Yilda ehtimollik va statistika , qiyshiq umumlashtirilgan "t" taqsimoti doimiy oiladir ehtimollik taqsimoti . Tarqatish birinchi bo'lib Panayiotis Theodossiou tomonidan kiritilgan[1] 1998 yilda. Tarqatish shu vaqtdan beri turli xil qo'llanmalarda ishlatilgan.[2] [3] [4] [5] [6] [7] Eğimli umumlashtirilgan t tarqatish uchun turli xil parametrlar mavjud.[1] [5]
Ta'rif
Ehtimollar zichligi funktsiyasi f S G T ( x ; m , σ , λ , p , q ) = p 2 v σ q 1 / p B ( 1 p , q ) ( | x − m + m | p q ( v σ ) p ( λ s men g n ( x − m + m ) + 1 ) p + 1 ) 1 p + q { displaystyle f_ {SGT} (x; mu, sigma, lambda, p, q) = { frac {p} {2v sigma q ^ {1 / p} B ({ frac {1} {) p}}, q) chap ({ frac {| x- mu + m | ^ {p}} {q (v sigma) ^ {p} ( lambda belgisi (x- mu + m) + 1) ^ {p}}} + 1 o'ng) ^ {{ frac {1} {p}} + q}}}}
qayerda B { displaystyle B} bo'ladi beta funktsiyasi , m { displaystyle mu} joylashuv parametri, σ > 0 { displaystyle sigma> 0} o'lchov parametri, − 1 < λ < 1 { displaystyle -1 < lambda <1} skewness parametri va p > 0 { displaystyle p> 0} va q > 0 { displaystyle q> 0} kurtozni boshqaradigan parametrlardir. m { displaystyle m} va v { displaystyle v} parametrlar emas, balki bu taqsimotning turli parametrlariga mos kelish uchun taqsimotni mos ravishda siljitish yoki siljitish uchun ishlatiladigan boshqa parametrlarning funktsiyalari.
Asl parametrlashda[1] qiyshiq umumlashtirilgan t taqsimotining,
m = 2 v σ λ q 1 p B ( 2 p , q − 1 p ) B ( 1 p , q ) { displaystyle m = { frac {2v sigma lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p} })} {B ({ frac {1} {p}}, q)}}} va
v = q − 1 p ( 3 λ 2 + 1 ) B ( 3 p , q − 2 p ) B ( 1 p , q ) − 4 λ 2 B ( 2 p , q − 1 p ) 2 B ( 1 p , q ) 2 { displaystyle v = { frac {q ^ {- { frac {1} {p}}}} { sqrt {(3 lambda ^ {2} +1) { frac {B ({ frac {) 3} {p}}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4 lambda ^ {2} { frac {B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ { 2}}}}}}} .Ushbu qiymatlar m { displaystyle m} va v { displaystyle v} ning taqsimotini o'rtacha m { displaystyle mu} agar p q > 1 { displaystyle pq> 1} va dispersiyasi σ 2 { displaystyle sigma ^ {2}} agar p q > 2 { displaystyle pq> 2} . Buning uchun m { displaystyle m} ammo bu qiymatga ega bo'lish uchun shunday bo'lishi kerak p q > 1 { displaystyle pq> 1} . Xuddi shunday, uchun v { displaystyle v} yuqoridagi qiymatga tenglashtirish uchun, p q > 2 { displaystyle pq> 2} .
Ehtimollik zichligi funktsiyasining eng oddiy funktsional shaklini beradigan parametrlash m = 0 { displaystyle m = 0} va v = 1 { displaystyle v = 1} . Bu degani
m + 2 v σ λ q 1 p B ( 2 p , q − 1 p ) B ( 1 p , q ) { displaystyle mu + { frac {2v sigma lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p }})} {B ({ frac {1} {p}}, q)}}} va dispersiyasi
σ 2 q 2 p ( ( 3 λ 2 + 1 ) B ( 3 p , q − 2 p ) B ( 1 p , q ) − 4 λ 2 B ( 2 p , q − 1 p ) 2 B ( 1 p , q ) 2 ) { displaystyle sigma ^ {2} q ^ { frac {2} {p}} ((3 lambda ^ {2} +1) { frac {B ({ frac {3} {p}}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4 lambda ^ {2} { frac {B ({ frac {) 2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ {2}}})} The λ { displaystyle lambda} parametr taqsimotning egriligini boshqaradi. Buni ko'rish uchun ruxsat bering M { displaystyle M} tarqatish rejimini belgilang va
∫ − ∞ M f S G T ( x ; m , σ , λ , p , q ) d x = 1 − λ 2 { displaystyle int _ {- infty} ^ {M} f_ {SGT} (x; mu, sigma, lambda, p, q) dx = { frac {1- lambda} {2}} } Beri − 1 < λ < 1 { displaystyle -1 < lambda <1} , rejimdan chapdagi ehtimollik, shuning uchun rejimning o'ng tomoni ham qiymatiga qarab (0,1) da istalgan qiymatga teng bo'lishi mumkin λ { displaystyle lambda} . Shunday qilib, qiyshiq umumlashtirilgan t taqsimot nosimmetrik kabi yuqori darajada qiyshayishi mumkin. Agar − 1 < λ < 0 { displaystyle -1 < lambda <0} , keyin tarqatish salbiy tomonga buriladi. Agar 0 < λ < 1 { displaystyle 0 < lambda <1} , keyin tarqatish ijobiy tomonga buriladi. Agar λ = 0 { displaystyle lambda = 0} , keyin taqsimot nosimmetrikdir.
Nihoyat, p { displaystyle p} va q { displaystyle q} tarqatish kurtozini nazorat qilish. Sifatida p { displaystyle p} va q { displaystyle q} kichrayib, kurtoz kuchayadi[1] (ya'ni leptokurtikaga aylanadi). Ning katta qiymatlari p { displaystyle p} va q { displaystyle q} platikurtik bo'lgan taqsimot hosil qiling.
Lahzalar Ruxsat bering X { displaystyle X} qiyshiq umumlashtirilgan t taqsimot bilan taqsimlangan tasodifiy o'zgaruvchi bo'ling. The h t h { displaystyle h ^ {th}} lahza (ya'ni E [ ( X − E ( X ) ) h ] { displaystyle E [(X-E (X)) ^ {h}]} ), uchun p q > h { displaystyle pq> h} , bu: ∑ r = 0 h ( h r ) ( ( 1 + λ ) r + 1 + ( − 1 ) r ( 1 − λ ) r + 1 ) ( − λ ) h − r ( v σ ) h q h p B ( r + 1 p , q − r p ) B ( 2 p , q − 1 p ) h − r 2 r − h + 1 B ( 1 p , q ) h − r + 1 { displaystyle sum _ {r = 0} ^ {h} { binom {h} {r}} ((1+ lambda) ^ {r + 1} + (- 1) ^ {r} (1-) lambda) ^ {r + 1}) (- lambda) ^ {hr} { frac {(v sigma) ^ {h} q ^ { frac {h} {p}} B ({ frac {) r + 1} {p}}, q - { frac {r} {p}}) B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ { hr}} {2 ^ {r-h + 1} B ({ frac {1} {p}}, q) ^ {h-r + 1}}}}
O'rtacha, chunki p q > 1 { displaystyle pq> 1} , bu:
m + 2 v σ λ q 1 p B ( 2 p , q − 1 p ) B ( 1 p , q ) − m { displaystyle mu + { frac {2v sigma lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p }})} {B ({ frac {1} {p}}, q)}} - m} Variant (ya'ni E [ ( X − E ( X ) ) 2 ] { displaystyle E [(X-E (X)) ^ {2}]} ), uchun p q > 2 { displaystyle pq> 2} , bu:
( v σ ) 2 q 2 p ( ( 3 λ 2 + 1 ) B ( 3 p , q − 2 p ) B ( 1 p , q ) − 4 λ 2 B ( 2 p , q − 1 p ) 2 B ( 1 p , q ) 2 ) { displaystyle (v sigma) ^ {2} q ^ { frac {2} {p}} ((3 lambda ^ {2} +1) { frac {B ({ frac {3} {p) }}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4 lambda ^ {2} { frac {B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ {2}}} )} Noqulaylik (ya'ni E [ ( X − E ( X ) ) 3 ] { displaystyle E [(X-E (X)) ^ {3}]} ), uchun p q > 3 { displaystyle pq> 3} , bu:
2 q 3 / p λ ( v σ ) 3 B ( 1 p , q ) 3 ( 8 λ 2 B ( 2 p , q − 1 p ) 3 − 3 ( 1 + 3 λ 2 ) B ( 1 p , q ) { displaystyle { frac {2q ^ {3 / p} lambda (v sigma) ^ {3}} {B ({ frac {1} {p}}, q) ^ {3}}} { Bigg (} 8 lambda ^ {2} B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {3} -3 (1 + 3 lambda ^ { 2}) B ({ frac {1} {p}}, q)} × B ( 2 p , q − 1 p ) B ( 3 p , q − 2 p ) + 2 ( 1 + λ 2 ) B ( 1 p , q ) 2 B ( 4 p , q − 3 p ) ) { displaystyle times B ({ frac {2} {p}}, q - { frac {1} {p}}) B ({ frac {3} {p}}, q - { frac { 2} {p}}) + 2 (1+ lambda ^ {2}) B ({ frac {1} {p}}, q) ^ {2} B ({ frac {4} {p}} , q - { frac {3} {p}}) { Bigg)}} Kurtoz (ya'ni E [ ( X − E ( X ) ) 4 ] { displaystyle E [(X-E (X)) ^ {4}]} ), uchun p q > 4 { displaystyle pq> 4} , bu:
q 4 / p ( v σ ) 4 B ( 1 p , q ) 4 ( − 48 λ 4 B ( 2 p , q − 1 p ) 4 + 24 λ 2 ( 1 + 3 λ 2 ) B ( 1 p , q ) B ( 2 p , q − 1 p ) 2 { displaystyle { frac {q ^ {4 / p} (v sigma) ^ {4}} {B ({ frac {1} {p}}, q) ^ {4}}} { Bigg ( } -48 lambda ^ {4} B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {4} +24 lambda ^ {2} (1+) 3 lambda ^ {2}) B ({ frac {1} {p}}, q) B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {2}} × B ( 3 p , q − 2 p ) − 32 λ 2 ( 1 + λ 2 ) B ( 1 p , q ) 2 B ( 2 p , q − 1 p ) B ( 4 p , q − 3 p ) { displaystyle marta B ({ frac {3} {p}}, q - { frac {2} {p}}) - 32 lambda ^ {2} (1+ lambda ^ {2}) B ({ frac {1} {p}}, q) ^ {2} B ({ frac {2} {p}}, q - { frac {1} {p}}) B ({ frac {) 4} {p}}, q - { frac {3} {p}})} + ( 1 + 10 λ 2 + 5 λ 4 ) B ( 1 p , q ) 3 B ( 5 p , q − 4 p ) ) { displaystyle + (1 + 10 lambda ^ {2} +5 lambda ^ {4}) B ({ frac {1} {p}}, q) ^ {3} B ({ frac {5}) {p}}, q - { frac {4} {p}}) { Bigg)}} Maxsus ishlar
Eğimli umumlashtirilgan t taqsimotining maxsus va cheklovchi holatlariga, skandallangan umumlashtirilgan xato taqsimoti, McDonald va Newey tomonidan kiritilgan umumiy taqsimot,[6] Hansen tomonidan taklif qilingan qiyshiq t,[8] qiyshaygan Laplas taqsimoti, umumlashtirilgan xato taqsimoti ( umumlashtirilgan normal taqsimot ), oddiy taqsimot, talaba tarqatish , qiyshiq Koshi taqsimoti, the Laplas taqsimoti , bir xil taqsimlash , normal taqsimot , va Koshi taqsimoti . Quyidagi grafik Hansen, McDonald va Neweydan moslashtirilgan,[2] qiyshiq umumlashtirilgan t taqsimotining har xil maxsus qiymatlarini olish uchun qaysi parametrlarni o'rnatish kerakligini ko'rsatadi.
Eğimli umumlashtirilgan t tarqatish daraxti
Noto'g'ri umumlashtirilgan xato taqsimoti Skewed Generalized Distribution-da pdf mavjud:
lim q → ∞ f S G T ( x ; m , σ , λ , p , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda, p, q)} = f S G E D. ( x ; m , σ , λ , p ) = p e − ( | x − m + m | v σ ( 1 + λ s men g n ( x − m + m ) ) ) p 2 v σ Γ ( 1 / p ) { displaystyle = f_ {SGED} (x; mu, sigma, lambda, p) = { frac {pe ^ {- ({ frac {| x- mu + m |} {v sigma ( 1+ lambda belgisi (x- mu + m))}}) ^ {p}}} {2v sigma Gamma (1 / p)}}} qayerda
m = 2 2 p v σ λ Γ ( 1 2 + 1 p ) π { displaystyle m = { frac {2 ^ { frac {2} {p}} v sigma lambda Gamma ({ frac {1} {2}} + { frac {1} {p}} )} { sqrt { pi}}}} degan ma'noni anglatadi m { displaystyle mu} . Shuningdek
v = π Γ ( 1 p ) π ( 1 + 3 λ 2 ) Γ ( 3 p ) − 16 1 p λ 2 Γ ( 1 2 + 1 p ) 2 Γ ( 1 p ) { displaystyle v = { sqrt { frac { pi Gamma ({ frac {1} {p}})} { pi (1 + 3 lambda ^ {2}) Gamma ({ frac { 3} {p}}) - 16 ^ { frac {1} {p}} lambda ^ {2} Gamma ({ frac {1} {2}} + { frac {1} {p}} ) ^ {2} Gamma ({ frac {1} {p}})}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Umumlashtirilgan t taqsimoti Umumlashtirilgan T taqsimotida pdf mavjud:
f S G T ( x ; m , σ , λ = 0 , p , q ) { displaystyle f_ {SGT} (x; mu, sigma, lambda = 0, p, q)} = f G T ( x ; m , σ , p , q ) = p 2 v σ q 1 / p B ( 1 p , q ) ( | x − m | p q ( v σ ) p + 1 ) 1 p + q { displaystyle = f_ {GT} (x; mu, sigma, p, q) = { frac {p} {2v sigma q ^ {1 / p} B ({ frac {1} {p}) }, q) ({ frac { left | x- mu right | ^ {p}} {q (v sigma) ^ {p}}} + 1) ^ {{ frac {1} {p }} + q}}}} qayerda
v = 1 q 1 / p B ( 1 p , q ) B ( 3 p , q − 2 p ) { displaystyle v = { frac {1} {q ^ {1 / p}}} { sqrt { frac {B ({ frac {1} {p}}, q)} {B ({ frac) {3} {p}}, q - { frac {2} {p}})}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
To'g'ri taqsimlash Skewed T Distribution pdf-ga ega:
f S G T ( x ; m , σ , λ , p = 2 , q ) { displaystyle f_ {SGT} (x; mu, sigma, lambda, p = 2, q)} = f S T ( x ; m , σ , λ , q ) = Γ ( 1 2 + q ) v σ ( π q ) 1 / 2 Γ ( q ) ( | x − m + m | 2 q ( v σ ) 2 ( λ s men g n ( x − m + m ) + 1 ) 2 + 1 ) 1 2 + q { displaystyle = f_ {ST} (x; mu, sigma, lambda, q) = { frac { Gamma ({ frac {1} {2}} + q)} {v sigma ( pi q) ^ {1/2} Gamma (q) ({ frac { left | x- mu + m right | ^ {2}} {q (v sigma) ^ {2} ( lambda) ~ { rm {sign}} (x- mu + m) +1) ^ {2}}} + 1) ^ {{ frac {1} {2}} + q}}}} qayerda
m = 2 v σ λ q 1 / 2 Γ ( q − 1 2 ) π 1 / 2 Γ ( q ) { displaystyle m = { frac {2v sigma lambda q ^ {1/2} Gamma (q - { frac {1} {2}})} { pi ^ {1/2} Gamma ( q)}}} degan ma'noni anglatadi m { displaystyle mu} . Shuningdek
v = 1 q 1 / 2 ( 3 λ 2 + 1 ) ( 1 2 q − 2 ) − 4 λ 2 π ( Γ ( q − 1 2 ) Γ ( q ) ) 2 { displaystyle v = { frac {1} {q ^ {1/2} { sqrt {(3 lambda ^ {2} +1) ({ frac {1} {2q-2}}) - { frac {4 lambda ^ {2}} { pi}} chap ({ frac { Gamma (q - { frac {1} {2}})} { Gamma (q)}} o'ng ) {{2}}}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Laplasning taqsimlanishi Skaped Laplace Distribution pdf-ga ega:
lim q → ∞ f S G T ( x ; m , σ , λ , p = 1 , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda, p = 1, q)} = f S L a p l a v e ( x ; m , σ , λ ) = e − | x − m + m | v σ ( 1 + λ s men g n ( x − m + m ) ) 2 v σ { displaystyle = f_ {SLaplace} (x; mu, sigma, lambda) = { frac {e ^ { frac {- | x- mu + m |} {v sigma (1+ lambda) belgisi (x- mu + m))}}} {2v sigma}}} qayerda
m = 2 v σ λ { displaystyle m = 2v sigma lambda} degan ma'noni anglatadi m { displaystyle mu} . Shuningdek
v = [ 2 ( 1 + λ 2 ) ] − 1 2 { displaystyle v = [2 (1+ lambda ^ {2})] ^ {- { frac {1} {2}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Umumiy xatolarni taqsimlash Umumiy xatolarni tarqatish (shuningdek, umumlashtirilgan normal taqsimot ) pdf-ga ega:
lim q → ∞ f S G T ( x ; m , σ , λ = 0 , p , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda = 0, p, q)} = f G E D. ( x ; m , σ , p ) = p e − ( | x − m | v σ ) p 2 v σ Γ ( 1 / p ) { displaystyle = f_ {GED} (x; mu, sigma, p) = { frac {pe ^ {- ({ frac {| x- mu |} {v sigma}}) ^ {p }}} {2v sigma Gamma (1 / p)}}} qayerda
v = Γ ( 1 p ) Γ ( 3 p ) { displaystyle v = { sqrt { frac { Gamma ({ frac {1} {p}})} { Gamma ({ frac {3} {p}})}}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Oddiy taqsimot Skewed Normal Distribution pdf-ga ega:
lim q → ∞ f S G T ( x ; m , σ , λ , p = 2 , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda, p = 2, q)} = f S N o r m a l ( x ; m , σ , λ ) = e − ( | x − m + m | v σ ( 1 + λ s men g n ( x − m + m ) ) ) 2 v σ π { displaystyle = f_ {SNormal} (x; mu, sigma, lambda) = { frac {e ^ {- ({ frac {| x- mu + m |} {v sigma (1+) lambda belgisi (x- mu + m))}}) ^ {2}}} {v sigma { sqrt { pi}}}}} qayerda
m = 2 v σ λ π { displaystyle m = { frac {2v sigma lambda} { sqrt { pi}}}} degan ma'noni anglatadi m { displaystyle mu} . Shuningdek
v = 2 π ( π − 8 λ 2 + 3 π λ 2 ) { displaystyle v = { sqrt { frac {2 pi} {( pi -8 lambda ^ {2} +3 pi lambda ^ {2})}}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Talabalarning t-taqsimoti The Talabalarning t-taqsimoti pdf-ga ega:
f S G T ( x ; m = 0 , σ = 1 , λ = 0 , p = 2 , q = d / 2 ) { displaystyle f_ {SGT} (x; mu = 0, sigma = 1, lambda = 0, p = 2, q = d / 2)} = f T ( x ; d ) = Γ ( d + 1 2 ) ( π d ) 1 / 2 Γ ( d / 2 ) ( x 2 d + 1 ) d + 1 2 { displaystyle = f_ {T} (x; d) = { frac { Gamma ({ frac {d + 1} {2}})} {( pi d) ^ {1/2} Gamma ( d / 2) ({ frac {x ^ {2}} {d}} + 1) ^ { frac {d + 1} {2}}}}} v = 2 { displaystyle v = { sqrt {2}}} almashtirildi.
Qo'shma Koshi taqsimoti Skewed Cauchy Distribution pdf-ga ega:
f S G T ( x ; m , σ , λ , p = 2 , q = 1 / 2 ) { displaystyle f_ {SGT} (x; mu, sigma, lambda, p = 2, q = 1/2)} = f S C a siz v h y ( x ; m , σ , λ ) = 1 σ π ( | x − m | 2 σ 2 ( λ s men g n ( x − m ) + 1 ) 2 + 1 ) { displaystyle = f_ {SCauchy} (x; mu, sigma, lambda) = { frac {1} { sigma pi ({ frac { left | x- mu right | ^ {2 }} { sigma ^ {2} ( lambda belgisi (x- mu) +1) ^ {2}}} + 1)}}} v = 2 { displaystyle v = { sqrt {2}}} va m = 0 { displaystyle m = 0} almashtirildi.
Eğimli Koshi tarqalishining o'rtacha, dispersiyasi, qiyshiqligi va kurtozi aniqlanmagan.
Laplas taqsimoti The Laplas taqsimoti pdf-ga ega:
lim q → ∞ f S G T ( x ; m , σ , λ = 0 , p = 1 , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda = 0, p = 1, q)} = f L a p l a v e ( x ; m , σ ) = e − | x − m | σ 2 σ { displaystyle = f_ {Laplace} (x; mu, sigma) = { frac {e ^ { frac {- | x- mu |} { sigma}}} {2 sigma}}} v = 1 { displaystyle v = 1} almashtirildi.
Yagona tarqatish The Yagona tarqatish pdf-ga ega:
lim p → ∞ f S G T ( x ; m , σ , λ , p , q ) { displaystyle lim _ {p to infty} f_ {SGT} (x; mu, sigma, lambda, p, q)} = f ( x ) = { 1 2 v σ | x − m | < v σ 0 o t h e r w men s e { displaystyle = f (x) = { begin {case} { frac {1} {2v sigma}} & | x- mu | Shunday qilib standart bir xil parametrlash olinadi, agar m = a + b 2 { displaystyle mu = { frac {a + b} {2}}} , v = 1 { displaystyle v = 1} va σ = b − a 2 { displaystyle sigma = { frac {b-a} {2}}} .
Oddiy taqsimot The Oddiy taqsimot pdf-ga ega:
lim q → ∞ f S G T ( x ; m , σ , λ = 0 , p = 2 , q ) { displaystyle lim _ {q to infty} f_ {SGT} (x; mu, sigma, lambda = 0, p = 2, q)} = f N o r m a l ( x ; m , σ ) = e − ( | x − m | v σ ) 2 v σ π { displaystyle = f_ {Normal} (x; mu, sigma) = { frac {e ^ {- ({ frac {| x- mu |} {v sigma}}) ^ {2}} } {v sigma { sqrt { pi}}}}} qayerda
v = 2 { displaystyle v = { sqrt {2}}} ning dispersiyasini beradi σ 2 { displaystyle sigma ^ {2}} .
Cauchy Distribution The Koshi taqsimoti pdf-ga ega:
f S G T ( x ; m , σ , λ = 0 , p = 2 , q = 1 / 2 ) { displaystyle f_ {SGT} (x; mu, sigma, lambda = 0, p = 2, q = 1/2)} = f C a siz v h y ( x ; m , σ ) = 1 σ π ( ( x − m σ ) 2 + 1 ) { displaystyle = f_ {Cauchy} (x; mu, sigma) = { frac {1} { sigma pi (({ frac {x- mu} { sigma}}) ^ {2} +1)}}} v = 2 { displaystyle v = { sqrt {2}}} almashtirildi.
Adabiyotlar
Hansen, B. (1994). "Avtoregressiv shartli zichlikni baholash". Xalqaro iqtisodiy sharh . 35 (3): 705–730. doi :10.2307/2527081 . JSTOR 2527081 . Xansen, C .; Makdonald, J .; Newey, W. (2010). "Moslashuvchan taqsimot bilan instrumental o'zgaruvchilarni baholash". Biznes va iqtisodiy statistika jurnali . 28 : 13–25. doi :10.1198 / jbes.2009.06161 . hdl :10419/79273 . Xansen, C .; Makdonald, J .; Theodossiou, P. (2007). "Ekonometrik modellarning qisman moslashuvchan baholovchilari uchun moslashuvchan parametrli modellar" . Iqtisodiyot: Open-Access, Open-Assessment elektron jurnali . 1 (2007–7): 1. doi :10.5018 / Economics-ejournal.ja.2007-7 . Makdonald, J .; Mikhefelder, R .; Theodossiou, P. (2009). "Sog'lom regressiyani baholash usullarini baholash va to'sib qo'yilgan noaniqlik: kapital aktivlariga narxlarni aniqlash modelini qo'llash" (PDF) . Ko'p millatli moliya jurnali . 15 (3/4): 293–321. doi :10.17578/13-3/4-6 . Makdonald, J .; Mishelfelder, R .; Theodossiou, P. (2010). "Moslashuvchan parametrlarni taqsimlash bilan ishonchli baholash: foydali fond betalarini baholash". Miqdoriy moliya . 10 (4): 375–387. doi :10.1080/14697680902814241 . Makdonald, J .; Newey, W. (1988). "Regressiya modellarini qisman adaptiv ravishda umumiy t taqsimot orqali baholash". Ekonometrik nazariya . 4 (3): 428–457. doi :10.1017 / s0266466600013384 . Savva, C .; Theodossiou, P. (2015). "Skewness va xavf bilan qaytarish o'rtasidagi bog'liqlik". Menejment fanlari . Theodossiou, P. (1998). "Moliyaviy ma'lumotlar va qiyshiq umumlashtirilgan T tarqatish". Menejment fanlari . 44 (12-qism – 1): 1650–1661. doi :10.1287 / mnsc.44.12.1650 . Tashqi havolalar
Izohlar
^ a b v d Theodossiou, P (1998). "Moliyaviy ma'lumotlar va qiyshiq umumlashtirilgan T tarqatish". Menejment fanlari . 44 (12-qism – 1): 1650–1661. doi :10.1287 / mnsc.44.12.1650 . ^ a b Xansen, C .; Makdonald, J .; Newey, W. (2010). "Moslashuvchan taqsimot bilan instrumental o'zgaruvchilarni baholash". Biznes va iqtisodiy statistika jurnali . 28 : 13–25. doi :10.1198 / jbes.2009.06161 . hdl :10419/79273 . ^ Hansen, C., J. McDonald va P. Theodossiou (2007) "Ekonometrik modellarning qisman moslashuvchan baholash uchun ba'zi moslashuvchan parametr modellari" Iqtisodiyot: Ochiq kirish, ochiq baholash elektron jurnali ^ Makdonald, J .; Mishelfelder, R .; Theodossiou, P. (2009). "Sog'lom regressiyani baholash usullarini baholash va to'sib qo'yilgan noaniqlik: kapital aktivlariga narxlarni aniqlash modelini qo'llash" (PDF) . Ko'p millatli moliya jurnali . 15 (3/4): 293–321. doi :10.17578/13-3/4-6 . ^ a b McDonald J., R. Michelfelder va P. Theodossiou (2010) "Moslashuvchan parametrlarni taqsimlash bilan ishonchli baholash: foydali fond betalarini baholash" Miqdoriy moliya 375-387. ^ a b Makdonald, J .; Newey, W. (1998). "Regressiya modellarini qisman adaptiv ravishda umumiy t taqsimot orqali baholash". Ekonometrik nazariya . 4 (3): 428–457. doi :10.1017 / S0266466600013384 . ^ Savva C. va P. Teodossiou (2015) "Skewness va xavf bilan qaytarish o'rtasidagi bog'liqlik" Menejment fanlari , kelgusi. ^ Hansen, B (1994). "Avtoregressiv shartli zichlikni baholash". Xalqaro iqtisodiy sharh . 35 (3): 705–730. doi :10.2307/2527081 . JSTOR 2527081 . Diskret o'zgaruvchan cheklangan qo'llab-quvvatlash bilan Diskret o'zgaruvchan cheksiz qo'llab-quvvatlash bilan Doimiy o'zgaruvchan cheklangan oraliqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan yarim cheksiz oraliqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan butun haqiqiy chiziqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan turi turlicha bo'lgan qo'llab-quvvatlash bilan Aralashtirilgan uzluksiz diskret bir o'zgaruvchidir Ko'p o'zgaruvchan (qo'shma) Yo'naltirilgan Degeneratsiya va yakka Oilalar