Yilda boshqaruv nazariyasi , holatga o'tish matritsasi koeffitsienti vektorga ega bo'lgan matritsa x { displaystyle x} dastlabki vaqtda t 0 { displaystyle t_ {0}} beradi x { displaystyle x} keyinroq t { displaystyle t} . Holat-o'tish matritsasi yordamida chiziqli dinamik tizimlarning umumiy echimini olish mumkin.
Lineer tizim echimlari
Umumiy holatga o'tish matritsasi umumiy echimni topish uchun ishlatiladi davlat-kosmik vakolatxonasi a chiziqli tizim quyidagi shaklda
x ˙ ( t ) = A ( t ) x ( t ) + B ( t ) siz ( t ) , x ( t 0 ) = x 0 { displaystyle { dot { mathbf {x}}} (t) = mathbf {A} (t) mathbf {x} (t) + mathbf {B} (t) mathbf {u} (t) ), ; mathbf {x} (t_ {0}) = mathbf {x} _ {0}} ,qayerda x ( t ) { displaystyle mathbf {x} (t)} tizimning holati, siz ( t ) { displaystyle mathbf {u} (t)} kirish signali, A ( t ) { displaystyle mathbf {A} (t)} va B ( t ) { displaystyle mathbf {B} (t)} bor matritsa funktsiyalari va x 0 { displaystyle mathbf {x} _ {0}} da boshlang'ich shart t 0 { displaystyle t_ {0}} . Holat-o'tish matritsasidan foydalanish Φ ( t , τ ) { displaystyle mathbf { Phi} (t, tau)} , echim quyidagicha:[1] [2]
x ( t ) = Φ ( t , t 0 ) x ( t 0 ) + ∫ t 0 t Φ ( t , τ ) B ( τ ) siz ( τ ) d τ { displaystyle mathbf {x} (t) = mathbf { Phi} (t, t_ {0}) mathbf {x} (t_ {0}) + int _ {t_ {0}} ^ {t } mathbf { Phi} (t, tau) mathbf {B} ( tau) mathbf {u} ( tau) d tau} Birinchi atama nolinchi javob va ikkinchi atama sifatida tanilgan nol holatidagi javob .
Peano-Beyker seriyasi
Eng umumiy o'tish matritsasi Peano-Beyker seriyasida berilgan
Φ ( t , τ ) = Men + ∫ τ t A ( σ 1 ) d σ 1 + ∫ τ t A ( σ 1 ) ∫ τ σ 1 A ( σ 2 ) d σ 2 d σ 1 + ∫ τ t A ( σ 1 ) ∫ τ σ 1 A ( σ 2 ) ∫ τ σ 2 A ( σ 3 ) d σ 3 d σ 2 d σ 1 + . . . { displaystyle mathbf { Phi} (t, tau) = mathbf {I} + int _ { tau} ^ {t} mathbf {A} ( sigma _ {1}) , d sigma _ {1} + int _ { tau} ^ {t} mathbf {A} ( sigma _ {1}) int _ { tau} ^ { sigma _ {1}} mathbf {A } ( sigma _ {2}) , d sigma _ {2} , d sigma _ {1} + int _ { tau} ^ {t} mathbf {A} ( sigma _ {1 }) int _ { tau} ^ { sigma _ {1}} mathbf {A} ( sigma _ {2}) int _ { tau} ^ { sigma _ {2}} mathbf { A} ( sigma _ {3}) , d sigma _ {3} , d sigma _ {2} , d sigma _ {1} + ...} qayerda Men { displaystyle mathbf {I}} bo'ladi identifikatsiya matritsasi . Ushbu matritsa bir xil va mutlaqo mavjud va noyob echimga yaqinlashadi.[2]
Boshqa xususiyatlar
Davlat o'tish matritsasi Φ { displaystyle mathbf { Phi}} quyidagi munosabatlarni qondiradi:
1. U uzluksiz va uzluksiz hosilalariga ega.
2, bu hech qachon birlik emas; Aslini olib qaraganda Φ − 1 ( t , τ ) = Φ ( τ , t ) { displaystyle mathbf { Phi} ^ {- 1} (t, tau) = mathbf { Phi} ( tau, t)} va Φ − 1 ( t , τ ) Φ ( t , τ ) = Men { displaystyle mathbf { Phi} ^ {- 1} (t, tau) mathbf { Phi} (t, tau) = I} , qayerda Men { displaystyle I} identifikatsiya matritsasi.
3. Φ ( t , t ) = Men { displaystyle mathbf { Phi} (t, t) = I} Barcha uchun t { displaystyle t} .[3]
4. Φ ( t 2 , t 1 ) Φ ( t 1 , t 0 ) = Φ ( t 2 , t 0 ) { displaystyle mathbf { Phi} (t_ {2}, t_ {1}) mathbf { Phi} (t_ {1}, t_ {0}) = mathbf { Phi} (t_ {2}, t_ {0})} Barcha uchun t 0 ≤ t 1 ≤ t 2 { displaystyle t_ {0} leq t_ {1} leq t_ {2}} .
5. Differentsial tenglamani qondiradi ∂ Φ ( t , t 0 ) ∂ t = A ( t ) Φ ( t , t 0 ) { displaystyle { frac { kısalt mathbf { Phi} (t, t_ {0})} { qismli t}} = mathbf {A} (t) mathbf { Phi} (t, t_ { 0})} dastlabki shartlar bilan Φ ( t 0 , t 0 ) = Men { displaystyle mathbf { Phi} (t_ {0}, t_ {0}) = I} .
6. Holat-o'tish matritsasi Φ ( t , τ ) { displaystyle mathbf { Phi} (t, tau)} , tomonidan berilgan
Φ ( t , τ ) ≡ U ( t ) U − 1 ( τ ) { displaystyle mathbf { Phi} (t, tau) equiv mathbf {U} (t) mathbf {U} ^ {- 1} ( tau)} qaerda n × n { displaystyle n times n} matritsa U ( t ) { displaystyle mathbf {U} (t)} bo'ladi asosiy echim matritsasi bu qondiradi
U ˙ ( t ) = A ( t ) U ( t ) { displaystyle { dot { mathbf {U}}} (t) = mathbf {A} (t) mathbf {U} (t)} dastlabki shart bilan U ( t 0 ) = Men { displaystyle mathbf {U} (t_ {0}) = I} .7. Davlatga berilgan x ( τ ) { displaystyle mathbf {x} ( tau)} xohlagan paytda τ { displaystyle tau} , boshqa har qanday vaqtda davlat t { displaystyle t} xaritalash orqali berilgan
x ( t ) = Φ ( t , τ ) x ( τ ) { displaystyle mathbf {x} (t) = mathbf { Phi} (t, tau) mathbf {x} ( tau)} Davlat-o'tish matritsasini baholash
In vaqt o'zgarmas holda, biz aniqlay olamiz Φ { displaystyle mathbf { Phi}} yordamida matritsali eksponent , kabi Φ ( t , t 0 ) = e A ( t − t 0 ) { displaystyle mathbf { Phi} (t, t_ {0}) = e ^ { mathbf {A} (t-t_ {0})}} .
In vaqt varianti holat, holatga o'tish matritsasi Φ ( t , t 0 ) { displaystyle mathbf { Phi} (t, t_ {0})} differentsial tenglama echimlari bo'yicha taxmin qilish mumkin siz ˙ ( t ) = A ( t ) siz ( t ) { displaystyle { dot { mathbf {u}}} (t) = mathbf {A} (t) mathbf {u} (t)} dastlabki shartlar bilan siz ( t 0 ) { displaystyle mathbf {u} (t_ {0})} tomonidan berilgan [ 1 , 0 , … , 0 ] T { displaystyle [1, 0, ldots, 0] ^ {T}} , [ 0 , 1 , … , 0 ] T { displaystyle [0, 1, ldots, 0] ^ {T}} , ..., [ 0 , 0 , … , 1 ] T { displaystyle [0, 0, ldots, 1] ^ {T}} . Tegishli echimlar quyidagilarni ta'minlaydi n { displaystyle n} matritsa ustunlari Φ ( t , t 0 ) { displaystyle mathbf { Phi} (t, t_ {0})} . Endi, 4-mulkdan, Φ ( t , τ ) = Φ ( t , t 0 ) Φ ( τ , t 0 ) − 1 { displaystyle mathbf { Phi} (t, tau) = mathbf { Phi} (t, t_ {0}) mathbf { Phi} ( tau, t_ {0}) ^ {- 1} } Barcha uchun t 0 ≤ τ ≤ t { displaystyle t_ {0} leq tau leq t} . Vaqt o'zgaruvchan echim bo'yicha tahlilni davom ettirishdan oldin holatga o'tish matritsasini aniqlash kerak.
Shuningdek qarang
Adabiyotlar
^ Baake, Maykl; Schlaegel, Ulrike (2011). "Peano Beyker seriyasi". Steklov nomidagi Matematika instituti materiallari . 275 : 155–159. ^ a b Rugh, Wilson (1996). Lineer tizim nazariyasi . Yuqori Saddle River, NJ: Prentice Hall. ISBN 0-13-441205-2 . ^ Brokett, Rojer V. (1970). Sonlu o'lchovli chiziqli tizimlar . John Wiley & Sons. ISBN 978-0-471-10585-5 . Qo'shimcha o'qish