Yilda matematika , Hurwitz zeta funktsiyasi nomi bilan nomlangan Adolf Xurvits , ko'pchiligidan biri zeta funktsiyalari . Bu uchun rasmiy ravishda belgilangan murakkab  dalillar s  bilan Re (s )> 1 va q  bilan Re (q )> 0 tomonidan
                    ζ         (         s         ,         q         )         =                   ∑                       n             =             0                        ∞                                 1                           (               n               +               q                               )                                   s              .       { displaystyle  zeta (s, q) =  sum _ {n = 0} ^ { infty} { frac {1} {(n + q) ^ {s}}}.}   Ushbu seriya mutlaqo yaqinlashuvchi  ning berilgan qiymatlari uchun s  va q  va a ga kengaytirilishi mumkin meromorfik funktsiya  hamma uchun belgilangan s ≠ 1. The Riemann zeta funktsiyasi  bu ζ (s ,1).
   Hurwitz zeta funktsiyasi mos keladi 
q  = 1/3. U sifatida hosil bo'ladi 
Matplotlib  versiyasidan foydalangan holda fitna 
Domenni bo'yash  usul.
[1] Analitik davomi  
   Hurwitz zeta funktsiyasi mos keladi 
q  = 24/25.
  Agar                               R           e          (         s         )         ≤         1       { displaystyle  mathrm {Re} (s)  leq 1}     Hurwitz zeta funktsiyasini tenglama bilan aniqlash mumkin
                    ζ         (         s         ,         q         )         =         Γ         (         1         −         s         )                               1                           2               π               men                      ∫                       C                                                               z                                   s                   −                   1                                 e                                   q                   z                              1               −                               e                                   z              d         z       { displaystyle  zeta (s, q) =  Gamma (1-s) { frac {1} {2  pi i}}  int _ {C} { frac {z ^ {s-1} e ^ {qz}} {1-e ^ {z}}} dz}   qaerda kontur                      C       { displaystyle C}     manfiy real o'qi atrofidagi aylana. Bu analitik davomini ta'minlaydi                     ζ         (         s         ,         q         )       { displaystyle  zeta (s, q)}    .
Hurwitz zeta funktsiyasi tomonidan kengaytirilishi mumkin analitik davomi  a meromorfik funktsiya  barcha murakkab sonlar uchun aniqlangan                     s       { displaystyle s}     bilan                     s         ≠         1       { displaystyle s  neq 1}    . Da                     s         =         1       { displaystyle s = 1}     u bor oddiy qutb  bilan qoldiq                      1       { displaystyle 1}    . Doimiy atama tomonidan berilgan
                              lim                       s             →             1                     [                       ζ             (             s             ,             q             )             −                                           1                                   s                   −                   1               ]          =                                             −                               Γ                 ′                (               q               )                            Γ               (               q               )            =         −         ψ         (         q         )       { displaystyle  lim _ {s  to 1}  chap [ zeta (s, q) - { frac {1} {s-1}}  right] = { frac {-  Gamma '(q) } { Gamma (q)}} = -  psi (q)}   qayerda                     Γ       { displaystyle  Gamma}     bo'ladi gamma funktsiyasi  va                     ψ       { displaystyle  psi}     bo'ladi digamma funktsiyasi .
Seriyani namoyish qilish  
   Hurwitz zeta funktsiyasi sifatida 
q  bilan 
s  = 3+4men .
Konvergent Nyuton seriyasi  (haqiqiy) uchun belgilangan vakillik q  > 0 va har qanday kompleks s  ≠ 1 tomonidan berilgan Helmut Hasse  1930 yilda:[2] 
                    ζ         (         s         ,         q         )         =                               1                           s               −               1                      ∑                       n             =             0                        ∞                                 1                           n               +               1                      ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         q         +         k                   )                       1             −             s           .       { displaystyle  zeta (s, q) = { frac {1} {s-1}}  sum _ {n = 0} ^ { infty} { frac {1} {n + 1}}  sum _ {k = 0} ^ {n} (- 1) ^ {k} {n  k} (q + k) ^ {1-s} ni tanlang.}   Ushbu ketma-ketlik bir xilda yaqinlashadi ixcham pastki to'plamlar  ning s - samolyot butun funktsiya . Ichki summani quyidagicha tushunish mumkin n th oldinga farq  ning                               q                       1             −             s         { displaystyle q ^ {1-s}}    ; anavi,
                              Δ                       n                     q                       1             −             s           =                   ∑                       k             =             0                        n           (         −         1                   )                       n             −             k                                               (                            n               k                            )            (         q         +         k                   )                       1             −             s         { displaystyle  Delta ^ {n} q ^ {1-s} =  sum _ {k = 0} ^ {n} (- 1) ^ {nk} {n  k} (q + k) ^ {ni tanlang 1-s}}   bu erda Δ oldinga farq operatori . Shunday qilib, kimdir yozishi mumkin
                                                                        ζ                 (                 s                 ,                 q                 )                                                 =                                                       1                                           s                       −                       1                                      ∑                                       n                     =                     0                                        ∞                                                                               (                       −                       1                                               )                                                   n                                              n                       +                       1                                      Δ                                       n                                     q                                       1                     −                     s                                                                               =                                                       1                                           s                       −                       1                                                                                jurnal                                              (                       1                       +                       Δ                       )                      Δ                                     q                                       1                     −                     s             { displaystyle { begin {aligned}  zeta (s, q) & = { frac {1} {s-1}}  sum _ {n = 0} ^ { infty} { frac {(-1 ) ^ {n}} {n + 1}}  Delta ^ {n} q ^ {1-s}  & = { frac {1} {s-1}} { log (1+  Delta)  over  Delta} q ^ {1-s}  end {aligned}}}   Global miqyosda yaqinlashayotgan boshqa qatorlarga ushbu misollar kiradi
                    ζ         (         s         ,         v         −         1         )         =                               1                           s               −               1                      ∑                       n             =             0                        ∞                     H                       n             +             1                     ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         k         +         v                   )                       1             −             s         { displaystyle  zeta (s, v-1) = { frac {1} {s-1}}  sum _ {n = 0} ^ { infty} H_ {n + 1}  sum _ {k = 0} ^ {n} (- 1) ^ {k} { binom {n} {k}} (k + v) ^ {1-s}}                       ζ         (         s         ,         v         )         =                                             k               !                            (               s               −               k                               )                                   k                        ∑                       n             =             0                        ∞                                 1                           (               n               +               k               )               !                      [                                                     n                 +                 k                n             ]                    ∑                       l             =             0                        n             +             k             −             1                    (         −         1                   )                       l                                               (                                            n                 +                 k                 −                 1                l                            )            (         l         +         v                   )                       k             −             s           ,                  k         =         1         ,         2         ,         3         ,         …       { displaystyle  zeta (s, v) = { frac {k!} {(sk) _ {k}}}  sum _ {n = 0} ^ { infty} { frac {1} {(n) + k)!}}  chap [{n + k  tepada n}  o'ng]  sum _ {l = 0} ^ {n + k-1} ! (- 1) ^ {l} { binom { n + k-1} {l}} (l + v) ^ {ks},  quad k = 1,2,3,  ldots}                       ζ         (         s         ,         v         )         =                                             v                               1                 −                 s                             s               −               1            +                   ∑                       n             =             0                        ∞                     |                    G                       n             +             1                     |                    ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         k         +         v                   )                       −             s         { displaystyle  zeta (s, v) = { frac {v ^ {1-s}} {s-1}} +  sum _ {n = 0} ^ { infty} | G_ {n + 1} |  sum _ {k = 0} ^ {n} (- 1) ^ {k} { binom {n} {k}} (k + v) ^ {- s}}                       ζ         (         s         ,         v         )         =                                             (               v               −               1                               )                                   1                   −                   s                              s               −               1            −                   ∑                       n             =             0                        ∞                     C                       n             +             1                     ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         k         +         v                   )                       −             s         { displaystyle  zeta (s, v) = { frac {(v-1) ^ {1-s}} {s-1}} -  sum _ {n = 0} ^ { infty} C_ {n +1}  sum _ {k = 0} ^ {n} (- 1) ^ {k} { binom {n} {k}} (k + v) ^ {- s}}                       ζ         (         s         ,         v         )                               (           v         −                                             1               2                                  )           =                                             s               −               2                            s               −               1            ζ         (         s         −         1         ,         v         )         +                   ∑                       n             =             0                        ∞           (         −         1                   )                       n                     G                       n             +             2                     ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         k         +         v                   )                       −             s         { displaystyle  zeta (s, v) { big (} v - { tfrac {1} {2}} { big)} = { frac {s-2} {s-1}}  zeta ( s-1, v) +  sum _ {n = 0} ^ { infty} (- 1) ^ {n} G_ {n + 2}  sum _ {k = 0} ^ {n} (- 1) ^ {k} { binom {n} {k}} (k + v) ^ {- s}}                       ζ         (         s         ,         v         )         =         −                   ∑                       l             =             1                        k             −             1                                               (               k               −               l               +               1                               )                                   l                              (               s               −               l                               )                                   l              ζ         (         s         −         l         ,         v         )         +                   ∑                       l             =             1                        k                                               (               k               −               l               +               1                               )                                   l                              (               s               −               l                               )                                   l                        v                       l             −             s           +         k                   ∑                       n             =             0                        ∞           (         −         1                   )                       n                     G                       n             +             1                        (             k             )                     ∑                       k             =             0                        n           (         −         1                   )                       k                                               (                            n               k                            )            (         k         +         v                   )                       −             s         { displaystyle  zeta (s, v) = -  sum _ {l = 1} ^ {k-1} { frac {(k-l + 1) _ {l}} {(sl) _ {l} }}  zeta (sl, v) +  sum _ {l = 1} ^ {k} { frac {(k-l + 1) _ {l}} {(sl) _ {l}}} v ^ {ls} + k  sum _ {n = 0} ^ { infty} (- 1) ^ {n} G_ {n + 1} ^ {(k)}  sum _ {k = 0} ^ {n} (-1) ^ {k} { binom {n} {k}} (k + v) ^ {- s}}   qayerda H n   ular Harmonik raqamlar ,                               [                                     ⋅               ⋅             ]        { displaystyle  left [{ cdot  atop  cdot}  right]}     ular Birinchi turdagi raqamlar ,                     (         …                   )                       …         { displaystyle ( ldots) _ { ldots}}     bo'ladi Pochhammer belgisi , G n   ular Gregori koeffitsientlari ,  G (k ) n   ular Gregori koeffitsientlari  yuqori darajadagi va C n   Ikkinchi turdagi Koshi raqamlari (C 1  = 1/2 , C 2  = 5/12 , C 3  = 3/8 , ...), Blagouchine qog'oziga qarang.[3] 
Integral vakillik  
Funktsiyaning nuqtai nazaridan ajralmas vakili mavjud Mellin o'zgarishi  kabi
                    ζ         (         s         ,         q         )         =                               1                           Γ               (               s               )                      ∫                       0                        ∞                                                               t                                   s                   −                   1                                 e                                   −                   q                   t                              1               −                               e                                   −                   t              d         t       { displaystyle  zeta (s, q) = { frac {1} { Gamma (s)}}} int _ {0} ^ { infty} { frac {t ^ {s-1} e ^ { -qt}} {1-e ^ {- t}}} dt}   uchun                     ℜ         s         >         1       { displaystyle  Re s> 1}     va                     ℜ         q         >         0.       { displaystyle  Re q> 0.}   
Xurvits formulasi  
Xurvits formulasi bu teorema
                    ζ         (         1         −         s         ,         x         )         =                               1                           2               s                      [                                     e                               −                 men                 π                 s                                   /                  2               β             (             x             ;             s             )             +                           e                               men                 π                 s                                   /                  2               β             (             1             −             x             ;             s             )            ]        { displaystyle  zeta (1-s, x) = { frac {1} {2s}}  left [e ^ {- i  pi s / 2}  beta (x; s) + e ^ {i  pi s / 2}  beta (1-x; s)  o'ng]}   qayerda
                    β         (         x         ;         s         )         =         2         Γ         (         s         +         1         )                   ∑                       n             =             1                        ∞                                               tugatish                              (               2               π               men               n               x               )                            (               2               π               n                               )                                   s              =                                             2               Γ               (               s               +               1               )                            (               2               π                               )                                   s                                                  Li                         s           (                   e                       2             π             men             x           )       { displaystyle  beta (x; s) = 2  Gamma (s + 1)  sum _ {n = 1} ^ { infty} { frac { exp (2  pi inx)} {(2  pi) n) ^ {s}}} = { frac {2  Gamma (s + 1)} {(2  pi) ^ {s}}} { mbox {Li}} _ {s} (e ^ {2)  pi ix})}   uchun amal qiladigan zeta vakili                     0         ≤         x         ≤         1       { displaystyle 0  leq x  leq 1}     va s> 1. Mana,                                           Li                        s           (         z         )       { displaystyle { text {Li}} _ {s} (z)}     bo'ladi polilogarifma .
Funktsional tenglama  
The funktsional tenglama  murakkab tekislikning chap va o'ng tomonlaridagi zeta qiymatlarini bog'laydi. Butun sonlar uchun                     1         ≤         m         ≤         n       { displaystyle 1  leq m  leq n}    ,
                    ζ                   (                       1             −             s             ,                                           m                 n              )          =                                             2               Γ               (               s               )                            (               2               π               n                               )                                   s                        ∑                       k             =             1                        n                     [                       cos                                        (                                                                                           π                       s                      2                   −                                                                             2                       π                       k                       m                      n                  )                           ζ                           (                               s                 ,                                                       k                     n                  )             ]        { displaystyle  zeta  left (1-s, { frac {m} {n}}  right) = { frac {2  Gamma (s)} {(2  pi n) ^ {s}}}  sum _ {k = 1} ^ {n}  chap [ cos  chap ({ frac { pi s} {2}} - { frac {2  pi km} {n}}  o'ng)  ;  zeta  left (s, { frac {k} {n}}  right)  right]}   ning barcha qiymatlari uchun amal qiladi s .
Ba'zi cheklangan summalar  
Funktsional tenglama bilan chambarchas bog'liq bo'lgan quyidagi cheklangan yig'indilar mavjud, ularning ba'zilari yopiq shaklda baholanishi mumkin
                              ∑                       r             =             1                        m             −             1           ζ                   (                       s             ,                                           r                 m              )          cos                                                                      2                 π                 r                 k                m            =                                             m               Γ               (               1               −               s               )                            (               2               π               m                               )                                   1                   −                   s              gunoh                                                      π               s              2           ⋅                   {                       ζ                           (                               1                 −                 s                 ,                                                       k                     m                  )              +             ζ                           (                               1                 −                 s                 ,                 1                 −                                                       k                     m                  )             }          −         ζ         (         s         )       { displaystyle  sum _ {r = 1} ^ {m-1}  zeta  left (s, { frac {r} {m}}  right)  cos { dfrac {2  pi rk} {m }} = { frac {m  Gamma (1-s)} {(2  pi m) ^ {1-s}}}  sin { frac { pi s} {2}}  cdot  left  { zeta  chap (1-s, { frac {k} {m}}  o'ng) +  zeta  chap (1-s, 1 - { frac {k} {m}}  o'ng)  o'ng } -  zeta (lar)}                                 ∑                       r             =             1                        m             −             1           ζ                   (                       s             ,                                           r                 m              )          gunoh                                                                      2                 π                 r                 k                m            =                                             m               Γ               (               1               −               s               )                            (               2               π               m                               )                                   1                   −                   s              cos                                                      π               s              2           ⋅                   {                       ζ                           (                               1                 −                 s                 ,                                                       k                     m                  )              −             ζ                           (                               1                 −                 s                 ,                 1                 −                                                       k                     m                  )             }        { displaystyle  sum _ {r = 1} ^ {m-1}  zeta  left (s, { frac {r} {m}}  right)  sin { dfrac {2  pi rk} {m }} = { frac {m  Gamma (1-s)} {(2  pi m) ^ {1-s}}}  cos { frac { pi s} {2}}  cdot  left  { zeta  chap (1-s, { frac {k} {m}}  o'ng) -  zeta  chap (1-s, 1 - { frac {k} {m}}  o'ng)  o'ng }}                                 ∑                       r             =             1                        m             −             1                     ζ                       2                     (                       s             ,                                           r                 m              )          =                               (                     m                       2             s             −             1           −         1                               )                     ζ                       2           (         s         )         +                                             2               m                               Γ                                   2                 (               1               −               s               )                            (               2               π               m                               )                                   2                   −                   2                   s                        ∑                       l             =             1                        m             −             1                     {                       ζ                           (                               1                 −                 s                 ,                                                       l                     m                  )              −             cos                          π             s             ⋅             ζ                           (                               1                 −                 s                 ,                 1                 −                                                       l                     m                  )             }          ζ                   (                       1             −             s             ,                                           l                 m              )        { displaystyle  sum _ {r = 1} ^ {m-1}  zeta ^ {2}  left (s, { frac {r} {m}}  right) = { big (} m ^ { 2s-1} -1 { big)}  zeta ^ {2} (s) + { frac {2m  Gamma ^ {2} (1-s)} {(2  pi m) ^ {2-2s }}}  sum _ {l = 1} ^ {m-1}  left  { zeta  left (1-s, { frac {l} {m}}  right) -  cos  pi s  cdot  zeta  chap (1-s, 1 - { frac {l} {m}}  o'ng)  o'ng }  zeta  chap (1-s, { frac {l} {m}}  o'ng )}   qayerda m  2 dan katta musbat butun son s  murakkab, masalan, qarang. B ilova.[4] 
Teylor seriyasi  
Ikkinchi argumentda zeta lotin a siljish :
                                          ∂                           ∂               q            ζ         (         s         ,         q         )         =         −         s         ζ         (         s         +         1         ,         q         )         .       { displaystyle { frac { qismli} { qisman q}}  zeta (s, q) = - s  zeta (s + 1, q).}   Shunday qilib, Teylor seriyasi  quyidagicha yozilishi mumkin:
                    ζ         (         s         ,         x         +         y         )         =                   ∑                       k             =             0                        ∞                                               y                               k                             k               !                                                ∂                               k                             ∂                               x                                   k              ζ         (         s         ,         x         )         =                   ∑                       k             =             0                        ∞                                               (                                            s                 +                 k                 −                 1                                s                 −                 1                             )            (         −         y                   )                       k           ζ         (         s         +         k         ,         x         )         .       { displaystyle  zeta (s, x + y) =  sum _ {k = 0} ^ { infty} { frac {y ^ {k}} {k!}} { frac { qismli ^ {k }} { qisman x ^ {k}}}  zeta (s, x) =  sum _ {k = 0} ^ { infty} {s + k-1  s-1} (- y) ^ ni tanlang {k}  zeta (s + k, x).}   Shu bilan bir qatorda,
                    ζ         (         s         ,         q         )         =                               1                           q                               s             +                   ∑                       n             =             0                        ∞           (         −         q                   )                       n                                               (                                            s                 +                 n                 −                 1                n                            )            ζ         (         s         +         n         )         ,       { displaystyle  zeta (s, q) = { frac {1} {q ^ {s}}} +  sum _ {n = 0} ^ { infty} (- q) ^ {n} {s + n-1  ni tanlang n}  zeta (s + n),}   bilan                               |          q                   |          <         1       { displaystyle | q | <1}    .[5] 
Bilan chambarchas bog'liq Shtark-Keyper  formula:
                    ζ         (         s         ,         N         )         =                   ∑                       k             =             0                        ∞                     [                       N             +                                                             s                   −                   1                                    k                   +                   1               ]                                              (                                            s                 +                 k                 −                 1                                s                 −                 1                             )            (         −         1                   )                       k           ζ         (         s         +         k         ,         N         )       { displaystyle  zeta (s, N) =  sum _ {k = 0} ^ { infty}  left [N + { frac {s-1} {k + 1}}  right] {s + k- 1  s-1} (- 1) ^ {k}  zeta (s + k, N)} ni tanlang   tamsayıga teng N  va o'zboshimchalik bilan s . Shuningdek qarang Faolxabarning formulasi  tamsayılar kuchlarining cheklangan yig'indisiga o'xshash munosabat uchun.
Loran seriyasi  
The Loran seriyasi  kengaytirishni aniqlash uchun ishlatish mumkin Stieltjes konstantalari  ketma-ketlikda uchraydi
                    ζ         (         s         ,         q         )         =                               1                           s               −               1            +                   ∑                       n             =             0                        ∞                                               (               −               1                               )                                   n                              n               !                      γ                       n           (         q         )                  (         s         −         1                   )                       n           .       { displaystyle  zeta (s, q) = { frac {1} {s-1}} +  sum _ {n = 0} ^ { infty} { frac {(-1) ^ {n}} {n!}}  gamma _ {n} (q) ; (s-1) ^ {n}.}   Xususan                               γ                       0           (         q         )         =         −         ψ         (         q         )       { displaystyle  gamma _ {0} (q) = -  psi (q)}     va                               γ                       0           (         1         )         =         −         ψ         (         1         )         =                   γ                       0           =         γ       { displaystyle  gamma _ {0} (1) = -  psi (1) =  gamma _ {0} =  gamma}    .
Furye konvertatsiyasi  
The diskret Furye konvertatsiyasi  buyruqqa nisbatan Hurwitz zeta funktsiyasining s  bo'ladi Legendre chi funktsiyasi .
Bernulli polinomlariga munosabat  
Funktsiya                     β       { displaystyle  beta}     yuqorida tavsiflangan Bernulli polinomlari :
                              B                       n           (         x         )         =         −         ℜ                   [                       (             −             men                           )                               n               β             (             x             ;             n             )            ]        { displaystyle B_ {n} (x) = -  Re  left [(- i) ^ {n}  beta (x; n)  right]}   qayerda                     ℜ         z       { displaystyle  Re z}     ning haqiqiy qismini bildiradi z . Shu bilan bir qatorda,
                    ζ         (         −         n         ,         x         )         =         −                                                             B                                   n                   +                   1                 (               x               )                            n               +               1            .       { displaystyle  zeta (-n, x) = - {B_ {n + 1} (x)  n + 1} dan yuqori.}   Xususan, munosabat uchun amal qiladi                     n         =         0       { displaystyle n = 0}     va bittasi bor
                    ζ         (         0         ,         x         )         =                               1             2           −         x         .       { displaystyle  zeta (0, x) = { frac {1} {2}} - x.}   Yakobi teta funktsiyasi bilan bog'liqlik  
Agar                     ϑ         (         z         ,         τ         )       { displaystyle  vartheta (z,  tau)}     bu Jakobi teta funktsiyasi , keyin
                              ∫                       0                        ∞                     [                       ϑ             (             z             ,             men             t             )             −             1            ]                    t                       s                           /              2                                               d               t              t           =                   π                       −             (             1             −             s             )                           /              2           Γ                   (                                                     1                 −                 s                2             )                    [                       ζ             (             1             −             s             ,             z             )             +             ζ             (             1             −             s             ,             1             −             z             )            ]        { displaystyle  int _ {0} ^ { infty}  left [ vartheta (z, it) -1  right] t ^ {s / 2} { frac {dt} {t}} =  pi ^ {- (1-s) / 2}  Gamma  chap ({ frac {1-s} {2}}  o'ng)  chap [ zeta (1-s, z) +  zeta (1-s, 1-z)  o'ng]}   uchun ushlab turadi                     ℜ         s         >         0       { displaystyle  Re s> 0}     va z  murakkab, ammo butun son emas. Uchun z =n  butun son, bu soddalashtiradi
                              ∫                       0                        ∞                     [                       ϑ             (             n             ,             men             t             )             −             1            ]                    t                       s                           /              2                                               d               t              t           =         2                             π                       −             (             1             −             s             )                           /              2                     Γ                   (                                                     1                 −                 s                2             )          ζ         (         1         −         s         )         =         2                             π                       −             s                           /              2                     Γ                   (                                     s               2             )          ζ         (         s         )         .       { displaystyle  int _ {0} ^ { infty}  left [ vartheta (n, it) -1  right] t ^ {s / 2} { frac {dt} {t}} = 2   pi ^ {- (1-s) / 2}   Gamma  chap ({ frac {1-s} {2}}  o'ng)  zeta (1-s) = 2   pi ^ {- s / 2}   Gamma  chap ({ frac {s} {2}}  o'ng)  zeta (s).}   qaerda ζ bu erda Riemann zeta funktsiyasi . Ushbu oxirgi shakl funktsional tenglama  dastlab Riemann tomonidan berilgan Riemann zeta funktsiyasi uchun. Asosida ajratilgan z  tamsayı bo'lish yoki bo'lmaslik Jakobi teta funktsiyasining davriyga yaqinlashishini hisobga oladi delta funktsiyasi , yoki Dirak tarağı  yilda z  kabi                     t         →         0       { displaystyle t  rightarrow 0}    .
Dirichlet bilan munosabat L -funktsiyalar  
Ratsional argumentlarda Hurwitz zeta funktsiyasi ning chiziqli birikmasi sifatida ifodalanishi mumkin Dirichlet L-funktsiyalari  va aksincha: Hurwitz zeta funktsiyasi bilan mos keladi Riemannning zeta funktsiyasi  ζ (s ) qachon q  = 1, qachon q  = 1/2 ga teng (2s  −1) ζ (s ),[6]   va agar q  = n /k  bilan k  > 2, (n ,k )> 1 va 0 <n  < k , keyin[7] 
                    ζ         (         s         ,         n                   /          k         )         =                                             k                               s                             φ               (               k               )                      ∑                       χ                                 χ             ¯           (         n         )         L         (         s         ,         χ         )         ,       { displaystyle  zeta (s, n / k) = { frac {k ^ {s}} { varphi (k)}}  sum _ { chi} { overline { chi}} (n) L (s,  chi),}   yig'indisi hammasi ustida ishlaydi Dirichlet belgilar  mod k . Qarama-qarshi yo'nalishda biz chiziqli kombinatsiyaga egamiz[6] 
                    L         (         s         ,         χ         )         =                               1                           k                               s                       ∑                       n             =             1                        k           χ         (         n         )                  ζ                   (                       s             ,                                           n                 k              )          .       { displaystyle L (s,  chi) = { frac {1} {k ^ {s}}}  sum _ {n = 1} ^ {k}  chi (n) ;  zeta  left (s) , { frac {n} {k}}  o'ng).}   Shuningdek, mavjud ko'paytirish teoremasi 
                              k                       s           ζ         (         s         )         =                   ∑                       n             =             1                        k           ζ                   (                       s             ,                                           n                 k              )          ,       { displaystyle k ^ {s}  zeta (s) =  sum _ {n = 1} ^ {k}  zeta  left (s, { frac {n} {k}}  right),}   shundan foydali umumlashma tarqatish munosabati [8] 
                              ∑                       p             =             0                        q             −             1           ζ         (         s         ,         a         +         p                   /          q         )         =                   q                       s                    ζ         (         s         ,         q         a         )         .       { displaystyle  sum _ {p = 0} ^ {q-1}  zeta (s, a + p / q) = q ^ {s} ,  zeta (s, qa).}   (Ushbu oxirgi shakl har doim amal qiladi q  tabiiy raqam va 1 -qa  emas.)
Nol  
Agar q = 1 Hurwitz zeta funktsiyasi kamayadi Riemann zeta funktsiyasi  o'zi; agar q = 1/2 u murakkab argumentning oddiy funktsiyasiga ko'paytiriladigan Riemann zeta funktsiyasini kamaytiradi s  (vide supra ), har holda Rimannning zeta funktsiyasining nollarini qiyin o'rganishga olib keladi. Xususan, haqiqiy qismi 1 dan katta yoki unga teng nollar bo'lmaydi. Ammo, agar 0 q<1 va q ≠ 1/2, keyin 1 tasmada Xurvitsning zeta funktsiyasining nollari mavjud s) Har qanday ijobiy real haqiqiy son uchun <1 +. Bu isbotlangan Davenport  va Xeylbronn  oqilona yoki transandantal irratsional uchun q ,[9]   va tomonidan Kasselalar  algebraik irratsional uchun q .[6] [10]   
Ratsional qadriyatlar  
Hurwitz zeta funktsiyasi ratsional qiymatlarda bir qator ajoyib o'ziga xosliklarda uchraydi.[11]   Xususan, Eyler polinomlari                                E                       n           (         x         )       { displaystyle E_ {n} (x)}    :
                              E                       2             n             −             1                     (                                     p               q             )          =         (         −         1                   )                       n                                               4               (               2               n               −               1               )               !                            (               2               π               q                               )                                   2                   n                        ∑                       k             =             1                        q           ζ                   (                       2             n             ,                                                             2                   k                   −                   1                                    2                   q               )          cos                                                      (               2               k               −               1               )               π               p              q         { displaystyle E_ {2n-1}  left ({ frac {p} {q}}  right) = (- 1) ^ {n} { frac {4 (2n-1)!} {(2 ) pi q) ^ {2n}}}  sum _ {k = 1} ^ {q}  zeta  chap (2n, { frac {2k-1} {2q}}  o'ng)  cos { frac {( 2k-1)  pi p} {q}}}   va
                              E                       2             n                     (                                     p               q             )          =         (         −         1                   )                       n                                               4               (               2               n               )               !                            (               2               π               q                               )                                   2                   n                   +                   1                        ∑                       k             =             1                        q           ζ                   (                       2             n             +             1             ,                                                             2                   k                   −                   1                                    2                   q               )          gunoh                                                      (               2               k               −               1               )               π               p              q         { displaystyle E_ {2n}  chap ({ frac {p} {q}}  o'ng) = (- 1) ^ {n} { frac {4 (2n)!} {(2  pi q) ^ {2n + 1}}}  sum _ {k = 1} ^ {q}  zeta  chap (2n + 1, { frac {2k-1} {2q}}  o'ng)  sin { frac {( 2k-1)  pi p} {q}}}   Bittasi ham bor
                    ζ                   (                       s             ,                                                             2                   p                   −                   1                                    2                   q               )          =         2         (         2         q                   )                       s             −             1                     ∑                       k             =             1                        q                     [                                     C                               s                             (                                                 k                   q                 )              cos                                        (                                                                     (                     2                     p                     −                     1                     )                     π                     k                    q                 )              +                           S                               s                             (                                                 k                   q                 )              gunoh                                        (                                                                     (                     2                     p                     −                     1                     )                     π                     k                    q                 )             ]        { displaystyle  zeta  left (s, { frac {2p-1} {2q}}  right) = 2 (2q) ^ {s-1}  sum _ {k = 1} ^ {q}  left [C_ {s}  chap ({ frac {k} {q}}  o'ng)  cos  chap ({ frac {(2p-1)  pi k} {q}}  o'ng) + S_ {s }  chap ({ frac {k} {q}}  o'ng)  sin  chap ({ frac {(2p-1)  pi k} {q}}  o'ng)  o'ng]}   uchun ushlab turadigan                     1         ≤         p         ≤         q       { displaystyle 1  leq p  leq q}    . Mana                               C                       ν           (         x         )       { displaystyle C _ { nu} (x)}     va                               S                       ν           (         x         )       { displaystyle S _ { nu} (x)}     yordamida aniqlanadi Legendre chi funktsiyasi                                χ                       ν         { displaystyle  chi _ { nu}}     kabi
                              C                       ν           (         x         )         =         Qayta                            χ                       ν           (                   e                       men             x           )       { displaystyle C _ { nu} (x) =  operatorname {Re} ,  chi _ { nu} (e ^ {ix})}   va
                              S                       ν           (         x         )         =         Im                            χ                       ν           (                   e                       men             x           )         .       { displaystyle S _ { nu} (x) =  operator nomi {Im} ,  chi _ { nu} (e ^ {ix}).}   Ν ning tamsayı qiymatlari uchun ular Eyler polinomlari ko'rinishida ifodalanishi mumkin. Ushbu munosabatlar yuqorida keltirilgan Xurvits formulasi bilan birgalikda funktsional tenglamani qo'llash orqali olinishi mumkin.
Ilovalar  
Xurvitsning zeta funktsiyasi turli fanlarda uchraydi. Odatda, bu sodir bo'ladi sonlar nazariyasi , bu erda uning nazariyasi eng chuqur va eng rivojlangan. Biroq, bu ham o'rganishda uchraydi fraktallar  va dinamik tizimlar . Qo'llaniladi statistika , bu sodir bo'ladi Zipf qonuni  va Zipf-Mandelbrot qonuni . Yilda zarralar fizikasi , bu formulada uchraydi Julian Shvinger ,[12]   uchun aniq natijani berish juft ishlab chiqarish  a darajasi Dirak  elektron  bir xil elektr maydonida.
Maxsus holatlar va umumlashmalar  
Hurwitz zeta funktsiyasi musbat tamsayı bilan m  bilan bog'liq poligamma funktsiyasi :
                              ψ                       (             m             )           (         z         )         =         (         −         1                   )                       m             +             1           m         !         ζ         (         m         +         1         ,         z         )                   .       { displaystyle  psi ^ {(m)} (z) = (- 1) ^ {m + 1} m!  zeta (m + 1, z) .}   Salbiy tamsayı uchun -n  qiymatlari bilan bog'liq Bernulli polinomlari :[13] 
                    ζ         (         −         n         ,         x         )         =         −                                                             B                                   n                   +                   1                 (               x               )                            n               +               1                      .       { displaystyle  zeta (-n, x) = - { frac {B_ {n + 1} (x)} {n + 1}} .}   The Barnes zeta funktsiyasi  Hurwitz zeta funktsiyasini umumlashtiradi.
The Lerch transsendent  Hurwitz zetasini umumlashtiradi:
                    Φ         (         z         ,         s         ,         q         )         =                   ∑                       k             =             0                        ∞                                               z                               k                             (               k               +               q                               )                                   s            { displaystyle  Phi (z, s, q) =  sum _ {k = 0} ^ { infty} { frac {z ^ {k}} {(k + q) ^ {s}}}}   va shunday qilib
                    ζ         (         s         ,         q         )         =         Φ         (         1         ,         s         ,         q         )         .               { displaystyle  zeta (s, q) =  Phi (1, s, q). ,}   Gipergeometrik funktsiya 
                    ζ         (         s         ,         a         )         =                   a                       −             s           ⋅                                          s             +             1                     F                       s           (         1         ,                   a                       1           ,                   a                       2           ,         …                   a                       s           ;                   a                       1           +         1         ,                   a                       2           +         1         ,         …                   a                       s           +         1         ;         1         )       { displaystyle  zeta (s, a) = a ^ {- s}  cdot {} _ {s + 1} F_ {s} (1, a_ {1}, a_ {2},  ldots a_ {s} ; a_ {1} + 1, a_ {2} +1,  ldots a_ {s} +1; 1)}     qayerda                               a                       1           =                   a                       2           =         …         =                   a                       s           =         a                    va          a         ∉                   N                     va          s         ∈                               N                        +           .       { displaystyle a_ {1} = a_ {2} =  ldots = a_ {s} = a { text {and}} a  notin  mathbb {N} { text {and}} s  in  mathbb { N} ^ {+}.}   Meijer G-funktsiyasi 
                    ζ         (         s         ,         a         )         =         G                                          s             +             1             ,                          s             +             1                                     1             ,                          s             +             1                     (                       −             1                                        |                                                                                                                                    0                         ,                         1                         −                         a                         ,                         …                         ,                         1                         −                         a                                                                     0                         ,                         −                         a                         ,                         …                         ,                         −                         a                    )                                        s         ∈                               N                        +           .       { displaystyle  zeta (s, a) = G , _ {s + 1, , s + 1} ^ {, 1, , s + 1}  left (-1 ;  left | ; { begin {matrix} 0,1-a,  ldots, 1-a  0, -a,  ldots, -a  end {matrix}}  right)  right.  qquad  qquad s  in  mathbb {N} ^ {+}.}   Izohlar  
^   http://nbviewer.ipython.org/github/empet/Math/blob/master/DomainColoring.ipynb ^   Hasse, Helmut (1930), "Ein Summierungsverfahren für die Riemannsche ζ-Reihe" , Mathematische Zeitschrift  , 32  (1): 458–464, doi :10.1007 / BF01194645 , JFM  56.0894.03  ^   Blagouchine, Iaroslav V. (2018). "Zeta-funktsiyalar uchun Ser va Hasse vakolatxonalari to'g'risida uchta eslatma" . INTEGERS: Kombinatorial raqamlar nazariyasining elektron jurnali . 18A : 1–45. arXiv :1606.02044  . Bibcode :2016arXiv160602044B . ^   Blagouchine, I.V. (2014). "Ratsional argumentlar va ba'zi bir bog'liq yig'indilarda birinchi umumlashtirilgan Stielts konstantasini yopiq shaklda baholash teoremasi". Raqamlar nazariyasi jurnali . Elsevier. 148 : 537–592. arXiv :1401.3724  . doi :10.1016 / j.jnt.2014.08.009 . ^   Vepstas, Linas (2007). "Polilogaritma va Xurvits zeta funktsiyalarini hisoblash uchun foydali bo'lgan tebranuvchi qatorlarning yaqinlashishini tezlashtirishning samarali algoritmi". Raqamli algoritmlar . 47  (3): 211–252. arXiv :matematik / 0702243  . Bibcode :2008 yilNuAlg..47..211V . doi :10.1007 / s11075-007-9153-8 . ^ a   b   v   Davenport (1967) s.73 ^   Lori, Devid. "Hurwitz Zeta - bu Dirichlet L funktsiyalarining yig'indisi va aksincha" . aralash matematika . Olingan 8 fevral  2013 . ^   Kubert, Daniel S. ; Lang, Serj  (1981). Modulli birliklar . Grundlehren der Mathematischen Wissenschaften. 244 . Springer-Verlag . p. 13. ISBN  0-387-90517-0  . Zbl  0492.12002 .^   Davenport, H. & Heilbronn, H. (1936), "Ayrim Dirichlet seriyasining nollari to'g'risida", London Matematik Jamiyati jurnali  , 11  (3): 181–185, doi :10.1112 / jlms / s1-11.3.181 , Zbl  0014.21601  ^   Cassels, J. W. S. (1961), "Davenport va Heilbronn yozuvlariga izoh", London Matematik Jamiyati jurnali , 36  (1): 177–184, doi :10.1112 / jlms / s1-36.1.177 , Zbl  0097.03403  ^   Tomonidan berilgan Cvijovic, Djurdje & Klinowski, Jacek (1999), "Legendre chi va Hurwitz zeta funktsiyalarining oqilona argumentlar qiymatlari", Hisoblash matematikasi , 68  (228): 1623–1630, Bibcode :1999MaCom..68.1623C , doi :10.1090 / S0025-5718-99-01091-1   ^   Shvinger, J. (1951), "O'lchov invariantligi va vakuumli qutblanish to'g'risida", Jismoniy sharh  , 82  (5): 664–679, Bibcode :1951PhRv ... 82..664S , doi :10.1103 / PhysRev.82.664  ^   Apostol (1976) s.264 Adabiyotlar  
Apostol, T. M. (2010), "Hurwitz zeta funktsiyasi" , yilda Olver, Frank V. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Klark, Charlz V. (tahr.), NIST Matematik funktsiyalar bo'yicha qo'llanma  , Kembrij universiteti matbuoti, ISBN  978-0-521-19225-5  , JANOB  2723248  12-bobga qarang Apostol, Tom M.  (1976), Analitik sonlar nazariyasiga kirish , Matematikadagi bakalavr matnlari, Nyu-York-Heidelberg: Springer-Verlag, ISBN  978-0-387-90163-3  , JANOB  0434929 , Zbl  0335.10001  Milton Abramovits va Irene A. Stegun, Matematik funktsiyalar bo'yicha qo'llanma  , (1964) Dover Publications, Nyu-York. ISBN  0-486-61272-4 . (Qarang 6.4.10-band  poligamma funktsiyasi bilan bog'liqligi uchun.)  Davenport, Garold  (1967). Multiplikatsion sonlar nazariyasi . Ilg'or matematikadan ma'ruzalar. 1 . Chikago: Markxem. Zbl  0159.06303 .Miller, Jef; Adamchik, Viktor S. (1998). "Hurwitz Zeta funktsiyasining hosilalari mantiqiy dalillar uchun" . Hisoblash va amaliy matematika jurnali . 100  (2): 201–206. doi :10.1016 / S0377-0427 (98) 00193-9  . Vepstas, Linas. "Bernulli operatori, Gauss-Kuzmin-Wirsing operatori va Riemann Zeta"  (PDF) . Mezo, Istvan; Dil, Ayxan (2010). "Hurwitz zeta funktsiyasini o'z ichiga olgan giperharmonik serial". Raqamlar nazariyasi jurnali . 130  (2): 360–369. doi :10.1016 / j.jnt.2009.08.005 . hdl :2437/90539  . Tashqi havolalar