va Konsteki, Rossiya (22,000 YBP). Filogenetik daraxtda S805 haplotipining holatini hisobga olsak, u potentsial ravishda to'g'ridan-to'g'ri bog'lanishni ko'rsatishi mumkin avlod (shu jumladan Canis c.f. variabilis) uy itiga va zamonaviy bo'ri nasablariga. Kulrang bo'ri uy itiga ajdodlar deb qaraladi, ammo uning aloqasi C. variabilisva genetik hissa C. variabilis itga, munozara mavzusi.[159]

The Joxov oroli (8,700 YBP) va Aachim (1700 YBP) kanidli haplotiplar uy itlari guruhiga, S805 bilan klasterga tushdi, shuningdek, ularning haplotiplarini - yoki bir mutatsiyadan uzoqda - Tibetan wolf (C. l. filchneri) and the recently extinct Japanese wolf (C. l. hodofilaks). Bu ushbu kanidlarning mintaqaviy bo'ri populyatsiyasiga qo'shilishning genetik imzosini saqlab qolganligini ko'rsatishi mumkin. Dan S504 (47000 YBP) deb belgilangan yana bir haplotip Duvanny Yar filogenetik daraxtda bo'rilarga (qadimgi va zamonaviy) bog'lanmagan, ammo ajdodlari itlarga nasab berganligi sababli paydo bo'lgan va mintaqaviy itlar uchun genetik manba bo'lishi mumkin.[159]

Mualliflar zamonaviy itning tuzilishi degan xulosaga kelishdi genofond qadimgi Sibir bo'rilaridan va ehtimol undan yordam bergan Canis c.f. variabilis.[159][160]

Rise to dominant predator

In 2015, a study looked at the paleoecology of large carnivores across the Mamont dasht davomida Kech pleystotsen by using stable isotope analysis of their fossil kollagen to reconstruct their diets. Based on testing in Belgium, around 40,000 YBP the Cave hyenas preyed on mammoth, woolly rhinoceros, horses and reindeer, with g'or sherlari kiyik va yoshlarni olib g'or ayiqlari. Bo'rilar tashqaridan raqobatlashgan ko'rinadi g'orlar va ularning dietasi kamzul, ulkan kiyik va qizil kiyik bilan cheklangan edi. Biroq, oxirgi muzlik maksimalidan 14000 YBP atrofida bo'lganidan so'ng, bo'rilar barcha o'lja turlariga kirish imkoniyatiga ega bo'lishdi, g'or sherlari bug 'kiyiklari bilan cheklanib, g'orning siynasi yo'q bo'lib ketdi.[161][162][163] Ma'lumotlar shuni ko'rsatadiki, g'or sichqonining yo'q bo'lib ketishi, bo'ri g'or sherining yo'q bo'lishidan oldin g'or sheriga emas, balki hukmron yirtqichga aylanishiga imkon bergan.[163] Boshqa bir tadqiqot shuni ko'rsatdiki, bo'ri g'arbiy sirtlonga qaraganda ko'proq qor qoplami bo'lganida rivojlangan.[164]

Bo'ri populyatsiyasining farqlari

Kulrang bo'ri Canis lupus atrof muhitda mavjud bo'lishga qodir bo'lgan va butun dunyo bo'ylab keng tarqaladigan yuqori moslashuvchan tur Holarktika. Zamonaviy kulrang bo'rilarni o'rganish natijasida bir-biriga yaqin joyda yashaydigan alohida sub-populyatsiyalar aniqlandi.[2][3] Pastki populyatsiyalarning bunday o'zgarishi kranio-dental plastisitga ta'sir qiluvchi yashash joylari - yog'ingarchilik, harorat, o'simlik va o'lja ixtisoslashuvi farqlari bilan chambarchas bog'liq.[4][5][6][7] Arxeologik va paleontologik yozuvlar kamida so'nggi 300000 yil davomida ularning doimiy mavjudligini ko'rsatadi.[8] Bu doimiy bo'ri borligi bilan qarama-qarshi genomik barcha zamonaviy bo'rilar va itlar ajdodlarimizning umumiy bo'ri populyatsiyasidan kelib chiqqanligini ko'rsatadigan tadqiqotlar[9][10][11] 20000 yil oldin mavjud bo'lgan.[9] Ushbu tadqiqotlar shuni ko'rsatadiki, a aholining tiqilishi bir vaqtning o'zida yoki bir muncha vaqt o'tgach, ajdodlar populyatsiyasidan tez nurlanish paydo bo'ldi Oxirgi muzlik maksimal darajasi. Bu shuni anglatadiki, bo'ri populyatsiyasining o'rniga ularning o'rnini egallagan bo'ri yangi turi bilan raqobatlashmagan.[115] Biroq, bu nurlanishning geografik kelib chiqishi ma'lum emas.

Odamlar uyga keltirishdan tashqari, bo'rini ta'qib qilish yo'li bilan yashash muhitini cheklash orqali unga zarar etkazishdi. Bu so'nggi ikki asrda aholi sonining keskin pasayishiga olib keldi.[165][166] Yaqin qarindoshlari, itlar va kapalaklarnikiga to'g'ri keladigan yashash joylarining qisqarishi ko'plab duragaylanishlarga olib keldi.[167][168] Yaqinda o'tkazilgan aylanmalarga qo'shimcha ravishda (boshqa genotiplarning yo'q bo'lib ketishi va ko'payishi) bu hodisalar, fileografik bo'ri tarixi qiyin.[105]

Ekotiplar

An ekotip ning varianti fenotipik farqlar juda kichik yoki juda nozik bo'lib, ular kichik bir turkumga kirishga kafolat bermaydi. Ular o'tloq, o'rmon, botqoq va qumtepalar kabi alohida yashash joylari ekologik joylarni ta'minlaydigan bir xil geografik mintaqada sodir bo'lishi mumkin. Shunga o'xshash ekologik sharoitlar keng ajratilgan joylarda sodir bo'lganda, xuddi shunday ekotip paydo bo'lishi mumkin. Bu turli xil yashash joylarida mavjud bo'lishi mumkin bo'lgan kichik turlardan farq qiladi. Hayvonlarda ekotiplarni turli xil xususiyatlarini mahalliy muhit ta'siridan qarzdor bo'lgan mikroko'krak turlari deb hisoblash mumkin.[169] Ekotiplarda yo'q taksonomik daraja.

Kulrang bo'rilar keng va tabiiy tarqalishiga ega Holarktika Arktikadan zich o'rmonlarga, ochiq dasht va cho'llarga qadar o'zgarishi mumkin bo'lgan turli xil yashash joylarini o'z ichiga oladi. Kulrang bo'rilarning turli populyatsiyalari orasidagi genetik farqlar ular yashaydigan yashash joylari turiga chambarchas bog'liqdir.[7] Skandinaviya bo'ri populyatsiyasida genetik belgilarda farq faqat o'n yil ichida paydo bo'lgan, chunki ularning soni kichik edi,[7][170] bu farqlar uzoq vaqt davomida yakka holda o'tkazilganligiga bog'liq emasligini va aholi sonining ko'payishi bir necha ming yil ichida rivojlanishi mumkinligini ko'rsatadi.[7] Ushbu farqlar mo'yna rang va zichlik va tana hajmini ham o'z ichiga olishi mumkin.[7][171][2] Farqlarga xatti-harakatlar ham kirishi mumkin, chunki qirg'oqdagi bo'rilar baliq iste'mol qiladilar[7][171] va tundra bo'rilari ko'chib ketadi.[7][2] Ushbu farqlar yaqin atrofda yashaydigan ikkita bo'ri populyatsiyasi o'rtasida kuzatilgan. Ko'rinib turibdiki, tog 'bo'rilari yaqin atrofdagi qirg'oq bo'rilariga aralashmaydi va Frantsiya va Shveytsariyaning Alp tog'lari yaqin atrofdagi Italiya tog'laridan bo'rilar bilan ko'paygan.[7][172] va uzoq Xorvatiya tog'laridan[7][173] yaqinroq pasttekisliklardan ko'ra, bu masofa ikkala orasidagi farqni harakatlantiruvchi kuch emasligini ko'rsatadi ekomorflar.[7]

2013 yilda genetik tadqiqotlar shuni ko'rsatdiki, Evropada bo'ri populyatsiyasi shimoliy-janubiy o'qi bo'ylab bo'linib, beshta yirik klasterni tashkil etgan. Italiyada, Karpat va Diniy-Bolqonda janubiy va markaziy Evropani egallagan uchta klaster aniqlandi. Shimoliy-markaziy Evropa va Ukraina dashtini egallagan yana ikkita klaster aniqlandi. Italiya bo'ri kam genetik xilma-xillikka ega bo'lgan izolyatsiya qilingan populyatsiyadan iborat edi. Xorvatiya, Bolgariya va Gretsiyadagi bo'rilar Diniy-Bolqon klasterini tashkil etdi. Finlyandiya, Latviya, Belorussiya, Polsha va Rossiyadan kelgan bo'rilar, Shimoliy-markaziy klaster va Dinor-Balkan klasteridagi bo'rilar aralashmasi bo'lgan Karpat klasteridagi bo'rilar bilan shimoliy-markaziy Evropaning klasterini shakllantirdilar. Karpatdan kelgan bo'rilar, Evropaning shimoliy-markaziy qismlaridan ko'ra ko'proq Ukraina dashtidagi bo'rilarga o'xshash edi. Ushbu klasterlar muzli refugiyadan kengayish, mahalliy muhitga moslashish va landshaft parchalanishi va odamlarning ba'zi hududlarda bo'rilarni o'ldirishi natijasida yuzaga kelgan bo'lishi mumkin.[174]

2016 yilda ikkita tadqiqot 42,000 ketma-ketligini taqqosladi bitta nukleotid polimorfizmlari Shimoliy Amerika kulrang bo'rilarida va ular oltita ekotip hosil qilganligini aniqladilar. Ushbu oltita bo'ri ekotiplari G'arbiy o'rmon, Boreal o'rmoni, Arktika, Yuqori Arktika, Baffin va Britaniya Kolumbiyasi deb nomlangan. Tadqiqotlar shuni ko'rsatdiki, yog'ingarchilik va o'rtacha sutkalik harorat oralig'i ketma-ketlikning o'zgarishiga eng ta'sirchan o'zgaruvchilar bo'lgan.[3][175] Ushbu topilmalar yog'ingarchilik morfologiyaga ta'sir qilganligi haqidagi oldingi topilmalar bilan mos edi,[176] va bu o'simlik[4] va yashash joyining turi[171][177] bo'ri farqiga ta'sir ko'rsatdi. Ushbu tadqiqotlardan biri shuni ko'rsatdiki, 11 asosiy genning o'zgarishi bo'rilarni ko'rish, hidlash, eshitish, palto rangi, metabolizm va immunitetga ta'sir ko'rsatdi. Tadqiqot davomida yashash muhitining o'zgarishi sababli potentsial selektsiya ostida bo'lgan 1040 gen aniqlandi va shuning uchun bo'ri ekotiplarining molekulyar darajada mahalliy moslashuviga oid dalillar mavjud edi. Arktika va Yuqori Arktika ekotiplarida ko'rish, palto rangiga, metabolizmga va immunitetga ta'sir qiluvchi genlarning ijobiy tanlovi va Britaniya Kolumbiyasi ekotipi ham o'ziga xos moslashuvlar to'plamiga ega bo'lganligi eng diqqatga sazovor joy edi.[175] Bo'ri ekotipining mahalliy moslashuvi, ehtimol, bo'rining o'zi tug'ilgan muhitda qolishni afzal ko'rishini aks ettiradi.[3]

Ekologik omillar, jumladan yashash muhiti, iqlimi, o'lja ixtisoslashuvi va yirtqich raqobat kul bo'riga katta ta'sir ko'rsatadi populyatsiyaning genetik tuzilishi va kranio-dental plastika.[125][73][7][2][178][179][4][5][6] Oxirgi muzlik maksimumida katta bo'ri bo'lgan genetik xilma-xillik bugungi kunga qaraganda,[9][66] Pleistosen kulrang bo'ri populyatsiyasida mahalliy muhit o'rtasidagi farqlar genetik, morfologik va ekologik jihatdan bir-biridan farq qiladigan bir qator bo'ri ekotiplarini rag'batlantirgan bo'lar edi.[73]

Pleystotsenli bo'rilar

Eng qadimgi Kanis Evropada topilgan qoldiqlar Frantsiyadan bo'lgan va 3,1 million YBPga tegishli,[180] dan so'ng Kanis qarorgohi etrusk (qayerda qarz Lotin tilida konferentsiya, noaniq degan ma'noni anglatadi) Italiyadan 2,2 mln.[181] C. qizilcha davomida Italiyada paydo bo'lgan Dengiz izotopi bosqichi 9[182] (337,000 YBP). Britaniyada bu MIS 7 (243,000 YBP) dan mavjud bo'lgan yagona kanid turidir, eng qadimgi yozuv Pontnewydd g'ori shimoliy Uelsda.[183] Muzlik davrida Buyuk Britaniyani Evropadan faqat Kanal daryosi.

Pleystotsenni o'rganish C. qizilcha Britaniyada turli davrlarda uning maydalash, go'sht bo'laklari va suyaklarni iste'mol qilish qobiliyati uning kraniostomatologik plastisiyasini ta'kidlagan. Oziqlanish o'zgarishiga bo'lgan ushbu javoblar iqlim va ekologik o'zgaruvchilarga javoban nafaqat mahalliy ekomorflarni, balki butun parhez o'zgarishini ko'rsatdi. Ning omon qolishi C. qizilcha Pleistosen davrida asosan uning kranio-dental morfologiyasi bilan bog'liq bo'lishi mumkin.[6]

Canis lupus kranio-stomatologik plastika - kulrang bo'ri va chihuahua bosh suyaklari
Tishlarning nomlari va pozitsiyalarini ko'rsatadigan bo'ri mandible diagrammasi
Skandinaviya bo'ri o'rmon muhitida
Rassomning a Beringian bo'ri
Taqqoslash Canis lupus Britaniyada 243,000 YBP (MIS nazarda tutilgan) o'zgarishi Dengiz izotopi bosqichi)
YBP vaqtiO'zgaruvchilar
243,000 MIS 7Paleoen Environment ochiq o'tloqlar bo'lib, yozgi harorati 16 ° C dan 23 ° C gacha, qishki harorat esa -7 ° C va -6 ° C orasida cho'l mamonti va otlar hukmronlik qilgan. Raqobatchilar orasida sher, jigarrang ayiq va kamdan-kam hollarda dog'lar bor edi. MIS 7 bo'rilari tanasining kattaligi bo'yicha MIS 5 bo'rilariga va bugungi kunda Shvetsiyada topilganlarga qaraganda bir oz kichikroq edi. Ushbu bo'rilar katta raqobatchilar tomonidan raqobatbardosh bo'lib, MIS 5 davridan ko'ra ko'proq o'lja turlarini va go'sht bo'lmagan ovqatlarni qo'llab-quvvatlaydigan ochiq muhitda maydalash qobiliyatini oshirib, ko'proq ovqatlanadigan dietaga olib keldi. Ularning jag'lari MIS 5 bo'rilariga va bugungi kunda Shvetsiyada topilganlarga qaraganda sayozroq va torroq bo'lgan, bu esa ular faqat kichik va o'rta o'lja olishlari mumkinligini ko'rsatgan. Ular MIS-3 bo'rilari bilan taqqoslanadigan pastroq tish sindirishini namoyish etishdi. Biroq, ular o'rtacha darajada eskirgan tishlarning eng yuqori foiziga ega edilar.[6]
82000 MIS 5APaleo muhit sovuq, ochiq tundra bo'lib, yoz harorati 7 ° C dan 11 ° C gacha, qishki harorat esa -10 ° C va -30 ° C gacha, bug 'va bizon hukmronlik qiladi. Jigarrang ayiqning katta shakli eng yirtqich edi, hozirda bu erda hyena yo'q edi. MIS 5 ning bo'rilari tanasining kattaligi bo'yicha bugungi kunda Shvetsiyada topilganlardan kattaroq edi. Ushbu bo'rilar og'ir iqlimdan, past o'lja va parhez stresidan azob chekishgan, bu esa ko'proq go'shtli parhezni keltirib chiqargan, muzlatilgan tana go'shti va suyak iste'mol qilish ko'paygan. Ular boshqa bo'rilar bilan taqqoslaganda kuchli jag'lar va go'sht qirqish qobiliyatlarini rivojlantirdilar, zamonaviy bo'rilarga nisbatan sayozroq jag'lar, ammo MIS 7 va MIS 5 bo'rilarga qaraganda kengroq va chuqurroq jag'lar bilan. Ular eng uzun va eng tor yuqori P4-ni namoyish qildilar, bu esa qirqish qobiliyatini yaxshilaganligini va eng uzun yuqori M1 va M2-ni ko'rsatdi, ammo kengligi pasaygan va shuning uchun giperkarbonni ko'rsatadigan maydalash qobiliyati pasaygan. Ular boshqa bo'rilarga nisbatan tishlarning sinishi va qattiq charchagan tishlarning yuqori foizini namoyish qildilar va ehtimol ularning yuqori P4 va pastki m1 larini suyaklarni emas, balki suyaklarni ezish uchun ishlatgan bo'lishi mumkin, bu esa shikastlanishning yuqori chastotasiga olib keladi.[6]
57,000 MIS 3Yozgi harorati 12 ° C atrofida, qishda esa -20 ° C atrofida bo'lgan ochiq maysazorlarning paleomuhitida jun mamont, jun karkidon, ot va ulkan kiyik ustunlik qiladi. Raqobatchilar sher, jigarrang ayiq va dog'li zirakni eng yaxshi yirtqichlar qatoriga kiritishdi. MIS 3 ning bo'rilari tanasining kattaligi bo'yicha MIS 5 bo'riga va bugungi kunda Shvetsiyada topilganlarga qaraganda kichikroq edi. Ushbu bo'rilar sher va sirtlonlar tomonidan raqobatbardosh bo'lib, MIS 5 davridan ko'ra ko'proq o'lja turlarini va go'sht bo'lmagan ovqatlarni qo'llab-quvvatlaydigan ochiq muhitda maydalash qobiliyatini oshirib, ko'proq ovqatlanadigan dietaga olib keldi. Ularning jag'lari MIS 5 bo'rilariga va bugungi kunda Shvetsiyada topilganlarga qaraganda sayozroq va torroq bo'lgan, bu esa ular faqat kichik va o'rta o'lja olishlari mumkinligini ko'rsatgan. Ular MIS-7 bo'rilari bilan taqqoslanadigan tishlarning sinishining past foizini namoyish qildilar.[6]
Bugun (Shvetsiya)Bo'ri Buyuk Britaniyada yo'q qilingan, ammo Shvetsiyada emas, bu erda MIS 7 davrida Angliya haroratiga o'xshash. Atrof-muhit boreal o'rmon yozgi harorat 14 ° C dan 18 ° C gacha, qishki harorat esa 1 ° C va -10 ° C gacha. Yirtqich turlarga elk, kiyik, kiyik, cho'chqa, quyon, quyon va qunduz kiradi. Raqobatchilar orasida jigarrang ayiq va lyuks mavjud, ammo bo'ri eng yaxshi yirtqich hisoblanadi. Bugungi kunda Shvetsiyada topilgan bo'rilar tana kattaligi bo'yicha MIS 5 bo'ridan kichik, ammo MIS 7 va MIS 3nikidan kattaroqdir. Yuqori M1 va M2 uzunliklari MIS 7 va MIS 3 bo'rilariga qaraganda uzunroq, jag'lar esa chuqurroq va kengroq, bu katta o'ljani ovlash va bo'ysundirish qobiliyatini ko'rsatadi. Shu bilan birga, katta tishlar tishlarni maydalash va go'sht bo'lmagan ovqatlarni qayta ishlash qobiliyatini saqlab qoldi. Ushbu bo'rilar boreal o'rmonlarda yashaydilar, u erda kichik va o'rta ovni topish qiyin va ularni zabt etish juda ko'p mehnat talab qiladi, bu esa katta o'yinni yuqori mukofot bilan ovlashga moslashishga olib keladi. Ular MIS 5 bo'rilariga o'xshash giperkarivorlar, ammo bir xil kesish qobiliyatiga ega emaslar.[6]

Davomida Oxirgi muzlik maksimal darajasi 20,000 YBP, the Pleystotsen dashti shimoliy va markaziy Evrosiyo bo'ylab va orqali cho'zilgan Beringiya Shimoliy Amerikaga. Pleystotsen Beringiya bo'rilariva, ehtimol, dasht bo'ylab o'tganlar, ushbu yashash muhitiga moslashgan. Ularning tishlari va bosh suyagi morfologiyasi shuni ko'rsatadiki, ular yo'q bo'lib ketish uchun ovlashga ixtisoslashgan Pleistotsen megafauna, va ularning tishlari kiyinishi ularning xatti-harakatlari zamonaviy bo'rilarga nisbatan farq qilganligini ko'rsatadi.[110][7][184][185] Bu muvaffaqiyatni ta'kidlaydi C. qizilcha turli xil atrof-muhit sharoitlariga moslashishda tur sifatida.[6] Ushbu kulrang bo'ri ekomorfi muzlik oxirida ot va unga bog'liq bo'lgan boshqa turlar bilan birga yo'q bo'lib ketdi va uning o'rnini Shimoliy Amerikaning janubidan kelgan bo'rilar egalladi. Bu shuni ko'rsatadiki, yashash joylari boshqa bo'rilarni qo'llab-quvvatlashi mumkin bo'lsa ham, atrof-muhit o'zgarganda ixtisoslashgan bo'rilar ekomorflari yo'q bo'lib ketishi mumkin.[7] Bo'rilar a aholining tiqilishi 20,000 YBP, bu oxirgi muzlik maksimaliga to'g'ri keladi,[9][128][73][7] bu ko'plab bo'ri populyatsiyasining Beringiya bo'rilari bilan bir vaqtda yo'q bo'lib ketishi mumkinligini ko'rsatadi.[7]

Ularning oz miqdori bor Kanis Belgiyaning Goyet g'oridan topilgan qoldiqlar (36,500 YBP)[64] Razboinichya g'ori, Rossiya (33 500 YBP)[186] Kostenki 8, Rossiya (33 500–26,500 YBP)[187] Predmosti, Chexiya (31000 YBP)[188] va Eliseevichi 1, Rossiya (17000 YBP).[65] Uy sharoitiga o'tkazish jarayoni bilan bog'liq deb hisoblanadigan xususiyatlarni kranial morfometrik o'rganishga asoslanib, ular dastlabki paleolit ​​itlari sifatida taklif qilingan.[187] Qisqartirilgan minbar, tishlarning zichligi va premolarlarning yo'qligi yoki aylanishining bu xususiyatlari qadimgi va zamonaviy bo'rilarda qayd etilgan.[110][73][6][189][190][191] Ushbu namunalar erta itlarni ifodalashdan ko'ra, "bo'rilarning morfologik jihatdan ajralib turadigan mahalliy, hozir yo'q bo'lib ketgan populyatsiyasi" ni anglatishi mumkin.[73][192]

Izohlar

  1. ^ Filogenetik munosabatlar va vaqti genetik divergensiya mavjud bo'lganlar uchun bo'riga o'xshash kanidlar butun DNK asosida hujayra yadrosi.[104] Istisno 1: olingan DNK segmentlari asosida qo'shilgan yonbosh chiziqli va qora suyanchiqli shoqol hujayra yadrosi[83][84] millionlab yillardagi divergentsiya vaqtlari bilan.[84] Istisno 2: Himoloy bo'rining pozitsiyasi segmentlarga asoslangan mitoxondrial DNK[84][105][106][107] va hujayra yadrosidan segmentlar.[84][106][107] Istisno 3: hind tekisliklarining bo'risi pozitsiyasi mDNA ga asoslangan.[108][109][110][111][112][113] va uning vaqti 120 ming yil oldin.[114] Istisno 4: Kech pleystotsen faqat vaqt yo'nalishi uchun kiritilgan bo'ri - the eng so'nggi umumiy ajdod boshqalar uchun Canis lupus namunalari - zamonaviy va yo'q bo'lib ketgan, ammo hind tekislik bo'ri va Himoloy bo'risi bundan mustasno - hozirgi kunga qadar 80000 yil oldin.[66][115] Istisno 5: 25000 yil oldin kulrang bo'ri va itning vaqti.[114][116][117]

Adabiyotlar

  1. ^ Dokins, Uilyam Boyd, ser; Sanford, V. Ayshford; Reynolds, Sidney H. (1912). "Britaniyalik pleystotsen Hyænidæ, Ursidæ, Canidæ va Mustelidæ". Britaniyalik pleystotsen sutemizuvchilar monografiyasi. 2. London: Paleontografik jamiyat.
  2. ^ a b v d e Musiani, Marko; Leonard, Jennifer A.; Kluff, H. Din; Geyts, C. Kormak; Mariani, Stefano; Paket, Pol S.; Vila, Karles; Ueyn, Robert K. (2007). "Tundra / tayga va boreal ignabargli o'rmon bo'rilarini farqlash: genetika, palto rangi va migratsion karibu bilan bog'liqlik". Molekulyar ekologiya. 16 (19): 4149–70. doi:10.1111 / j.1365-294X.2007.03458.x. PMID 17725575.
  3. ^ a b v d Shvaytser, Rena M.; Vonxoldt, Bridjet M.; Harrigan, Rayan; Nounz, Jeyms S.; Musiani, Marko; Koltman, Devid; Novembre, Jon; Ueyn, Robert K. (2016). "Shimoliy Amerika kul bo'rilarida selektsiya ostida genetik bo'linma va nomzod genlar". Molekulyar ekologiya. 25 (1): 380–402. doi:10.1111 / mec.13364. PMID 26333947.
  4. ^ a b v d Geffen, ELI; Anderson, Marti J.; Ueyn, Robert K. (2004). "Juda harakatchan kulrang bo'rida tarqalish uchun iqlim va yashash muhitining to'siqlari". Molekulyar ekologiya. 13 (8): 2481–90. doi:10.1111 / j.1365-294X.2004.02244.x. PMID 15245420.
  5. ^ a b v Uchuvchi, Malgorzata; Jedrzejevski, Vlodzimeerz; Branicki, Voytsex; Sidorovich, Vadim E.; Jedrzejevska, Bogumila; Stachura, Krystyna; Funk, Stefan M. (2006). "Evropalik kul bo'rilar populyatsiyasining genetik tuzilishiga ekologik omillar ta'sir qiladi". Molekulyar ekologiya. 15 (14): 4533–53. doi:10.1111 / j.1365-294X.2006.03110.x. PMID 17107481.
  6. ^ a b v d e f g h men j Gul, Lyusi OH .; Schreve, Danielle C. (2014). "Evropa pleystotsen kanidlarida paleodietar o'zgaruvchanlikni tekshirish". To'rtlamchi davrga oid ilmiy sharhlar. 96: 188–203. Bibcode:2014QSRv ... 96..188F. doi:10.1016 / j.quascirev.2014.04.015.
  7. ^ a b v d e f g h men j k l m n o p Leonard, Jennifer (2014). "Ekologiya kulrang bo'rilarda evolyutsiyani boshqaradi" (PDF). Evolyutsiya ekologiyasini tadqiq qilish. 16: 461–473.
  8. ^ a b v Sotnikova, M (2010). "Kaninilarning (Mammalia, Canidae: Caninae) Evrosiyo bo'ylab kech miosen davrida erta pleystotsengacha tarqalishi". To'rtlamchi xalqaro. 212 (2): 86–97. Bibcode:2010QuInt.212 ... 86S. doi:10.1016 / j.quaint.2009.06.008.
  9. ^ a b v d e f g h men j k l m n o p q Fridman, Adam H.; Gronau, Ilan; Shvaytser, Rena M.; Ortega-Del Vecchyo, Diego; Xan, Yunjun; Silva, Pedro M.; Galaverni, Marko; Fan, Zhenxin; Marks, Piter; Lorente-Galdos, Belen; Beale, Xolli; Ramires, Oskar; Hormozdiari, Farhod; Alkan, mumkin; Vila, Karles; Skvayr, Kevin; Geffen, Eli; Kusak, Josip; Boyko, Adam R.; Parker, Xeydi G.; Li, Klarens; Tadigotla, Vasisht; Siepel, Odam; Bustamante, Karlos D.; Xarkins, Timoti T.; Nelson, Stenli F.; Ostrander, Elaine A .; Marques-Bonet, Tomas; Ueyn, Robert K.; va boshq. (2014). "Genom ketma-ketligi itlarning dinamik tarixini ta'kidlaydi". PLOS Genetika. 10 (1): e1004016. doi:10.1371 / journal.pgen.1004016. PMC 3894170. PMID 24453982.
  10. ^ a b v d e f g h men j k l m n Skoglund, Pontus; Ersmark, Erik; Palkopoulou, Eleftheria; Dalen, Sevgi (2015). "Qadimgi bo'ri genomi uy itlari ajdodlarining erta farqlanishini va yuqori kenglikdagi zotlarga aralashganligini aniqladi". Hozirgi biologiya. 25 (11): 1515–1519. doi:10.1016 / j.cub.2015.04.019. PMID 26004765.
  11. ^ a b v d e f g h men j k l m n o p q r s t siz v w x y Fan, Zhenxin; Silva, Pedro; Gronau, Ilan; Vang, Shuoguo; Armero, Aitor Serres; Shvaytser, Rena M.; Ramires, Oskar; Pollinger, Jon; Galaverni, Marko; Ortega Del-Vecchyo, Diego; Du, Lianming; Chjan, Venping; Chjan, Tsixe; Sin, Tszinuan; Vila, Karles; Marques-Bonet, Tomas; Godinyo, Rakel; Yue, Bisong; Ueyn, Robert K. (2016). "Kulrang bo'rilarda genomik o'zgarish va aralashmaning dunyo bo'ylab naqshlari". Genom tadqiqotlari. 26 (2): 163–73. doi:10.1101 / gr.197517.115. PMC 4728369. PMID 26680994.
  12. ^ a b v d Sardella, Raffaele; Berte, Davide; Iurino, Dovid Adam; Cherin, Marko; Tagliacozzo, Antonio (2014). "Grotta Romanellidan bo'ri (Apuliya, Italiya) va uning Canis lupus evolyutsion tarixidagi ta'siri Janubiy Italiyaning so'nggi pleystotsenida". To'rtlamchi xalqaro. 328–329: 179–195. Bibcode:2014QuInt.328..179S. doi:10.1016 / j.quaint.2013.11.016.
  13. ^ Flinn, Jon J.; Uesli-Xant, Jina D. (2005). "Yirtqich hayvonning filogeniyasi: Yirtqich hayvonlarning bazal munosabatlari va" Miakoidaning "Carnivoraga nisbatan pozitsiyasini baholash". Tizimli paleontologiya jurnali. 3: 1–28. doi:10.1017 / s1477201904001518. S2CID 86755875.
  14. ^ "Eucyon davisi". Qoldiqlar. Olingan 11 iyul 2016.
  15. ^ a b v d e f g h men j k l m n Vang, Xiaoming; Tedford, Richard X.; Itlar: ularning fotoalbom qarindoshlari va evolyutsion tarixi. Nyu-York: Columbia University Press, 2008 yil.
  16. ^ Vislobokova, I., Sotnikova, M. & Dodonov, A., 2003 yil - Rossiyaning so'nggi miosen-pliosen sutemizuvchilar faunasining bio-hodisalari va xilma-xilligi - In: Reumer, J.W.F. & Wessels, W. (tahr.) - EVRASIYADA O'TTIYOT SUTKANLARNING TAYYORLANISHI VA MIGRASIYASI. HANS DE BRUYNN - DEYNSEYA 10: 563-574 sharafiga bag'ishlangan jild [ISSN 0923-9308] 2003 yil 1 dekabrda nashr etilgan
  17. ^ a b v d e f g h men j k l m n o p q r R.M. Nowak (2003). "9-bob - Bo'ri evolyutsiyasi va taksonomiyasi". Mechda L. Devid; Boitani, Luigi (tahr.). Bo'rilar: o'zini tutish, ekologiya va tabiatni muhofaza qilish. Chikago universiteti matbuoti. 239-258 betlar. ISBN 978-0-226-51696-7.
  18. ^ a b v d e f g h men j k l m n o p Nowak, R. M. (1979). Shimoliy Amerika to'rtlamchi davri Kanis. 6. Kanzas universiteti Tabiiy tarix muzeyi monografiyasi. 1-154 betlar. ISBN 978-0-89338-007-6.
  19. ^ Ueyn, R. K. (1995). "Qizil bo'ri: saqlab qolish yoki saqlamaslik" (PDF). Makdonaldda D.; Handoca, L. (tahrir). Canid News. 3. IUCN / SSC mutaxassislar guruhining yangiliklari. 7-12 betlar.
  20. ^ Hoffmeyster, D. F. va V. V. Gudpaster. 1954. Huachuka tog'lari sutemizuvchilar, Arizona janubi-sharqida. Illinoysning biologik monografiyalari 24: 1— 152.
  21. ^ Lourens, B.; Bossert, W. H. (1967). "Ko'p belgilar tahlili Canis lupus, latranslar va niger". Amerika zoologi. 7 (2): 223–232. doi:10.1093 / icb / 7.2.223. JSTOR 3881428.
  22. ^ Lourens, B.; Bossert, W. H. (1975). "Shimoliy Amerika bilan aloqalar Kanis tanlangan populyatsiyalarning ko'p sonli belgilarini tahlil qilish orqali ko'rsatiladi ". Foxda M. V. (tahrir). Yovvoyi kanidlar: ularning sistematikasi, xulq-atvori ekologiyasi va evolyutsiyasi. Nyu-York: Van Nostran-Reyxold. ISBN 978-0-442-22430-1.
  23. ^ a b Martin, R. A .; Uebb, S. D. (1974). "Levi okrugi, Iblis Den faunasidan kech pleystotsen sutemizuvchilari". Vebda S. D. (tahrir). Florida shtatidagi pleystotsen sutemizuvchilar. Geynesvill: Florida shtatidagi universitet nashrlari. pp.114–145. ISBN 978-0-8130-0361-0.
  24. ^ Uebb, S. D. (1974). "Florida pleistosen sutemizuvchilar xronologiyasi". Florida shtatidagi pleystotsen sutemizuvchilar. Geynesvil: Florida shtatidagi universitet nashrlari. pp.5–31. ISBN 978-0-8130-0361-0.
  25. ^ Ueyn, R. K .; Jenks, S. M. (1991). "Mitokondriyal DNK tahlili xavf ostida bo'lgan qizil bo'rining (Canis rufus) keng miqyosda duragaylanishini qo'llab-quvvatlaydi". Tabiat. 351 (6327): 565–68. Bibcode:1991 yil Natur.351..565W. doi:10.1038 / 351565a0. S2CID 4364642.
  26. ^ "Canis lepophagus". Qoldiqlar. Olingan 11 iyul 2016.
  27. ^ a b v Kurten, B. (1974). "Koyotga o'xshash itlarning tarixi (Canidae, Mamalia)". Acta Zoologica Fennica (140): 1–38.
  28. ^ a b v d e Kurten, B .; Anderson, E. (1980). Shimoliy Amerikadagi pleystotsenli sutemizuvchilar. Nyu-York: Kolumbiya universiteti matbuoti. 1-42 betlar. ISBN 978-0-231-03733-4.
  29. ^ a b Johnston, S. S. (1938). "Cita Canyon-ning umurtqali hayvonlar turiga oid dastlabki hisobot va ajdodlarning qo'tog'ining tavsifi". Amerika Ilmiy jurnali. 5. 35 (209): 383–390. Bibcode:1938AmJS ... 35..383J. doi:10.2475 / ajs.s5-35.209.383.
  30. ^ a b v d e f g h men j k l m Tedford, Richard X.; Vang, Xiaoming; Teylor, Beril E. (2009). "Shimoliy Amerika fotoalbomlari filogenetik sistematikasi (Carnivora: Canidae)" (PDF). Amerika Tabiat Tarixi Muzeyining Axborotnomasi. 325: 1–218. doi:10.1206/574.1. hdl:2246/5999. S2CID 83594819.
  31. ^ a b Tedford, R.H. & Qiu, Z.-X., 1996 - Shanxi provinsiyasi Yushening pliosenidan yangi kanid turkumi - Vertebrata PalAsiatica 34 (1): 27-40
  32. ^ Anderson, E. (1996). "Kolorado shtatining Park okrugi, Porcupine g'oridagi Carnivora haqida dastlabki hisobot". Churcherda C. S. R.; Styuart, K. M.; Seymur, K. L. (tahrir). Kechki kaynozoy sutemizuvchilarining paleoekologiyasi va paleoenomitlari. Toronto: Toronto universiteti matbuoti. 259-282 betlar. ISBN 978-0-8020-0728-5.
  33. ^ Olbrayt, III, L. B. (2000). San-Timoteo Badlands biostratigrafiyasi va umurtqali hayvonlarning paleontologiyasi, Janubiy Kaliforniya. Kaliforniya universiteti Geologik fanlar bo'yicha nashrlar. 144. Kaliforniya universiteti matbuoti. 1-121 betlar. ISBN 978-0-520-91598-5.
  34. ^ "Canis edwardii". Qoldiqlar. Olingan 11 iyul 2016.
  35. ^ Berta, A. (1995). "Leysli Shell Pitsdan qazib olingan yirtqich hayvonlar, Florida shtatining Hillsboro okrugi". Xulbertda, kichik, R. C .; Morgan, G. S .; Veb, S. D. (tahrir). Leysli Shell chuqurlarining paleontologiyasi va geologiyasi, Florida shtatining dastlabki pleystotseni. 37. Florida Tabiat tarixi muzeyi xabarnomasi. 463-499 betlar.
  36. ^ "Canis ambrusteri". Qoldiqlar. Olingan 11 iyul 2016.
  37. ^ "Canis dirus". Qoldiqlar. Olingan 11 iyul 2016.
  38. ^ Kurten, B. 1984: Shimoliy Amerikadagi Rancholabree dahshatli bo'ri (Canis dirus Leidy) ning geografik farqlanishi. Genoways, H. H. & Dawson, M. R. (tahr.): To'rtlamchi umurtqali hayvonlarning paleontologiyasidagi hissalari: Jon E. Gilday xotirasiga bag'ishlangan jild, 218–227. Karnegi tabiiy tarix muzeyi 8
  39. ^ Geist, Valerius (1998). Dunyo kiyiklari: ularning rivojlanishi, o'zini tutishi va ekologiyasi (1 nashr). Stackpole Books, Mechanicsburg, Pensilvaniya. p. 10. ISBN 0811704963.
  40. ^ Geist, Valerius (1987). "Muzlik davridagi sutemizuvchilarning spetsifikatsiyasi to'g'risida, servitsid va kapridlarga alohida murojaat qilish kerak". Kanada Zoologiya jurnali. 65 (5): 1067–1084. doi:10.1139 / z87-171.
  41. ^ a b Gulet, G. D. (1993). Boshsuyagi vaqtincha va geografik o'zgarishini taqqoslash: yaqinroq, zamonaviy, golotsen va pleystotsenning so'nggi bo'ri bo'rilar (Canis lupus) va tanlangan Kanis (Magistrlik darajasi). Vinnipeg: Manitoba universiteti. 1–116 betlar.
  42. ^ Berta, A. (1988). Janubiy Amerikadagi yirik Canidae (Mammalia: Carnivora) ning to'rtlamchi davri evolyutsiyasi va biogeografiyasi.. 132. Kaliforniya universiteti Geologik fanlar bo'yicha nashrlar. 1-49 betlar. ISBN 978-0-520-09960-9.
  43. ^ Nowak, R. M .; Federoff, N. E. (2002). "Italiya bo'rining sistematik holati Canis lupus". Acta Theriol. 47 (3): 333–338. doi:10.1007 / BF03194151. S2CID 366077.
  44. ^ a b Canis occidentalis furlongi Merriam (1910), Univ. Kaliforniya Publ. Buqa. Depol. Geol., 5: 393
  45. ^ Stivenson, Mark (1978). "9-Dire bo'ri sistematikasi va o'zini tutishi". Xollda, Roberta L.; Sharp, Genri S. (tahrir). Bo'ri va odam: evolyutsiya parallel ravishda. Akademik matbuot. 183-4 betlar. ISBN 0123192501.
  46. ^ Canis milleri Merriam (1912) Mem. Univ. Kaliforniya, 1: 247
  47. ^ Merriam, J. C. (1912). "Rancho La Brea faunasi, II qism. Canidae". Kaliforniya universiteti xotiralari. 1: 217–273.
  48. ^ Aenotsyon milleri Merriam (1918) Univ. Kaliforniya Publ. Buqa. Deputat Geol., 10: 533.
  49. ^ a b Kurten, B. (1968). Evropaning pleystotsen sutemizuvchilari. London: Vaydenfeld va Nikolson. p. 317. ISBN 978-0-202-30953-8.
  50. ^ a b Tong; Xu, N .; Vang, X. (2012). "Xebeyning Yangyuan shahridagi quyi pleystotsen joyi bo'lgan Shanshenmiaozui shahridagi Canis chihliensis (Mammalia, Carnivora) ning yangi qoldiqlari". Vertebrata PalAsiatica. 50 (4): 335–360.
  51. ^ a b v d e f g h men Koler-Matznik, Janis (2002). "Itning kelib chiqishi qayta ko'rib chiqildi" (PDF). Anthrozoos: Odamlar va hayvonlar o'zaro aloqalarining ko'p tarmoqli jurnali. 15 (2): 98–118. doi:10.2752/089279302786992595. S2CID 14850835.
  52. ^ a b Olsen, S. J. (1985). Uy itining kelib chiqishi: tosh qoldiqlari. Univ. Arizona Press, Tuson, AQSh. 88-89 betlar.
  53. ^ Olsen SJ, Olsen J V, Qi G Q, 1982 yil. Canis lupus variabilis, Zhooudian'dan, uy iti, Canis tanışisning ajdodlar nasabida.. Vert PalAsia, 20 (3): 264–267 (xitoy tilida so'nggi sahifadagi referat ingliz tilida)
  54. ^ Lawrence, B. 1967. Erta uy itlari. Zeitschrift für Säugetierkunde 32: 44 - 59.
  55. ^ Pei, VC (1934). Choukoutien 1-joyidan yirtqich hayvon. Paleontologia Sinica, S seriyasi, jild. 8, 1-fasl. Xitoyning geologik xizmati, Pekin. 1-45 betlar.
  56. ^ Westgate, Jon A; Pirs, G. Uilyam; Preece, Shari J; Shveger, Charlz E; Morlan, Richard E; Pirs, Nikolas JG; Perkins, T. Uilyam (2017). "Kanadaning shimoliy Yukon o'lkasi, Old Crow daryosidagi ikkita joyda joylashgan O'rta va erta pleystotsen cho'kmalarining tefroxronologiyasi, magnetostratigrafiyasi va sutemizuvchilar faunasi". To'rtlamchi davr tadqiqotlari. 79: 75–85. doi:10.1016 / j.yqres.2012.09.003.
  57. ^ Bonifay, M.F., 1971. Yirtqichlar quaternaires du Sud-Est de la France. National d'Histoire naturelle Muséum, Parij, 334 p. (Mémoires du Muséum national d'Histoire naturelle, Sér. C - Sciences de la Terre (1950-1992); 21 (2)). [Frantsiyaning janubi-sharqidagi to'rtlamchi hayvonlar]
  58. ^ Argant A., 1991 - Yirtqich hayvonlarning quaternaires de Bourgogne. Hujjatlar du Laboratoire de Géologie de Lion, n ° 115, 301 p.
  59. ^ Boudadi-Maligne, Myriam (2012). "Une nouvelle sous-espèce de loup (Canis lupus maximus nov. Subsp.) Dans le Pléistocène supérieur d'Europe occidentale [G'arbiy Evropaning yuqori pleystotsenidan yangi bo'ri (Canis lupus maximus nov. Subsp.)". Comptes Rendus Palevol. 11 (7): 475. doi:10.1016 / j.crpv.2012.04.003.
  60. ^ Brugal, J. P .; Boudadi-Maligne, M. (2011). "Evropada to'rtinchi davr kichik va katta kanidlar: taksonomik holat va bioxronologik hissa". To'rtlamchi xalqaro. 243: 171–182. doi:10.1016 / j.quaint.2011.01.046.
  61. ^ Anzidei, Anna Paola; Bulgarelli, Graziya Mariya; Katalano, Paola; Cerilli, Evgenio; Gallotti, Rozaliya; Lemorini, Kristina; Milli, Salvatore; Palombo, Mariya Rita; Pantano, Valter; Santuchchi, Ernesto (2012). "O'rta pleystotsen davrida La Polledrara di Cekanibbio (markaziy Italiya) da olib borilayotgan izlanishlar, inson-fil munosabatlariga e'tibor qaratgan holda". To'rtlamchi xalqaro. 255: 171–187. doi:10.1016 / j.quaint.2011.06.005.
  62. ^ Lucenti, Saverio Bartolini; Buxsianidze, Mayya; Martines-Navarro, Bienvenido; Lordkipanidze, Devid (2020). "Dmanisidan bo'ri va kengaytirilgan haqiqat: sharh, natijalar va imkoniyatlar". Yer fanlaridagi chegaralar. 8: 131. Bibcode:2020FrEaS ... 8..131B. doi:10.3389 / feart.2020.00131. S2CID 216337804.
  63. ^ Talmann, Olaf; Perri, Angela R. (2018). "Itlarni xonakilashtirishning paleogenomik xulosalari". Lindqvistda C.; Rajora, O. (tahr.). Paleogenomika. Populyatsiya genomikasi. Springer, Xam. 273–306 betlar. doi:10.1007/13836_2018_27. ISBN 978-3-030-04752-8.
  64. ^ a b v Germonpré, Mietje; Sablin, Mixail V.; Stivens, Riannon E.; Xedjes, Robert E.M.; Xofreyter, Maykl; Stiller, Matias; Després, Viviane R. (2009). "Belgiya, Ukraina va Rossiyadagi paleolit ​​davri joylaridan qazib olingan itlar va bo'rilar: osteometriya, qadimiy DNK va barqaror izotoplar". Arxeologiya fanlari jurnali. 36 (2): 473–490. doi:10.1016 / j.jas.2008.09.033.
  65. ^ a b Sablin, Mixail V.; Xlopachev, Gennadiy A. (2002). "Eng qadimgi muzlik itlari: Eliseevichi I dan dalil" (PDF). Antropologik tadqiqotlar uchun Venner-Gren jamg'armasi. Olingan 10 yanvar 2015. Iqtibos jurnali talab qiladi | jurnal = (Yordam bering)
  66. ^ a b v d e f g h men j k l Talmann O .; Shapiro, B .; Cui, P .; Shuenemann, V. J.; Soyer, S. K .; Grinfild, D. L .; Germonpre, M. B.; Sablin, M. V .; Lopez-Jiraldez, F.; Domingo-Rura, X.; Napierala, X.; Uerpmann, H.-P.; Loponte, D. M.; Akosta, A. A .; Giemsch, L .; Shmitz, R. V.; Vortington, B.; Buikstra, J. E .; Drujkova, A .; Graphodatskiy, A. S.; Ovodov, N. D .; Uolberg, N .; Fridman, A. H.; Shvaytser, R. M .; Koepfli, K.- P .; Leonard, J. A .; Meyer, M .; Krause, J .; Paabo, S .; va boshq. (2013). "Qadimgi kanidlarning to'liq mitoxondriyal genomlari uy itlarining evropalik kelib chiqishini taklif qiladi". Ilm-fan. 342 (6160): 871–4. Bibcode:2013 yil ... 342..871T. doi:10.1126 / science.1243650. hdl:10261/88173. PMID 24233726. S2CID 1526260.
  67. ^ a b v Morey, Darsi F.; Jeger, Rujana (2015). "Paleolitik itlar: Nima uchun doimiy uy sharoitida saqlash kerak?". Arxeologiya fanlari jurnali: Hisobotlar. 3: 420–428. doi:10.1016 / j.jasrep.2015.06.031.
  68. ^ Ueyn, Robert K. (1986). "Uy va yovvoyi kanidlarning kranial morfologiyasi: morfologik o'zgarishga rivojlanishning ta'siri". Evolyutsiya. 40 (2): 243–261. doi:10.2307/2408805. JSTOR 2408805. PMID 28556057.
  69. ^ Dreyk, Ebbi Greys; Klingenberg, Kristian Piter (2010). "Uy itlarida bosh suyagi shaklining katta diapazoni: nomutanosiblik va modullik". Amerikalik tabiatshunos. 175 (3): 289–301. doi:10.1086/650372. PMID 20095825.
  70. ^ Roberts, Tarin; Makgrevi, Pol; Valenzuela, Maykl (2010). "Uy sharoitida itlarning miyasini odam tomonidan aylantirish va qayta tashkil etish". PLOS ONE. 5 (7): e11946. doi:10.1371 / journal.pone.0011946. PMC 2909913. PMID 20668685.
  71. ^ Dreyk, Ebbi Greys, "Kanidlarning bosh suyagi morfologiyasining rivojlanishi va rivojlanishi: morfologik integratsiya va geteroxroniyani tekshirish" (2004 yil 1 yanvar). Proquest-da mavjud doktorlik dissertatsiyalari. Qog'oz AAI3136721. havola
  72. ^ Drake, Abby Grace (2011). "It dogmasini tarqatish: Boshsuyagi shaklini 3D geometrik morfometrik tahlilidan foydalangan holda itlarda heteroxroniyani tekshirish". Evolyutsiya va rivojlanish. 13 (2): 204–213. doi:10.1111 / j.1525-142X.2011.00470.x. PMID 21410876.
  73. ^ a b v d e f g Perri, Anjela (2016). "Itning kiyimidagi bo'ri: boshlang'ich itni xonakilashtirish va pleystotsen bo'rilarining o'zgarishi". Arxeologiya fanlari jurnali. 68: 1–4. doi:10.1016 / j.jas.2016.02.003.
  74. ^ Rand, Devid M. (2001). "Mitokondriyal DNK bo'yicha selektsiya birliklari". Ekologiya va sistematikaning yillik sharhi. 32: 415–448. doi:10.1146 / annurev.ecolsys.32.081501.114109.
  75. ^ a b v d e f g h Robert K. Ueyn, Jennifer A. Leonard, Karles Vila (2006). "19-bob: Itlarni xonakilashtirishning genetik tahlili". Melinda A. Zederda (tahrir). Domestifikatsiyani hujjatlashtirish: yangi genetik va arxeologik paradigmalar. Kaliforniya universiteti matbuoti. 279–295 betlar. ISBN 978-0-520-24638-6.CS1 maint: mualliflar parametridan foydalanadi (havola)
  76. ^ Xofreyter, Maykl; Serre, Devid; Poinar, Xendrik N.; Kuch, Melani; Pääbo, Svante (2001). "Qadimgi DNK". Genetika haqidagi sharhlar. 2 (5): 353–9. doi:10.1038/35072071. PMID 11331901. S2CID 205016024.
  77. ^ Li, Ven-Xyun (1997). Molekulyar evolyutsiya. Sanderlend, Massachusets: Sinayer Associates. ISBN 978-0-87893-463-8.[sahifa kerak]
  78. ^ Pesol, G; Gissi, C; De Chiriko, A; Sakkone, C (1999). "Sutemizuvchilar mitoxondrial genomlarining nukleotid o'rnini bosish darajasi". Molekulyar evolyutsiya jurnali. 48 (4): 427–34. doi:10.1007 / pl00006487. PMID 10079281. S2CID 1665621.
  79. ^ Van, Qiu-Xong; Vu, Xua; Fujihara, Tsutomu; Fang, Sheng-Guo (2003). "Qaysi genetik marker qaysi tabiatni muhofaza qilish genetikasini chiqaradi?" (PDF). Elektroforez. 25 (14): 2165–2176. doi:10.1002 / elps.200305922. PMID 15274000.
  80. ^ Birky, C. Uilyam (2001). "Mitoxondriya va xloroplastlarda genlarning merosi: qonunlar, mexanizmlar va modellar". Genetika fanining yillik sharhi. 35: 125–48. doi:10.1146 / annurev.genet.35.102401.090231. PMID 11700280.
  81. ^ Avise, J. C. (1994). Molekulyar belgilar, tabiiy tarix va evolyutsiya. Nyu-York: Chapman va Xoll. ISBN 978-0-412-03781-8.
  82. ^ Avise, J. C. (2000). Filogeografiya: Turlarning tarixi va shakllanishi. Kembrij, Massachusets: Garvard universiteti matbuoti. ISBN 978-0-674-66638-2.
  83. ^ a b v d e f g Lindblad-Tox, Kerstin; Veyd, Kler M.; Mikkelsen, Tarjei S.; Karlsson, Elinor K.; Jaffe, Devid B.; Kamol, Maykl; Kelepçe, Mishel; Chang, Jan L.; Kulbokas, Edvard J.; Zodi, Maykl S.; Mauceli, Evan; Xie, Xiaohui; Brin, Metyu; Ueyn, Robert K.; Ostrander, Elaine A .; Ponting, Kris P.; Galibert, Frensis; Smit, Duglas R.; Dejong, Pieter J.; Kirkness, Even; Alvares, Pablo; Biagi, Tara; Brokman, Uilyam; Butler, Jonatan; Chin, Che-Vye; Kuk, aprel; Manjet, Jeyms; Deyli, Mark J.; Dekaprio, Devid; va boshq. (2005). "Uy itining genomlari ketma-ketligi, qiyosiy tahlili va haplotip tuzilishi". Tabiat. 438 (7069): 803–819. Bibcode:2005 yil Natura. 438..803L. doi:10.1038 / nature04338. PMID 16341006.
  84. ^ a b v d e f g h Koepfli, K.-P.; Pollinger, J .; Godinyo, R .; Robinson, J .; Lea, A .; Xendriks, S .; Shvaytser, R. M .; Talmann O .; Silva, P .; Fan, Z .; Yurchenko, A. A .; Dobrinin, P.; Makunin, A .; Keyxill, J. A .; Shapiro, B .; Alvares, F .; Brito, J. C .; Geffen, E .; Leonard, J. A .; Helgen, K. M .; Jonson, V. E.; O'Brayen, S. J .; Van Valkenburg, B.; Ueyn, R. K. (2015-08-17). "Genom bo'yicha dalillar Afrika va Evroosiyo Oltin Çakallari alohida turlar ekanligini tasdiqlaydi". Hozirgi biologiya. 25 (16): 2158–65. doi:10.1016 / j.cub.2015.06.060. PMID 26234211.
  85. ^ a b v d e Vila, C. (1997). "Uy itining ko'p va qadimiy kelib chiqishi". Ilm-fan. 276 (5319): 1687–9. doi:10.1126 / science.276.5319.1687. PMID 9180076.
  86. ^ a b v d Ueyn, R. va Ostrander, Eleyn A. (1999). "Uy itining kelib chiqishi, genetik xilma-xilligi va genom tuzilishi". BioEssays. 21 (3): 247–57. doi:10.1002 / (SICI) 1521-1878 (199903) 21: 3 <247 :: AID-BIES9> 3.0.CO; 2-Z. PMID 10333734.CS1 maint: mualliflar parametridan foydalanadi (havola)
  87. ^ Boyko, A. (2009). "Afrikalik qishloq itlarida populyatsiyaning murakkab tuzilishi va uning itlarni xonakilashtirish tarixidagi xulosalari". Milliy fanlar akademiyasi materiallari. 106 (33): 13903–13908. Bibcode:2009PNAS..10613903B. doi:10.1073 / pnas.0902129106. PMC 2728993. PMID 19666600.
  88. ^ Pang, J. (2009). "mtDNA ma'lumotlari Yantszi daryosining janubida, 16 300 yil oldin, ko'plab bo'rilarning kelib chiqishi haqida ma'lumot beradi". Molekulyar biologiya va evolyutsiya. 26 (12): 2849–64. doi:10.1093 / molbev / msp195. PMC 2775109. PMID 19723671.
  89. ^ a b Kronin, M. A .; Kanovalar, A .; Bannasch, D. L .; Oberbauer, A. M.; Medrano, J. F. (2014). "Janubi-Sharqiy Alyaskadagi bo'rilarning (Canis lupus) yagona nukleotid polimorfizmi (SNP) o'zgarishi va Shimoliy Amerikadagi bo'rilar, itlar va koyotlar bilan taqqoslash". Irsiyat jurnali. 106 (1): 26–36. doi:10.1093 / jhered / esu075. PMID 25429025.
  90. ^ Bardeleben, Kerolin; Mur, Rachael L.; Ueyn, Robert K. (2005). "Kanidalarning oltita yadro lokusiga asoslangan molekulyar filogeniyasi". Molekulyar filogenetik va evolyutsiyasi. 37 (3): 815–31. doi:10.1016 / j.ympev.2005.07.019. PMID 16213754.
  91. ^ Grey, Melissa M; Satter, Natan B; Ostrander, Eleyn A; Ueyn, Robert K (2010). "IGF1 kichik itning haplotipi Yaqin Sharq kulrang bo'rilaridan olingan". BMC biologiyasi. 8: 16. doi:10.1186/1741-7007-8-16. PMC 2837629. PMID 20181231.
  92. ^ Ueyn, Robert K.; Vonxoldt, Bridgett M. (2012). "Itlarni xonakilashtirish evolyutsion genomikasi". Sutemizuvchilar genomi. 23 (1–2): 3–18. doi:10.1007 / s00335-011-9386-7. PMID 22270221. S2CID 16003335.
  93. ^ Mex, L. Devid; Barber-meyer, Shannon (2017). "Uy itlari va inson evolyutsiyasini baholashda bo'rilar paydo bo'lishining noto'g'ri vaqtidan foydalanish" (PDF). Ilm-fan. 352: 1228–31. Bibcode:2016Sci ... 352.1228F. doi:10.1126 / science.aaf3161. PMID 27257259. S2CID 206647686.
  94. ^ Frants, L. A. F.; Mullin, V. E .; Pionnier-Kapitan, M.; Lebrasör, O .; Ollivye, M.; Perri, A .; Linderxolm, A .; Mattiangeli, V .; Teasdeyl, M. D .; Dimopulos, E. A .; Tresset, A .; Duffraisse, M.; Makkormik, F.; Bartosevich, L .; Gal, E .; Nyerges, E. A .; Sablin, M. V .; Brexard, S .; Mashkur, M .; b l Esku, A.; Jillet, B .; Xyuz, S .; Chassaing, O .; Xitte, C .; Vigne, J.-D .; Dobni, K .; Xanni, C .; Bredli, D. G.; Larson, G. (2016). "Genomik va arxeologik dalillar uy itlarining ikki tomonlama kelib chiqishini ko'rsatmoqda". Ilm-fan. 352 (6290): 1228–31. Bibcode:2016Sci ... 352.1228F. doi:10.1126 / science.aaf3161. PMID 27257259. S2CID 206647686.
  95. ^ a b Ueyn, R. (1993). "Itlar oilasining molekulyar evolyutsiyasi". Genetika tendentsiyalari. 9 (6): 218–24. doi:10.1016 / 0168-9525 (93) 90122-X. PMID 8337763.
  96. ^ Ueyn, R. K .; Benvenista, R. E.; Yanczevski, D. N .; O'Brayen, S. J. (1989). "Yirtqich hayvonning 17-molekulyar va biomexanik evolyutsiyasi". Gittlemanda J. L. (tahrir). Yirtqichlarning xatti-harakatlari, ekologiya va evolyutsiyasi. Springer. 477-478 betlar. ISBN 9780412343605.
  97. ^ Vila, C .; Leonard, J. (2012). "1-kanidli filogeniya va uy itining kelib chiqishi". Ostranderda E. A .; Ruvinski, A. (tahrir). Itning genetikasi (2 nashr). CABI. p. 3. ISBN 9781845939403.
  98. ^ Vurster-Xill, D. X.; Centerwall, W. R. (1982). "Kanidalar, mustelidalar, gigena va felidlarda xromosomalarni tasma naqshlarining o'zaro aloqalari". Sitogenetika va hujayra genetikasi. 34 (1–2): 178–192. doi:10.1159/000131806. PMID 7151489.
  99. ^ Gottelli, D.; Sillero-Zubiri, S.; Applebaum, G.D .; Roy, M. S .; Girman, D. J .; Garsiya-Moreno, J .; Ostrander, E. A .; Ueyn, R. K. (1994). "Eng xavfli qonidning molekulyar genetikasi: Efiopiya bo'ri Canis simensis". Molekulyar ekologiya. 3 (4): 301–12. doi:10.1111 / j.1365-294X.1994.tb00070.x. PMID 7921357.
  100. ^ Pokok, R. I. (1941). Britaniya Hindistonining hayvonot dunyosi: sutemizuvchilar. 2. Teylor va Frensis. 146–163 betlar.
  101. ^ Girman, D. J .; Vila, C .; Geffen, E .; Kril, S .; Mills, M. G. L .; McNutt, J. W.; Ginsberg, J .; Kat, P. V.; Mamiya, K. H .; Ueyn, R. K. (2001). "Afrikaning yovvoyi itidagi populyatsiya bo'linishi, genlar oqimi va genetik o'zgaruvchanlik naqshlari (Lycaon pictus)". Molekulyar ekologiya. 10 (7): 1703–23. doi:10.1046 / j.0962-1083.2001.01302.x. PMID 11472538.
  102. ^ Ueyn, R.K .; Meyer, A .; Lehman, N .; van Valkenburg, B.; Kat, PW .; Fuller, T.K .; Girman, D .; O'Brayen, S.J. (1990). "Sharqiy Afrikaning qora tanli shoqollari populyatsiyasidagi mitoxondriyal DNK genotiplari orasida katta ketma-ketlikdagi farq" (PDF). Amerika Qo'shma Shtatlari Milliy Fanlar Akademiyasi materiallari. 87 (5): 1772–1776. Bibcode:1990PNAS ... 87.1772W. doi:10.1073 / pnas.87.5.1772. PMC 53565. PMID 1968637. Olingan 21 dekabr 2011.
  103. ^ Juliane Kaminski va Sarah Marshall-Pescini (2014). "1-bob - Ijtimoiy it: tarix va evolyutsiya". Ijtimoiy it: o'zini tutish va bilish. Elsevier. p. 4. ISBN 978-0-12407-931-1.CS1 maint: mualliflar parametridan foydalanadi (havola)
  104. ^ a b v Gopalakrishnan, Shyam; Sinding, Mikkel-Xolger S.; Ramos-Madrigal, Jazmin; Niman, Yonas; Samaniego Kastruta, Xose A.; Viyera, Filipe G.; Karo, nasroniy; Montero, Mark de Manuel; Kuderna, Lukas; Serres, Aitor; Gonsales-Basallot, Vektor Manuel; Lyu, Yan-Xu; Vang, Guo-Dong; Marques-Bonet, Tomas; Mirarab, Siavash; Fernandes, Karlos; Gaubert, Filipp; Koepfli, Klaus-Piter; Budd, Jeyn; Rueness, Eli Knispel; Xayde-Yorgensen, Mads Piter; Petersen, Bent; Sicheritz-Ponten, Tomas; Baxman, Luts; Wiig, Ostein; Xansen, Anders J.; Gilbert, M. Tomas P. (2018). "Turlararo genlar oqimi Genis evolyutsiyasini shakllantirdi". Hozirgi biologiya. 28 (21): 3441-3449.e5. doi:10.1016 / j.cub.2018.08.041. PMC 6224481. PMID 30344120.
  105. ^ a b v d e f Ersmark, Erik; Klutsch, Cornelya F. C.; Chan, Yvonne L.; Sinding, Mikkel-Xolger S.; Feyn, Stiven R.; Illarionova, Natalya A.; Oskarsson, Mattias; Ulen, Matias; Chjan, Ya-Ping; Dalen, Sevgi; Savolainen, Piter (2016). "O'tmishdan hozirgi kungacha: mitoxondriyal nazorat mintaqasiga asoslangan bo'ri fileografiyasi va demografik tarix". Ekologiya va evolyutsiyadagi chegara. 4. doi:10.3389 / fevo.2016.00134.
  106. ^ a b Verxen, Jeraldin; Senn, Xelen; Kaden, Jennifer; Joshi, Djoti; Bxatray, Susmita; Kusi, Naresh; Sillero-Zubiri, Klaudio; Makdonald, Devid V. (2017). "Qadimgi Himoloy bo'risi uchun filogenetik dalillar: G'arbiy Nepaldan genetik namuna olish asosida uning taksonomik holatini aniqlashtirishga". Qirollik jamiyati ochiq fan. 4 (6): 170186. Bibcode:2017RSOS .... 470186W. doi:10.1098 / rsos.170186. PMC 5493914. PMID 28680672.
  107. ^ a b Verxen, Jeraldin; Senn, Xelen; G'azzoliy, Muhammad; Karmacharyo, Dibesh; Sherchan, Adarsh ​​Man; Joshi, Djoti; Kusi, Naresh; Lopes-Bao, Xose Vinsente; Rozen, Tanya; Kachel, Shennon; Sillero-Zubiri, Klaudio; Makdonald, Devid V. (2018). "Himoloy bo'rining yuqori balandliklarga noyob genetik moslashuvi va tabiatni muhofaza qilish uchun oqibatlari". Global ekologiya va tabiatni muhofaza qilish. 16: e00455. doi:10.1016 / j.gecco.2018.e00455.
  108. ^ a b Aggarval, R. K .; Kivisild, T .; Ramadevi, J .; Singh, L. (2007). "Mitokondriyal DNKni kodlash mintaqasi ketma-ketligi ikki hind bo'ri turining filogenetik farqlanishini qo'llab-quvvatlaydi". Zoologik sistematika va evolyutsion tadqiqotlar jurnali. 45 (2): 163–172. doi:10.1111 / j.1439-0469.2006.00400.x.
  109. ^ a b Sharma, D. K .; Maldonado, J. E .; Jala, Y. V .; Fleischer, R. C. (2004). "Hindistondagi qadimgi bo'ri nasablari". Qirollik jamiyati materiallari B: Biologiya fanlari. 271 (Qo'shimcha 3): S1-S4. doi:10.1098 / rsbl.2003.0071. PMC 1809981. PMID 15101402.
  110. ^ a b v d e f g h men j Leonard, J. A .; Vila, C; Tulki-Dobbs, K; Koch, P. L .; Ueyn, R. K .; Van Valkenburg, B (2007). "Megafaunalning yo'q bo'lib ketishi va ixtisoslashgan bo'ri ekomorfining yo'q bo'lib ketishi" (PDF). Hozirgi biologiya. 17 (13): 1146–50. doi:10.1016 / j.cub.2007.05.072. PMID 17583509. S2CID 14039133.
  111. ^ a b v d e f g h men j k l m n o p q r Uchuvchi, M.; va boshq. (2010). "Evropada kul bo'rilarning fileografik tarixi". BMC evolyutsion biologiyasi. 10: 104. doi:10.1186/1471-2148-10-104. PMC 2873414. PMID 20409299.
  112. ^ Rueness, Eli Knispel; Asmixr, Mariya Gulbrandsen; Sillero-Zubiri, Klaudio; Makdonald, Devid V; Bekele, Afework; Atikem, Anagav; Stenset, Nils Chr (2011). "Sirli afrikalik bo'ri: Canis aureus lupaster Oltin Shoqol emas va Misr uchun yuqumli emas". PLOS ONE. 6 (1): e16385. Bibcode:2011PLoSO ... 616385R. doi:10.1371 / journal.pone.0016385. PMC 3027653. PMID 21298107.
  113. ^ a b v d Miklosi, Adam (2015). Itlarning harakati, evolyutsiyasi va idrok. Oksford biologiyasi (2 nashr). Oksford universiteti matbuoti. 106-107 betlar. ISBN 978-0199545667.
  114. ^ a b v Loog, Liisa; Talmann, Olaf; Sinding, Mikkel, Xolger S.; Schuememann, Verena J.; Perri, Anjela; Germonpré, Mietje; Bocherens, Herve; Witt, Kelsi E.; Samaniego Kastruta, Xose A.; Velasko, Marsela S.; Lundstrom, Inge K.C.; Uels, Natan; Sonet, Gontran; Frants, Loran; Shreder, Xann; Budd, Jeyn; Ximenes, Elodi, Laure; Fedorov, Sergey; Gasparyan, Boris; Kandel, Endryu V.; Lasničková ‐ Galetova, Martina; Napierala, Xann; Uerpmann, Xans Piter; Nikolskiy, Pavel A.; Pavlova, Elena Y.; Pitulko, Vladimir V.; Xertsig, Karl Xeynts; Malhi, Ripan S.; Willerslev, Eske; va boshq. (2019). "Qadimgi DNK zamonaviy bo'rilar o'zlarining kelib chiqishlarini Beringiyadan pleystotsenning kengayishi bilan izohlashadi". Molekulyar ekologiya. 29 (9): 1596–1610. doi:10.1111 / mec.15329. PMC 7317801. PMID 31840921.
  115. ^ a b v d e f g h men j k l Koblmyuller, Stefan; Vila, Karles; Lorente-Galdos, Belen; Dabad, Mark; Ramires, Oskar; Marques-Bonet, Tomas; Ueyn, Robert K.; Leonard, Jennifer A. (2016). "Butun mitoxondriyal genomlar kulrang bo'rilarning (Canis lupus) qadimgi qit'alararo tarqalishini yoritadi". Biogeografiya jurnali. 43 (9): 1728–1738. doi:10.1111 / jbi.12765. hdl:10261/153364.
  116. ^ a b Verxen, Jeraldin; Senn, Xelen; G'azzoliy, Muhammad; Karmacharyo, Dibesh; Sherchan, Adarsh ​​Man; Joshi, Djoti; Kusi, Naresh; Lopes-Bao, Xose Vinsente; Rozen, Tanya; Kachel, Shennon; Sillero-Zubiri, Klaudio; Makdonald, Devid V. (2018). "Himoloy bo'rining yuqori balandliklarga noyob genetik moslashuvi va tabiatni muhofaza qilish uchun oqibatlari". Global ekologiya va tabiatni muhofaza qilish. 16: e00455. doi:10.1016 / j.gecco.2018.e00455.
  117. ^ a b v d e Shvaytser, Rena M.; Ueyn, Robert K. (2020). "Bo'ri tarixi sirlarini yorituvchi". Molekulyar ekologiya. 29 (9): 1589–1591. doi:10.1111 / MEC.15438. PMID 32286714.
  118. ^ Vang, Guo-Dong; Chjan, Min; Vang, Xuan; Yang, Melinda A.; Cao, Peng; Lyu, Fen; Lu, Xen; Feng, Syaotyan; Skoglund, Pontus; Vang, Lu; Fu, Qiaomey; Chjan, Ya-Ping (2019). "Genomik yondashuvlar Janubiy Xitoyda kul bo'rilarning endemik subpulyatsiyasini ochib beradi". iScience. 20: 110–118. doi:10.1016 / j.isci.2019.09.008. PMC 6817678. PMID 31563851.
  119. ^ Koks, C. B .; Mur, Piter D.; Ladla, Richard (2016). Biogeografiya: ekologik va evolyutsion yondashuv. Villi-Blekvell. p. 106. ISBN 978-1-118-96858-1.
  120. ^ Tahririyat kengashi (2012). Ilm-fanning qisqacha lug'ati. Nyu-Dehli: V&S nashriyotlari. p. 137. ISBN 978-93-81588-64-2.
  121. ^ a b Arora, Devender; Singx, Ajeet; Sharma, Vikrant; Bhaduriya, Harvendra Singx; Patel, Ram Bahodir (2015). "Hgs Db: Migratsiya va molekulyar xavfni baholashni tushunadigan Haplogroups ma'lumotlar bazasi ". Bioinformatsiya. 11 (6): 272–5. doi:10.6026/97320630011272. PMC 4512000. PMID 26229286.
  122. ^ "Genetika lug'ati". Xalqaro genetik nasabnomalar jamiyati. 2015 yil. Olingan 22 iyul 2016.
  123. ^ a b v Randi, Ettore (2011). "Evropada Canis lupus bo'rilarining genetikasi va saqlanishi". Sutemizuvchilarni ko'rib chiqish. 41 (2): 99–111. doi:10.1111 / j.1365-2907.2010.00176.x.
  124. ^ Tamm, E .; Kivisild, T .; Reyda, M.; Metspalu, M .; Smit, D. G.; Mulligan, C. J .; Bravi, C. M.; Rikkards, O .; Martines-Labarga, K.; Xusnutdinova, E. K .; Fedorova, S. A .; Golubenko, M. V.; Stepanov, V. A .; Gubina, M. A .; Jadanov, S. I .; Ossipova, L. P.; Damba, L .; Voevoda, M. I .; Dipierri, J. E .; Villems, R .; Malhi, R. S. (2007). Karter, Di (tahrir). "Beringian to'xtashi va mahalliy amerikalik asoschilarning tarqalishi". PLOS ONE. 2 (9): e829. Bibcode:2007PLoSO ... 2..829T. doi:10.1371 / journal.pone.0000829. PMC 1952074. PMID 17786201.
  125. ^ a b Xofreyter, Maykl; Barnes, Yan (2010). "Yo'qotilgan xilma-xillik: barcha Xolarktikadagi yirik sutemizuvchilar turlari shunchaki populyatsiyalarga tegishli emasmi?. BMC biologiyasi. 8: 46. doi:10.1186/1741-7007-8-46. PMC 2858106. PMID 20409351.
  126. ^ Germonpré, Mietje; Sablin, Mixail V.; Despres, Vivian; Xofreyter, Maykl; Lasničková-Galetova, Martina; Stivens, Riannon E.; Stiller, Matias (2013). "Paleolitik itlar va bo'rining erta uyg'unlashuvi: Krokford va Kuzminning izohlariga javob (2012)". Arxeologiya fanlari jurnali. 40: 786–792. doi:10.1016 / j.jas.2012.06.016.
  127. ^ a b v Hofreiter, Maykl (2007). "Pleystotsenni yo'q qilish: tirik qolganlarni ta'qib qilish". Hozirgi biologiya. 17 (15): R609–11. doi:10.1016 / j.cub.2007.06.031. PMID 17686436.
  128. ^ a b v Uchuvchi, M; Greko, C; Vonxoldt, B M; Jędrzejewska, B; Randi, E; Ydrzejevskiy, V; Sidorovich, V E; Ostrander, E A; Ueyn, R K (2013). "Evropadagi bo'rilarda genetik miqyosdagi aholi uchun to'siqlar va turli xil selektsiya". Irsiyat. 112 (4): 428–42. doi:10.1038 / hdy.2013.122. PMC 3966127. PMID 24346500.
  129. ^ Vekvort, Bayron V.; Talbot, Sandra; Sage, Jorj K.; Shaxs, Devid K ​​.; Kuk, Jozef (2005). "Shimoliy Amerika bo'rilari orasida mustaqil qirg'oq va qit'a tarixlari uchun signal". Molekulyar ekologiya. 14 (4): 917–31. doi:10.1111 / j.1365-294X.2005.02461.x. PMID 15773925.
  130. ^ Vekvort, Bayron V.; Talbot, Sandra L.; Kuk, Jozef A. (2010). "Tinch okeanining shimoli-g'arbiy qismida bo'rilar (Canis lupus) filogeografiyasi". Mammalogy jurnali. 91 (2): 363–375. doi:10.1644 / 09-MAMM-A-036.1.
  131. ^ Vekvort, Bayron V.; Douson, Natali G.; Talbot, Sandra L.; Flamme, Melani J.; Kuk, Jozef A. (2011). "Sohilga borish: Buyuk Britaniyaning Kolumbiyasi va Janubi-Sharqiy Alyaskaning bo'rilari (Canis lupus) o'rtasidagi umumiy evolyutsion tarix". PLOS ONE. 6 (5): e19582. Bibcode:2011PLoSO ... 619582W. doi:10.1371 / journal.pone.0019582. PMC 3087762. PMID 21573241.
  132. ^ a b Vonxoldt, B. M.; Keyxill, J. A .; Fan, Z .; Gronau, I .; Robinson, J .; Pollinger, J. P .; Shapiro, B .; Devor, J .; Ueyn, R. K. (2016). "Butun genomlar ketma-ketligini tahlil qilish shuni ko'rsatadiki, Shimoliy Amerika bo'rilarining ikkita endemik turi - koyot va kul bo'rining aralashmalari". Ilmiy yutuqlar. 2 (7): e1501714. Bibcode:2016SciA .... 2E1714V. doi:10.1126 / sciadv.1501714. PMC 5919777. PMID 29713682.
  133. ^ a b v d Matsumura, Shuichi; Inoshima, Yasuo; Ishiguro, Naotaka (2014). "Mitokondriyal genomni tahlil qilish orqali yo'qolgan bo'ri nasllarining kolonizatsiya tarixini tiklash". Molekulyar filogenetik va evolyutsiyasi. 80: 105–12. doi:10.1016 / j.ympev.2014.08.004. PMID 25132126.
  134. ^ Abe, H. (1999). "Yaponiya sutemizuvchilarining xilma-xilligi va saqlanishi". Yokohatada Y.; Nakamura, S. (tahrir). Yapon hasharotchi biologiyasining so'nggi yutuqlari. Shōbara: Hiba tabiiy tarix jamiyati. 89-104 betlar.
  135. ^ Ishiguro, Naotaka; Inoshima, Yasuo; Shigehara, Nobuo; Ichikava, Xideo; Kato, Masaru (2010). "Yaponiyaning Xokkaydo orolidan yo'q bo'lib ketgan Ezo bo'ri (Canis Lupus Hattai) ning osteologik va genetik tahlili". Zoologiya fanlari. 27 (4): 320–4. doi:10.2108 / zsj.27.320. PMID 20377350. S2CID 11569628.
  136. ^ Walker, Bret (2008). Yaponiyaning yo'qolgan bo'rilari. Vashington universiteti matbuoti. p. 42.
  137. ^ a b v Ishiguro, Naotaka; Inoshima, Yasuo; Shigehara, Nobuo (2009). "Yaponiya bo'rining mitoxondriyal DNK tahlili (Canis lupus hodophilax Temminck, 1839) va vakili bo'ri va uy itlarining gaplotiplari bilan taqqoslash ". Zoologiya fanlari. 26 (11): 765–70. doi:10.2108 / zsj.26.765. PMID 19877836. S2CID 27005517.
  138. ^ a b Pardi, Melissa I.; Smit, Felisa A. (2016). "Pleistosen megafaunasining yo'q bo'lish terminaliga kanidlarning biotik reaktsiyalari". Ekografiya. 39 (2): 141–151. doi:10.1111 / ecog.01596.
  139. ^ Witt, Kelsi E.; Judd, Ketlin; Oshxona, Endryu; Grier, Kolin; Kohler, Timoti A.; Ortman, Skott G.; Kemp, Brayan M.; Malhi, Ripan S. (2015). "Amerikaning qadimgi itlarining DNK tahlili: mumkin bo'lgan asosli haplotiplarni aniqlash va populyatsiyalar tarixini tiklash". Inson evolyutsiyasi jurnali. 79: 105–18. doi:10.1016 / j.jhevol.2014.10.012. PMID 25532803.
  140. ^ Bo'ri va odam. Parallel ravishda evolyutsiya. R.L.Xoll va X.S. O'tkir. Academic Press, Nyu-York, 1978 yil
  141. ^ a b v Leonard, Jennifer A.; Vila, Karles; Ueyn, Robert K. (2004). "Tez iz: Yo'qotilgan meros: AQShning qirg'in qilingan bo'rilarining genetik o'zgaruvchanligi va ularning soni (Canis lupus)". Molekulyar ekologiya. 14 (1): 9–17. doi:10.1111 / j.1365-294X.2004.02389.x. PMID 15643947.
  142. ^ Morell, Virjiniya (2016). "Aslida bo'ri bo'lmagan bo'rini qanday qutqarasan?". Ilm-fan. 353 (6300). doi:10.1126 / science.aag0699.
  143. ^ Vila, C .; Amorim, I. R .; Leonard, J. A .; Posada, D .; Kastroviejo, J .; Petrucci-Fonseca, F.; Crandall, K. A .; Ellegren, X.; Ueyn, R. K. (1999). "Mitokondriyal DNK filogeografiyasi va kulrang bo'ri Canis lupus populyatsiyasi tarixi" (PDF). Molekulyar ekologiya. 8 (12): 2089–103. doi:10.1046 / j.1365-294x.1999.00825.x. hdl:10261/58565. PMID 10632860.
  144. ^ a b Larson G, Bredli DG (2014). "It yillarida bu qancha? Itlar populyatsiyasi genomikasining paydo bo'lishi". PLOS Genetika. 10 (1): e1004093. doi:10.1371 / journal.pgen.1004093. PMC 3894154. PMID 24453989.CS1 maint: mualliflar parametridan foydalanadi (havola)
  145. ^ Morey, Darsi F.; Jeger, Rujana (2016). "Bo'ridan itga: Pleistosenning so'nggi ekologik dinamikasi, o'zgargan trofik strategiyalar va inson tushunchalarini o'zgartirish". Tarixiy biologiya. 29 (7): 1–9. doi:10.1080/08912963.2016.1262854. S2CID 90588969.
  146. ^ a b Van Valkenburg, Bler; Xeyvord, Metyu V.; Ripple, Uilyam J.; Meloro, Karlo; Rot, V. Luiza (2016). "Katta quruqlikdagi yirtqich hayvonlarning pleystotsen ekotizimlariga ta'siri". Milliy fanlar akademiyasi materiallari. 113 (4): 862–867. doi:10.1073 / pnas.1502554112. PMC 4743832. PMID 26504224.
  147. ^ Shipman, P. (2015). Bosqinchilar: Odamlar va ularning itlari neandertallarni yo'q qilishga qanday haydashgan. Garvard universiteti matbuoti. ISBN 978-0-674-73676-4.
  148. ^ Kagan, Aleks; Blass, Torsten (2016). "Itlarni xonakilashtirish paytida taxminiy ravishda genomik variantlarni aniqlash". BMC evolyutsion biologiyasi. 16: 10. doi:10.1186 / s12862-015-0579-7. PMC 4710014. PMID 26754411.
  149. ^ Song, Jiao-Jiao; Vang, Ven-Chji; Otecko, Nyuton O.; Peng, Min-Sheng; Chjan, Ya-Ping (2016). "Canis lupus mitoxondrial DNK haplogroup daraxtlari o'rtasidagi ziddiyatlarni yarashtirish". Xalqaro sud ekspertizasi: Genetika. 23: 83–85. doi:10.1016 / j.fsigen.2016.03.008. PMID 27042801.
  150. ^ Uchuvchi, Malgorzata; Greko, Klaudiya; Vonxoldt, Bridjet M; Randi, Ettore; Ydrzejevskiy, Vlodzimez; Sidorovich, Vadim E; Konopinskiy, Masij K; Ostrander, Eleyn A; Ueyn, Robert K (2018). "Evrosiyo bo'ylab kul bo'rilar va uy itlari orasida keng tarqalgan, uzoq muddatli aralashma va uning duragaylarning saqlanish holatiga ta'siri". Evolyutsion dasturlar. 11 (5): 662–680. doi:10.1111 / eva.12595. PMC 5978975. PMID 29875809.
  151. ^ Greig, Karen; Bookock, Jeyms; Prost, Stefan; Xorsburg, K. Ann; Jakomb, Kris; Uolter, Richard; Matisoo-Smit, Yelizaveta (2015). "Yangi Zelandiyaning birinchi itlarining to'liq mitoxondriyali genomlari". PLOS ONE. 10 (10): e0138536. Bibcode:2015PLoSO..1038536G. doi:10.1371 / journal.pone.0138536. PMC 4596854. PMID 26444283.
  152. ^ Savolainen, P .; Leytner, T .; Uilton, A. N .; Matisoo-Smit, E .; Lundeberg, J. (2004). "Mitoxondriyal DNKni o'rganish natijasida olingan avstraliyalik dingoning kelib chiqishining batafsil surati". Milliy fanlar akademiyasi materiallari. 101 (33): 12387–12390. Bibcode:2004 yil PNAS..10112387S. doi:10.1073 / pnas.0401814101. PMC 514485. PMID 15299143.
  153. ^ a b Oskarsson, M. C. R.; Klutsch, C. F. C .; Boonyaprakob, U .; Uilton, A .; Tanabe, Y .; Savolainen, P. (2011). "Mitokondriyal DNK ma'lumotlari avstraliyalik dingolar va polineziyalik uy itlari uchun Janubiy-Sharqiy Osiyo orqali kirib borishini ko'rsatadi". Qirollik jamiyati materiallari B: Biologiya fanlari. 279 (1730): 967–974. doi:10.1098 / rspb.2011.1395 yil. PMC 3259930. PMID 21900326.
  154. ^ Ardalan, Arman; Oskarsson, Mattias; Natanaelsson, nasroniy; Uilton, Alan N .; Ahmadian, Afshin; Savolainen, Piter (2012). "Avstraliyalik dingoning tor genetik asoslari otalarning ajdodlarini tahlil qilish orqali tasdiqlangan". Genetika. 140 (1–3): 65–73. doi:10.1007 / s10709-012-9658-5. PMC 3386486. PMID 22618967.
  155. ^ a b Gross, Maykl (2015). - Itlar ham bizga o'xshaydimi?. Hozirgi biologiya. 25 (17): R733-6. doi:10.1016 / j.cub.2015.08.018. PMID 26561653.
  156. ^ "Qadimgi bo'ri genomi itning tongini orqaga qaytaradi". Tabiat. 2015.
  157. ^ Machugh, David E.; Larson, Greger; Orlando, Lyudovich (2016). "O'tmishni tamirlash: qadimgi DNK va hayvonlarni yo'q qilishni o'rganish". Hayvonlarning biologik fanlarini yillik sharhi. 5: 329–351. doi:10.1146 / annurev-animal-022516-022747. PMID 27813680.
  158. ^ Ersmark, E (2016). "So'nggi to'rtlamchi davrda go'shtxo'rlar sonining katta aylanishi va ekologik o'zgarishlar". Stokgolm universiteti. J. Leonard va L. Dalenlar ostida doktorlik dissertatsiyasi
  159. ^ a b v Lee, E. (2015). "Sibir Arktikasidan eng qadimgi kanid turlarining qadimgi DNK tahlili va uy itiga genetik hissa qo'shish". PLOS ONE. 10 (5): e0125759. Bibcode:2015PLoSO..1025759L. doi:10.1371 / journal.pone.0125759. PMC 4446326. PMID 26018528.
  160. ^ Irizarri, Kristofer J. L.; Vasconcelos, Elton J. R. (2018). "Kognitiv, ijtimoiy, xulq-atvori va kasallik belgilari kontekstida itlar populyatsiyasi mahalliylashtirish va naslchilik rivojlanish genomikasi". Rajorada O. (tahrir). Populyatsiya genomikasi. 755-806 betlar. doi:10.1007/13836_2018_43. ISBN 978-3-030-04587-6.
  161. ^ Boxerens, Erve; Drucker, Dorothée G.; Bonjan, Dominik; Bridault, Enn; Konard, Nikolas J.; Kupilyard, Kristof; Germonpré, Mietje; Xenisen, Markus; Myunzel, Syuzanna S.; Napierala, Xann; Patou-Meti, Merilen; Stefan, Elisabet; Uerpmann, Xans-Piter; Zigler, Reynxard (2011). "Shimoliy-G'arbiy Evropadagi g'or sherining (Panthera spelaea) parhez ekologiyasining izotopik dalillari: o'lja tanlovi, raqobat va yo'q bo'lib ketishning oqibatlari". To'rtlamchi xalqaro. 245 (2): 249–261. Bibcode:2011QuInt.245..249B. doi:10.1016 / j.quaint.2011.02.023.
  162. ^ Yeakel, J. D .; Gimaraes, P. R .; Bocherens, H.; Koch, P. L. (2013). "Ob-havoning o'zgarishi pleystotsenli oziq-ovqat tarmoqlari tuzilishiga mamont dashtida". Qirollik jamiyati materiallari B: Biologiya fanlari. 280 (1762): 20130239. doi:10.1098 / rspb.2013.0239. PMC 3673045. PMID 23658198.
  163. ^ a b Bocherens, Herve (2015). "Mamont dashtida yirik yirtqich hayvonlarning paleoekologiyasini izotopik kuzatish". To'rtlamchi davrga oid ilmiy sharhlar. 117: 42–71. doi:10.1016 / j.quascirev.2015.03.018.
  164. ^ Dinnis, R .; Pate, A .; Reynolds, N. (2016). "O'rta va kechki dengiz izotopi Buyuk Britaniyaning 3-bosqich sutemizuvchilar faunasi: yangi ko'rinish". Geologlar assotsiatsiyasi materiallari. 127 (4): 435–444. doi:10.1016 / j.pgeola.2016.05.002.
  165. ^ Boitani, L. (2003). "Bo'rilarni saqlash va tiklash" Bo'rilar: Xulq-atvor ekologiyasi va muhofazasi, eds L.D. Mex va L. Boitani (Chikago, IL: Chicago University Press), 317–340. doi:10.7208 / chicago / 9780226516981.001.0001
  166. ^ Leonard, Jennifer A.; Vila, Karles; Ueyn, Robert K. (2004). "FAST TRACK: Yo'qotilgan meros: AQShning qirg'in qilingan bo'ri (Canis lupus) ning genetik o'zgaruvchanligi va populyatsiyasi soni". Molekulyar ekologiya. 14 (1): 9–17. doi:10.1111 / j.1365-294X.2004.02389.x. PMID 15643947.
  167. ^ Vonxoldt, Bridjet M.; Pollinger, Jon P.; Graf, Dent A .; Nounz, Jeyms S.; Boyko, Adam R.; Parker, Xeydi; Geffen, Eli; Uchuvchi, Malgorzata; Jedrzejevski, Vlodzimeerz; Jedrzejevska, Bogumila; Sidorovich, Vadim; Greko, Klaudiya; Randi, Ettore; Musiani, Marko; Kays, Roland; Bustamante, Karlos D.; Ostrander, Elaine A .; Novembre, Jon; Ueyn, Robert K. (2011). "Jumboqli bo'riga o'xshash kanidlarning evolyutsion tarixiga genom nuqtai nazari". Genom tadqiqotlari. 21 (8): 1294–305. doi:10.1101 / gr.116301.110. PMC 3149496. PMID 21566151.
  168. ^ Vonxoldt, Bridjet M.; Pollinger, Jon P.; Graf, Dent A .; Parker, Xeydi G.; Ostrander, Elaine A .; Ueyn, Robert K. (2012). "SNP genotipi bilan kulrang bo'rilar va uy hayvonlari itlari o'rtasida yaqinda gibridlanishni aniqlash". Sutemizuvchilar genomi. 24 (1–2): 80–8. doi:10.1007 / s00335-012-9432-0. PMID 23064780. S2CID 1161310.
  169. ^ Ernst Mayr (1999). "VIII-nongeografik spetsifikatsiya". Zoolog nuqtai nazaridan sistematika va turlarning kelib chiqishi. Garvard universiteti matbuoti. 194-195 betlar. ISBN 9780674862500.
  170. ^ Vila, C .; Sundqvist, A.-K .; Flagstad, O .; Seddon, J .; Rnerfeldt, S. B.; Kojola, I .; Casulli, A .; Qum, H.; Vabakken, P.; Ellegren, H. (2003). "Qattiq tiqilib qolgan bo'ri (Canis lupus) populyatsiyasini bitta immigrant tomonidan qutqarish". Qirollik jamiyati materiallari B: Biologiya fanlari. 270 (1510): 91–97. doi:10.1098 / rspb.2002.2184. PMC 1691214. PMID 12590776.
  171. ^ a b v Myunoz-Fuentes, Violeta; Darimont, Kris T.; Ueyn, Robert K.; Paket, Pol S.; Leonard, Jennifer A. (2009). "Ekologik omillar bo'rilarning Britaniya Kolumbiyasidan farqlanishini keltirib chiqaradi". Biogeografiya jurnali. 36 (8): 1516–1531. doi:10.1111 / j.1365-2699.2008.02067.x. hdl:10261/61670.
  172. ^ Valière, Nathaniel; Fumagalli, Luka; Gelli, Lyudovich; Mikel, nasroniy; Lequette, Benoît; Poulle, Marie-Lazarine; Weber, Jean-Marc; Arlettaz, Raphaël; Taberlet, Pierre (2003). "Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years". Hayvonlarni muhofaza qilish. 6: 83–92. doi:10.1017/S1367943003003111.
  173. ^ Fabbri, E .; Caniglia, R.; Kusak, J.; Galov, A.; Gomerčić, T.; Arbanasić, H.; Xuber, D .; Randi, E. (2014). "Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps". Sutemizuvchilar biologiyasi - Zeitschrift für Säugetierkunde. 79 (2): 138–148. doi:10.1016/j.mambio.2013.10.002.
  174. ^ Stronen, Astrid V.; Jä™Drzejewska, Bogumiå'a; Pertoldi, Cino; Demontis, Ditte; Randi, Ettore; Niedziaå'Kowska, Magdalena; Pilot, MaÅ'Gorzata; Sidorovich, Vadim E.; Dykyy, Ihor; Kusak, Josip; Tsingarska, Elena; Kojola, Ilpo; Karamanlidis, Alexandros A.; Ornicans, Aivars; Lobkov, Vladimir A.; Dumenko, Vitalii; Czarnomska, Sylwia D. (2013). "North-South Differentiation and a Region of High Diversity in European Wolves (Canis lupus)". PLOS ONE. 8 (10): e76454. doi:10.1371/journal.pone.0076454. PMC 3795770. PMID 24146871.
  175. ^ a b Shvaytser, Rena M.; Robinzon, Jaklin; Harrigan, Rayan; Silva, Pedro; Galverni, Marko; Musiani, Marko; Green, Richard E.; Novembre, John; Ueyn, Robert K. (2016). "1040 genni maqsadga muvofiq ravishda ta'qib qilish va qayta tiklash kulrang bo'rilarning atrof muhitga bog'liq funktsional o'zgarishini ochib beradi". Molekulyar ekologiya. 25 (1): 357–79. doi:10.1111 / mec.13467. PMID 26562361.
  176. ^ O'Kif, F. Robin; Meachen, Julie; Fet, Elizabeth V.; Brannick, Alexandria (2013). "Ecological determinants of clinal morphological variation in the cranium of the North American gray wolf". Mammalogy jurnali. 94 (6): 1223–1236. doi:10.1644/13-MAMM-A-069.
  177. ^ Carmichael, L. E.; Krizan, J.; Nagy, J. A .; Fuglei, E.; Dumond, M.; Johnson, D.; Veitch, A .; Berteaux, D.; Strobeck, C. (2007). "Historical and ecological determinants of genetic structure in arctic canids". Molekulyar ekologiya. 16 (16): 3466–83. doi:10.1111/j.1365-294X.2007.03381.x. PMID 17688546.
  178. ^ Carmichael, L. E.; Nagy, J. A .; Larter, N. C.; Strobeck, C. (2001). "Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest". Molekulyar ekologiya. 10 (12): 2787–98. doi:10.1046/j.0962-1083.2001.01408.x. PMID 11903892.
  179. ^ Carmichael, L. E. (2006). Ecological Genetics of Northern Wolves and Arctic Foxes. Ph.D. Dissertatsiya (PDF). Alberta universiteti.
  180. ^ Lacombat, F.; Abbazzi, L .; Ferretti, M. P.; Martines-Navarro, B.; Moulle, P.-E.; Palombo, M.-R.; Rook, L .; Tyorner, A .; Valli, A.M.-F. (2008). "New data on the early Villafranchian fauna from Vialette (Haute-Loire, France) based on the collection of the Crozatier Museum (Le Puy-en-Velay, Haute-Loire, France)". To'rtlamchi xalqaro. 179 (1): 64–71. doi:10.1016/j.quaint.2007.09.005.
  181. ^ Rook, L .; Torre, D. (1996). "The wolf-event in western Europe and the beginning of the Late Villafranchian". Neues Jahrbuch für Geologie und Paläontologie - Monatshefte. 1996 (8): 495–501. doi:10.1127/njgpm/1996/1996/495.
  182. ^ Gliozzi, E.; Abbazzi, L .; Argenti, A.; Azzaroli, A .; Caloi, L.; Capasso Barbato, L.; di Stefano, G.; Esu, D.; Fikarelli, G.; Girotti, O.; Kotsakis, T.; Masini, F.; Mazza, P .; Mezzabotta, C.; Palombo, M. R .; Petronio, C.; Rook, L .; Sala, B.; Sardella, R .; Zanalda, E.; Torre, D. (1997). "Biochronology of selected mammals, Molluscs and ostracodes from the Middle Pliocene to the Late Pleistocene in Italy. The state of the art" (PDF). Rivista Italiana di Paleontologia e Stratigrafia. 103 (3): 369–388. doi:10.13130/2039-4942/5299.
  183. ^ Currant, A. P. (1984). "The mammalian remains". In Green, H. S. (ed.). Pontnewydd Cave: A Lower Palaeolithic Hominid Site in Wales: the First Report. Arxeologiya fanlari jurnali. 12. Amgueddfa Genedlaethol Cymru. 177-181 betlar. doi:10.1016/0305-4403(85)90038-X. ISBN 978-0-7200-0282-9.
  184. ^ Tulki-Dobbs, Kena; Leonard, Jennifer A.; Koch, Paul L. (2008). "Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records". Paleogeografiya, paleoklimatologiya, paleoekologiya. 261 (1–2): 30–46. doi:10.1016/j.palaeo.2007.12.011.
  185. ^ Barishnikov, Gennadiy F.; Mol, Dik; Tixonov, Aleksey N (2009). "Taymir yarim orolida (Rossiya, Sibir) paleoekologik kontekstda kech pleystotsen yirtqich hayvonlarini topish" (PDF). Rossiya Theriology Journal. 8 (2): 107–113. doi:10.15298 / rusjtheriol.08.2.04. Olingan 23 dekabr, 2014.
  186. ^ Ovodov, N. (2011). "A 33,000-year-old incipient dog from the Altai Mountains of Siberia: Evidence of the earliest domestication disrupted by the Last Glacial Maximum". PLOS ONE. 6 (7): e22821. Bibcode:2011PLoSO ... 622821O. doi:10.1371 / journal.pone.0022821. PMC 3145761. PMID 21829526.
  187. ^ a b Germonpré, Mietje; Lasničková-Galetova, Martina; Losey, Robert J.; Raykönen, Jannikke; Sablin, Mikhail V. (2015). "Large canids at the Gravettian Předmostí site, the Czech Republic: The mandible". To'rtlamchi xalqaro. 359–360: 261–279. doi:10.1016/j.quaint.2014.07.012.
  188. ^ Germonpré, Mietje; Laznickova-Galetova, Martina; Sablin, Mikhail V. (2012). "Palaeolithic dog skulls at the Gravettian Predmosti site, the Czech Republic". Arxeologiya fanlari jurnali. 39: 184–202. doi:10.1016 / j.jas.2011.09.022.
  189. ^ Boudadi-Maligne, M. (2010). "Les Canis pleistocenes du sud de la France: approche biosystematique, evolutive et biochronologique. Ph.D. dissertation" (PDF). Archéologie et Préhistoire. Universitie Bordeaux (4126).
  190. ^ Dimitrijević, V.; Vuković, S. (2015). "Was the Dog Locally Domesticated in the Danube Gorges? Morphometric Study of Dog Cranial Remains from Four Mesolithic-Early Neolithic Archaeological Sites by Comparison with Contemporary Wolves". Xalqaro Osteoarxeologiya jurnali. 25: 1–30. doi:10.1002/oa.2260.
  191. ^ Germonpréa, Mietje; Sablinb, Mikhail V.; Stevensc, Rhiannon E.; Hedgesd, Robert E. M.; Hofreitere, Michael; Stillere, Mathias; Desprése, Viviane R. (2008). "Belgiya, Ukraina va Rossiyadagi paleolit ​​davri joylaridan qazib olingan itlar va bo'rilar: osteometriya, qadimiy DNK va barqaror izotoplar". Arxeologiya fanlari jurnali. 36 (2): 473–490. doi:10.1016 / j.jas.2008.09.033.
  192. ^ Larson G (2012). "Genetika, arxeologiya va biogeografiyani integratsiyalashgan holda itlarni xonakilashtirishni qayta ko'rib chiqish". PNAS. 109 (23): 8878–8883. Bibcode:2012PNAS..109.8878L. doi:10.1073 / pnas.1203005109. PMC 3384140. PMID 22615366.