Yilda ehtimollik  va statistika , qiyshiq umumlashtirilgan "t" taqsimoti doimiy oiladir ehtimollik taqsimoti . Tarqatish birinchi bo'lib Panayiotis Theodossiou tomonidan kiritilgan[1]   1998 yilda. Tarqatish shu vaqtdan beri turli xil qo'llanmalarda ishlatilgan.[2] [3] [4] [5] [6] [7]   Eğimli umumlashtirilgan t tarqatish uchun turli xil parametrlar mavjud.[1] [5] 
Ta'rif  
Ehtimollar zichligi funktsiyasi                               f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         ,         q         )         =                               p                           2               v               σ                               q                                   1                                       /                    p                 B               (                                                 1                   p                 ,               q               )                                                 (                                                                                                                                           |                            x                           −                           m                           +                           m                                                                                     |                                                            p                                                      q                           (                           v                           σ                                                       )                                                           p                             (                           λ                           s                           men                           g                           n                           (                           x                           −                           m                           +                           m                           )                           +                           1                                                       )                                                           p                          +                     1                    )                                                                              1                       p                     +                   q            { displaystyle f_ {SGT} (x;  mu,  sigma,  lambda, p, q) = { frac {p} {2v  sigma q ^ {1 / p} B ({ frac {1} {) p}}, q)  chap ({ frac {| x-  mu + m | ^ {p}} {q (v  sigma) ^ {p} ( lambda belgisi (x-  mu + m) + 1) ^ {p}}} + 1  o'ng) ^ {{ frac {1} {p}} + q}}}}   
qayerda                     B       { displaystyle B}     bo'ladi beta funktsiyasi ,                     m       { displaystyle  mu}     joylashuv parametri,                     σ         >         0       { displaystyle  sigma> 0}     o'lchov parametri,                     −         1         <         λ         <         1       { displaystyle -1 < lambda <1}     skewness parametri va                     p         >         0       { displaystyle p> 0}     va                     q         >         0       { displaystyle q> 0}     kurtozni boshqaradigan parametrlardir.                     m       { displaystyle m}     va                     v       { displaystyle v}     parametrlar emas, balki bu taqsimotning turli parametrlariga mos kelish uchun taqsimotni mos ravishda siljitish yoki siljitish uchun ishlatiladigan boshqa parametrlarning funktsiyalari.
Asl parametrlashda[1]   qiyshiq umumlashtirilgan t taqsimotining, 
                    m         =                                             2               v               σ               λ                               q                                                       1                     p                  B               (                                                 2                   p                 ,               q               −                                                 1                   p                 )                            B               (                                                 1                   p                 ,               q               )          { displaystyle m = { frac {2v  sigma  lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p} })} {B ({ frac {1} {p}}, q)}}}   va 
                    v         =                                             q                               −                                                       1                     p                               (               3                               λ                                   2                 +               1               )                                                                     B                     (                                                                   3                         p                       ,                     q                     −                                                                   2                         p                       )                                        B                     (                                                                   1                         p                       ,                     q                     )                  −               4                               λ                                   2                                                                       B                     (                                                                   2                         p                       ,                     q                     −                                                                   1                         p                                             )                                               2                                          B                     (                                                                   1                         p                       ,                     q                                           )                                               2               { displaystyle v = { frac {q ^ {- { frac {1} {p}}}} { sqrt {(3  lambda ^ {2} +1) { frac {B ({ frac {) 3} {p}}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4  lambda ^ {2} { frac {B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ { 2}}}}}}}    .Ushbu qiymatlar                     m       { displaystyle m}     va                     v       { displaystyle v}     ning taqsimotini o'rtacha                     m       { displaystyle  mu}     agar                     p         q         >         1       { displaystyle pq> 1}     va dispersiyasi                               σ                       2         { displaystyle  sigma ^ {2}}     agar                     p         q         >         2       { displaystyle pq> 2}    . Buning uchun                     m       { displaystyle m}     ammo bu qiymatga ega bo'lish uchun shunday bo'lishi kerak                     p         q         >         1       { displaystyle pq> 1}    . Xuddi shunday, uchun                     v       { displaystyle v}     yuqoridagi qiymatga tenglashtirish uchun,                     p         q         >         2       { displaystyle pq> 2}    .
Ehtimollik zichligi funktsiyasining eng oddiy funktsional shaklini beradigan parametrlash                     m         =         0       { displaystyle m = 0}     va                     v         =         1       { displaystyle v = 1}    . Bu degani
                    m         +                                             2               v               σ               λ                               q                                                       1                     p                  B               (                                                 2                   p                 ,               q               −                                                 1                   p                 )                            B               (                                                 1                   p                 ,               q               )          { displaystyle  mu + { frac {2v  sigma  lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p }})} {B ({ frac {1} {p}}, q)}}}   va dispersiyasi
                              σ                       2                     q                                     2               p            (         (         3                   λ                       2           +         1         )                                             B               (                                                 3                   p                 ,               q               −                                                 2                   p                 )                            B               (                                                 1                   p                 ,               q               )            −         4                   λ                       2                                               B               (                                                 2                   p                 ,               q               −                                                 1                   p                                 )                                   2                              B               (                                                 1                   p                 ,               q                               )                                   2              )       { displaystyle  sigma ^ {2} q ^ { frac {2} {p}} ((3  lambda ^ {2} +1) { frac {B ({ frac {3} {p}}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4  lambda ^ {2} { frac {B ({ frac {) 2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ {2}}})}   The                     λ       { displaystyle  lambda}     parametr taqsimotning egriligini boshqaradi. Buni ko'rish uchun ruxsat bering                     M       { displaystyle M}     tarqatish rejimini belgilang va 
                              ∫                       −             ∞                        M                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         ,         q         )         d         x         =                                             1               −               λ              2         { displaystyle  int _ {-  infty} ^ {M} f_ {SGT} (x;  mu,  sigma,  lambda, p, q) dx = { frac {1-  lambda} {2}} }   Beri                     −         1         <         λ         <         1       { displaystyle -1 < lambda <1}    , rejimdan chapdagi ehtimollik, shuning uchun rejimning o'ng tomoni ham qiymatiga qarab (0,1) da istalgan qiymatga teng bo'lishi mumkin                     λ       { displaystyle  lambda}    . Shunday qilib, qiyshiq umumlashtirilgan t taqsimot nosimmetrik kabi yuqori darajada qiyshayishi mumkin. Agar                     −         1         <         λ         <         0       { displaystyle -1 < lambda <0}    , keyin tarqatish salbiy tomonga buriladi. Agar                     0         <         λ         <         1       { displaystyle 0 < lambda <1}    , keyin tarqatish ijobiy tomonga buriladi. Agar                     λ         =         0       { displaystyle  lambda = 0}    , keyin taqsimot nosimmetrikdir.
Nihoyat,                     p       { displaystyle p}     va                     q       { displaystyle q}     tarqatish kurtozini nazorat qilish. Sifatida                     p       { displaystyle p}     va                     q       { displaystyle q}     kichrayib, kurtoz kuchayadi[1]   (ya'ni leptokurtikaga aylanadi). Ning katta qiymatlari                     p       { displaystyle p}     va                     q       { displaystyle q}     platikurtik bo'lgan taqsimot hosil qiling.
Lahzalar Ruxsat bering                     X       { displaystyle X}     qiyshiq umumlashtirilgan t taqsimot bilan taqsimlangan tasodifiy o'zgaruvchi bo'ling. The                               h                       t             h         { displaystyle h ^ {th}}     lahza (ya'ni                     E         [         (         X         −         E         (         X         )                   )                       h           ]       { displaystyle E [(X-E (X)) ^ {h}]}    ), uchun                     p         q         >         h       { displaystyle pq> h}    , bu:                              ∑                       r             =             0                        h                                               (                            h               r                            )            (         (         1         +         λ                   )                       r             +             1           +         (         −         1                   )                       r           (         1         −         λ                   )                       r             +             1           )         (         −         λ                   )                       h             −             r                                               (               v               σ                               )                                   h                                 q                                                       h                     p                  B               (                                                                     r                     +                     1                    p                 ,               q               −                                                 r                   p                 )               B               (                                                 2                   p                 ,               q               −                                                 1                   p                                 )                                   h                   −                   r                                              2                                   r                   −                   h                   +                   1                 B               (                                                 1                   p                 ,               q                               )                                   h                   −                   r                   +                   1            { displaystyle  sum _ {r = 0} ^ {h} { binom {h} {r}} ((1+  lambda) ^ {r + 1} + (- 1) ^ {r} (1-)  lambda) ^ {r + 1}) (-  lambda) ^ {hr} { frac {(v  sigma) ^ {h} q ^ { frac {h} {p}} B ({ frac {) r + 1} {p}}, q - { frac {r} {p}}) B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ { hr}} {2 ^ {r-h + 1} B ({ frac {1} {p}}, q) ^ {h-r + 1}}}}   
O'rtacha, chunki                     p         q         >         1       { displaystyle pq> 1}    , bu:
                    m         +                                             2               v               σ               λ                               q                                                       1                     p                  B               (                                                 2                   p                 ,               q               −                                                 1                   p                 )                            B               (                                                 1                   p                 ,               q               )            −         m       { displaystyle  mu + { frac {2v  sigma  lambda q ^ { frac {1} {p}} B ({ frac {2} {p}}, q - { frac {1} {p }})} {B ({ frac {1} {p}}, q)}} - m}   Variant (ya'ni                     E         [         (         X         −         E         (         X         )                   )                       2           ]       { displaystyle E [(X-E (X)) ^ {2}]}    ), uchun                     p         q         >         2       { displaystyle pq> 2}    , bu:
                    (         v         σ                   )                       2                     q                                     2               p            (         (         3                   λ                       2           +         1         )                                             B               (                                                 3                   p                 ,               q               −                                                 2                   p                 )                            B               (                                                 1                   p                 ,               q               )            −         4                   λ                       2                                               B               (                                                 2                   p                 ,               q               −                                                 1                   p                                 )                                   2                              B               (                                                 1                   p                 ,               q                               )                                   2              )       { displaystyle (v  sigma) ^ {2} q ^ { frac {2} {p}} ((3  lambda ^ {2} +1) { frac {B ({ frac {3} {p) }}, q - { frac {2} {p}})} {B ({ frac {1} {p}}, q)}} - 4  lambda ^ {2} { frac {B ({  frac {2} {p}}, q - { frac {1} {p}}) ^ {2}} {B ({ frac {1} {p}}, q) ^ {2}}} )}   Noqulaylik (ya'ni                     E         [         (         X         −         E         (         X         )                   )                       3           ]       { displaystyle E [(X-E (X)) ^ {3}]}    ), uchun                     p         q         >         3       { displaystyle pq> 3}    , bu:
                                                        2                               q                                   3                                       /                    p                 λ               (               v               σ                               )                                   3                              B               (                                                 1                   p                 ,               q                               )                                   3                                    (           8                   λ                       2           B         (                               2             p           ,         q         −                               1             p                     )                       3           −         3         (         1         +         3                   λ                       2           )         B         (                               1             p           ,         q         )       { displaystyle { frac {2q ^ {3 / p}  lambda (v  sigma) ^ {3}} {B ({ frac {1} {p}}, q) ^ {3}}} { Bigg (} 8  lambda ^ {2} B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {3} -3 (1 + 3  lambda ^ { 2}) B ({ frac {1} {p}}, q)}                       ×         B         (                               2             p           ,         q         −                               1             p           )         B         (                               3             p           ,         q         −                               2             p           )         +         2         (         1         +                   λ                       2           )         B         (                               1             p           ,         q                   )                       2           B         (                               4             p           ,         q         −                               3             p           )                               )         { displaystyle  times B ({ frac {2} {p}}, q - { frac {1} {p}}) B ({ frac {3} {p}}, q - { frac { 2} {p}}) + 2 (1+  lambda ^ {2}) B ({ frac {1} {p}}, q) ^ {2} B ({ frac {4} {p}} , q - { frac {3} {p}}) { Bigg)}}   Kurtoz (ya'ni                     E         [         (         X         −         E         (         X         )                   )                       4           ]       { displaystyle E [(X-E (X)) ^ {4}]}    ), uchun                     p         q         >         4       { displaystyle pq> 4}    , bu:
                                                                        q                                   4                                       /                    p                 (               v               σ                               )                                   4                              B               (                                                 1                   p                 ,               q                               )                                   4                                    (           −         48                   λ                       4           B         (                               2             p           ,         q         −                               1             p                     )                       4           +         24                   λ                       2           (         1         +         3                   λ                       2           )         B         (                               1             p           ,         q         )         B         (                               2             p           ,         q         −                               1             p                     )                       2         { displaystyle { frac {q ^ {4 / p} (v  sigma) ^ {4}} {B ({ frac {1} {p}}, q) ^ {4}}} { Bigg ( } -48  lambda ^ {4} B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {4} +24  lambda ^ {2} (1+) 3  lambda ^ {2}) B ({ frac {1} {p}}, q) B ({ frac {2} {p}}, q - { frac {1} {p}}) ^ {2}}                       ×         B         (                               3             p           ,         q         −                               2             p           )         −         32                   λ                       2           (         1         +                   λ                       2           )         B         (                               1             p           ,         q                   )                       2           B         (                               2             p           ,         q         −                               1             p           )         B         (                               4             p           ,         q         −                               3             p           )       { displaystyle  marta B ({ frac {3} {p}}, q - { frac {2} {p}}) - 32  lambda ^ {2} (1+  lambda ^ {2}) B ({ frac {1} {p}}, q) ^ {2} B ({ frac {2} {p}}, q - { frac {1} {p}}) B ({ frac {) 4} {p}}, q - { frac {3} {p}})}                       +         (         1         +         10                   λ                       2           +         5                   λ                       4           )         B         (                               1             p           ,         q                   )                       3           B         (                               5             p           ,         q         −                               4             p           )                               )         { displaystyle + (1 + 10  lambda ^ {2} +5  lambda ^ {4}) B ({ frac {1} {p}}, q) ^ {3} B ({ frac {5}) {p}}, q - { frac {4} {p}}) { Bigg)}}   Maxsus ishlar  
Eğimli umumlashtirilgan t taqsimotining maxsus va cheklovchi holatlariga, skandallangan umumlashtirilgan xato taqsimoti, McDonald va Newey tomonidan kiritilgan umumiy taqsimot,[6]   Hansen tomonidan taklif qilingan qiyshiq t,[8]   qiyshaygan Laplas taqsimoti, umumlashtirilgan xato taqsimoti ( umumlashtirilgan normal taqsimot ), oddiy taqsimot, talaba tarqatish , qiyshiq Koshi taqsimoti, the Laplas taqsimoti , bir xil taqsimlash , normal taqsimot , va Koshi taqsimoti . Quyidagi grafik Hansen, McDonald va Neweydan moslashtirilgan,[2]   qiyshiq umumlashtirilgan t taqsimotining har xil maxsus qiymatlarini olish uchun qaysi parametrlarni o'rnatish kerakligini ko'rsatadi.
   Eğimli umumlashtirilgan t tarqatish daraxti
Noto'g'ri umumlashtirilgan xato taqsimoti Skewed Generalized Distribution-da pdf mavjud:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda, p, q)}                       =                   f                       S             G             E             D.           (         x         ;         m         ,         σ         ,         λ         ,         p         )         =                                             p                               e                                   −                   (                                                                                                               |                          x                         −                         m                         +                         m                                                   |                                                 v                         σ                         (                         1                         +                         λ                         s                         men                         g                         n                         (                         x                         −                         m                         +                         m                         )                         )                                          )                                           p                                2               v               σ               Γ               (               1                               /                p               )          { displaystyle = f_ {SGED} (x;  mu,  sigma,  lambda, p) = { frac {pe ^ {- ({ frac {| x-  mu + m |} {v  sigma ( 1+  lambda belgisi (x-  mu + m))}}) ^ {p}}} {2v  sigma  Gamma (1 / p)}}}   qayerda 
                    m         =                                                             2                                                       2                     p                  v               σ               λ               Γ               (                                                 1                   2                 +                                                 1                   p                 )                            π          { displaystyle m = { frac {2 ^ { frac {2} {p}} v  sigma  lambda  Gamma ({ frac {1} {2}} + { frac {1} {p}} )} { sqrt { pi}}}}   degan ma'noni anglatadi                     m       { displaystyle  mu}    . Shuningdek
                    v         =                                                             π                 Γ                 (                                                       1                     p                   )                                π                 (                 1                 +                 3                                   λ                                       2                   )                 Γ                 (                                                       3                     p                   )                 −                                   16                                                             1                       p                                      λ                                       2                   Γ                 (                                                       1                     2                   +                                                       1                     p                                     )                                       2                   Γ                 (                                                       1                     p                   )           { displaystyle v = { sqrt { frac { pi  Gamma ({ frac {1} {p}})} { pi (1 + 3  lambda ^ {2})  Gamma ({ frac { 3} {p}}) - 16 ^ { frac {1} {p}}  lambda ^ {2}  Gamma ({ frac {1} {2}} + { frac {1} {p}} ) ^ {2}  Gamma ({ frac {1} {p}})}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Umumlashtirilgan t taqsimoti Umumlashtirilgan T taqsimotida pdf mavjud: 
                              f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         =         0         ,         p         ,         q         )       { displaystyle f_ {SGT} (x;  mu,  sigma,  lambda = 0, p, q)}                       =                   f                       G             T           (         x         ;         m         ,         σ         ,         p         ,         q         )         =                               p                           2               v               σ                               q                                   1                                       /                    p                 B               (                                                 1                   p                 ,               q               )               (                                                                                           |                                               x                         −                         m                        |                                            p                                         q                     (                     v                     σ                                           )                                               p                    +               1                               )                                                                             1                       p                     +                   q            { displaystyle = f_ {GT} (x;  mu,  sigma, p, q) = { frac {p} {2v  sigma q ^ {1 / p} B ({ frac {1} {p}) }, q) ({ frac { left | x-  mu  right | ^ {p}} {q (v  sigma) ^ {p}}} + 1) ^ {{ frac {1} {p }} + q}}}}   qayerda 
                    v         =                               1                           q                               1                                   /                  p                                                                 B                 (                                                       1                     p                   ,                 q                 )                                B                 (                                                       3                     p                   ,                 q                 −                                                       2                     p                   )           { displaystyle v = { frac {1} {q ^ {1 / p}}} { sqrt { frac {B ({ frac {1} {p}}, q)} {B ({ frac) {3} {p}}, q - { frac {2} {p}})}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
To'g'ri taqsimlash Skewed T Distribution pdf-ga ega:
                              f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         =         2         ,         q         )       { displaystyle f_ {SGT} (x;  mu,  sigma,  lambda, p = 2, q)}                       =                   f                       S             T           (         x         ;         m         ,         σ         ,         λ         ,         q         )         =                                             Γ               (                                                 1                   2                 +               q               )                            v               σ               (               π               q                               )                                   1                                       /                    2                 Γ               (               q               )               (                                                                                           |                                               x                         −                         m                         +                         m                        |                                            2                                         q                     (                     v                     σ                                           )                                               2                       (                     λ                                                                                         s                         men                         g                         n                       (                     x                     −                     m                     +                     m                     )                     +                     1                                           )                                               2                    +               1                               )                                                                             1                       2                     +                   q            { displaystyle = f_ {ST} (x;  mu,  sigma,  lambda, q) = { frac { Gamma ({ frac {1} {2}} + q)} {v  sigma ( pi q) ^ {1/2}  Gamma (q) ({ frac { left | x-  mu + m  right | ^ {2}} {q (v  sigma) ^ {2} ( lambda) ~ { rm {sign}} (x-  mu + m) +1) ^ {2}}} + 1) ^ {{ frac {1} {2}} + q}}}}   qayerda 
                    m         =                                             2               v               σ               λ                               q                                   1                                       /                    2                 Γ               (               q               −                                                 1                   2                 )                                            π                                   1                                       /                    2                 Γ               (               q               )          { displaystyle m = { frac {2v  sigma  lambda q ^ {1/2}  Gamma (q - { frac {1} {2}})} { pi ^ {1/2}  Gamma ( q)}}}   degan ma'noni anglatadi                     m       { displaystyle  mu}    . Shuningdek
                    v         =                               1                                           q                                   1                                       /                    2                                                   (                   3                                       λ                                           2                     +                   1                   )                   (                                                             1                                               2                         q                         −                         2                      )                   −                                                                                     4                                                   λ                                                       2                          π                                                               (                                                                                                     Γ                             (                             q                             −                                                                                           1                                 2                               )                                                        Γ                             (                             q                             )                          )                                            2              { displaystyle v = { frac {1} {q ^ {1/2} { sqrt {(3  lambda ^ {2} +1) ({ frac {1} {2q-2}}) - {  frac {4  lambda ^ {2}} { pi}}  chap ({ frac { Gamma (q - { frac {1} {2}})} { Gamma (q)}}  o'ng ) {{2}}}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Laplasning taqsimlanishi Skaped Laplace Distribution pdf-ga ega:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         =         1         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda, p = 1, q)}                       =                   f                       S             L             a             p             l             a             v             e           (         x         ;         m         ,         σ         ,         λ         )         =                                             e                                                                     −                                           |                      x                     −                     m                     +                     m                                           |                                         v                     σ                     (                     1                     +                     λ                     s                     men                     g                     n                     (                     x                     −                     m                     +                     m                     )                     )                               2               v               σ          { displaystyle = f_ {SLaplace} (x;  mu,  sigma,  lambda) = { frac {e ^ { frac {- | x-  mu + m |} {v  sigma (1+  lambda) belgisi (x-  mu + m))}}} {2v  sigma}}}   qayerda 
                    m         =         2         v         σ         λ       { displaystyle m = 2v  sigma  lambda}   degan ma'noni anglatadi                     m       { displaystyle  mu}    . Shuningdek
                    v         =         [         2         (         1         +                   λ                       2           )                   ]                       −                                           1                 2           { displaystyle v = [2 (1+  lambda ^ {2})] ^ {- { frac {1} {2}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Umumiy xatolarni taqsimlash Umumiy xatolarni tarqatish (shuningdek, umumlashtirilgan normal taqsimot ) pdf-ga ega:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         =         0         ,         p         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda = 0, p, q)}                       =                   f                       G             E             D.           (         x         ;         m         ,         σ         ,         p         )         =                                             p                               e                                   −                   (                                                                                                               |                          x                         −                         m                                                   |                                                 v                         σ                                          )                                           p                                2               v               σ               Γ               (               1                               /                p               )          { displaystyle = f_ {GED} (x;  mu,  sigma, p) = { frac {pe ^ {- ({ frac {| x-  mu |} {v  sigma}}) ^ {p }}} {2v  sigma  Gamma (1 / p)}}}   qayerda 
                    v         =                                                             Γ                 (                                                       1                     p                   )                                Γ                 (                                                       3                     p                   )           { displaystyle v = { sqrt { frac { Gamma ({ frac {1} {p}})} { Gamma ({ frac {3} {p}})}}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Oddiy taqsimot Skewed Normal Distribution pdf-ga ega:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         =         2         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda, p = 2, q)}                       =                   f                       S             N             o             r             m             a             l           (         x         ;         m         ,         σ         ,         λ         )         =                                             e                               −                 (                                                                                                     |                        x                       −                       m                       +                       m                                               |                                             v                       σ                       (                       1                       +                       λ                       s                       men                       g                       n                       (                       x                       −                       m                       +                       m                       )                       )                                      )                                       2                               v               σ                                                 π            { displaystyle = f_ {SNormal} (x;  mu,  sigma,  lambda) = { frac {e ^ {- ({ frac {| x-  mu + m |} {v  sigma (1+)  lambda belgisi (x-  mu + m))}}) ^ {2}}} {v  sigma { sqrt { pi}}}}}   qayerda 
                    m         =                                             2               v               σ               λ                            π          { displaystyle m = { frac {2v  sigma  lambda} { sqrt { pi}}}}   degan ma'noni anglatadi                     m       { displaystyle  mu}    . Shuningdek
                    v         =                                                             2                 π                                (                 π                 −                 8                                   λ                                       2                   +                 3                 π                                   λ                                       2                   )           { displaystyle v = { sqrt { frac {2  pi} {( pi -8  lambda ^ {2} +3  pi  lambda ^ {2})}}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Talabalarning t-taqsimoti The Talabalarning t-taqsimoti  pdf-ga ega:
                              f                       S             G             T           (         x         ;         m         =         0         ,         σ         =         1         ,         λ         =         0         ,         p         =         2         ,         q         =         d                   /          2         )       { displaystyle f_ {SGT} (x;  mu = 0,  sigma = 1,  lambda = 0, p = 2, q = d / 2)}                       =                   f                       T           (         x         ;         d         )         =                                             Γ               (                                                                     d                     +                     1                    2                 )                            (               π               d                               )                                   1                                       /                    2                 Γ               (               d                               /                2               )               (                                                                     x                                           2                     d                 +               1                               )                                                                             d                       +                       1                      2             { displaystyle = f_ {T} (x; d) = { frac { Gamma ({ frac {d + 1} {2}})} {( pi d) ^ {1/2}  Gamma ( d / 2) ({ frac {x ^ {2}} {d}} + 1) ^ { frac {d + 1} {2}}}}}                       v         =                               2         { displaystyle v = { sqrt {2}}}     almashtirildi.
Qo'shma Koshi taqsimoti Skewed Cauchy Distribution pdf-ga ega:
                              f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         =         2         ,         q         =         1                   /          2         )       { displaystyle f_ {SGT} (x;  mu,  sigma,  lambda, p = 2, q = 1/2)}                       =                   f                       S             C             a             siz             v             h             y           (         x         ;         m         ,         σ         ,         λ         )         =                               1                           σ               π               (                                                                                           |                                               x                         −                         m                        |                                            2                                                               σ                                               2                       (                     λ                     s                     men                     g                     n                     (                     x                     −                     m                     )                     +                     1                                           )                                               2                    +               1               )          { displaystyle = f_ {SCauchy} (x;  mu,  sigma,  lambda) = { frac {1} { sigma  pi ({ frac { left | x-  mu  right | ^ {2 }} { sigma ^ {2} ( lambda belgisi (x-  mu) +1) ^ {2}}} + 1)}}}                       v         =                               2         { displaystyle v = { sqrt {2}}}     va                     m         =         0       { displaystyle m = 0}     almashtirildi.
Eğimli Koshi tarqalishining o'rtacha, dispersiyasi, qiyshiqligi va kurtozi aniqlanmagan.
Laplas taqsimoti The Laplas taqsimoti  pdf-ga ega:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         =         0         ,         p         =         1         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda = 0, p = 1, q)}                       =                   f                       L             a             p             l             a             v             e           (         x         ;         m         ,         σ         )         =                                             e                                                                     −                                           |                      x                     −                     m                                           |                     σ                              2               σ          { displaystyle = f_ {Laplace} (x;  mu,  sigma) = { frac {e ^ { frac {- | x-  mu |} { sigma}}} {2  sigma}}}                       v         =         1       { displaystyle v = 1}     almashtirildi.
Yagona tarqatish The Yagona tarqatish  pdf-ga ega:
                              lim                       p             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         ,         p         ,         q         )       { displaystyle  lim _ {p  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda, p, q)}                       =         f         (         x         )         =                               {                                                                                                       1                                               2                         v                         σ                                                           |                    x                   −                   m                                       |                    <                   v                   σ                                                   0                                                        o                     t                     h                     e                     r                     w                     men                     s                     e                         { displaystyle = f (x) = { begin {case} { frac {1} {2v  sigma}} & | x-  mu |    Shunday qilib standart bir xil parametrlash olinadi, agar                     m         =                                             a               +               b              2         { displaystyle  mu = { frac {a + b} {2}}}    ,                     v         =         1       { displaystyle v = 1}    va                     σ         =                                             b               −               a              2         { displaystyle  sigma = { frac {b-a} {2}}}    .
Oddiy taqsimot The Oddiy taqsimot  pdf-ga ega:
                              lim                       q             →             ∞                     f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         =         0         ,         p         =         2         ,         q         )       { displaystyle  lim _ {q  to  infty} f_ {SGT} (x;  mu,  sigma,  lambda = 0, p = 2, q)}                       =                   f                       N             o             r             m             a             l           (         x         ;         m         ,         σ         )         =                                             e                               −                 (                                                                                                     |                        x                       −                       m                                               |                                             v                       σ                                      )                                       2                               v               σ                                                 π            { displaystyle = f_ {Normal} (x;  mu,  sigma) = { frac {e ^ {- ({ frac {| x-  mu |} {v  sigma}}) ^ {2}} } {v  sigma { sqrt { pi}}}}}   qayerda 
                    v         =                               2         { displaystyle v = { sqrt {2}}}   ning dispersiyasini beradi                               σ                       2         { displaystyle  sigma ^ {2}}    .
Cauchy Distribution The Koshi taqsimoti  pdf-ga ega:
                              f                       S             G             T           (         x         ;         m         ,         σ         ,         λ         =         0         ,         p         =         2         ,         q         =         1                   /          2         )       { displaystyle f_ {SGT} (x;  mu,  sigma,  lambda = 0, p = 2, q = 1/2)}                       =                   f                       C             a             siz             v             h             y           (         x         ;         m         ,         σ         )         =                               1                           σ               π               (               (                                                                     x                     −                     m                    σ                                 )                                   2                 +               1               )          { displaystyle = f_ {Cauchy} (x;  mu,  sigma) = { frac {1} { sigma  pi (({ frac {x-  mu} { sigma}}) ^ {2} +1)}}}                       v         =                               2         { displaystyle v = { sqrt {2}}}     almashtirildi.
Adabiyotlar  
Hansen, B. (1994). "Avtoregressiv shartli zichlikni baholash". Xalqaro iqtisodiy sharh  . 35  (3): 705–730. doi :10.2307/2527081 . JSTOR  2527081 . Xansen, C .; Makdonald, J .; Newey, W. (2010). "Moslashuvchan taqsimot bilan instrumental o'zgaruvchilarni baholash". Biznes va iqtisodiy statistika jurnali  . 28 : 13–25. doi :10.1198 / jbes.2009.06161 . hdl :10419/79273  . Xansen, C .; Makdonald, J .; Theodossiou, P. (2007). "Ekonometrik modellarning qisman moslashuvchan baholovchilari uchun moslashuvchan parametrli modellar" . Iqtisodiyot: Open-Access, Open-Assessment elektron jurnali . 1  (2007–7): 1. doi :10.5018 / Economics-ejournal.ja.2007-7  . Makdonald, J .; Mikhefelder, R .; Theodossiou, P. (2009). "Sog'lom regressiyani baholash usullarini baholash va to'sib qo'yilgan noaniqlik: kapital aktivlariga narxlarni aniqlash modelini qo'llash"  (PDF) . Ko'p millatli moliya jurnali . 15  (3/4): 293–321. doi :10.17578/13-3/4-6 . Makdonald, J .; Mishelfelder, R .; Theodossiou, P. (2010). "Moslashuvchan parametrlarni taqsimlash bilan ishonchli baholash: foydali fond betalarini baholash". Miqdoriy moliya . 10  (4): 375–387. doi :10.1080/14697680902814241 . Makdonald, J .; Newey, W. (1988). "Regressiya modellarini qisman adaptiv ravishda umumiy t taqsimot orqali baholash". Ekonometrik nazariya  . 4  (3): 428–457. doi :10.1017 / s0266466600013384 . Savva, C .; Theodossiou, P. (2015). "Skewness va xavf bilan qaytarish o'rtasidagi bog'liqlik". Menejment fanlari  . Theodossiou, P. (1998). "Moliyaviy ma'lumotlar va qiyshiq umumlashtirilgan T tarqatish". Menejment fanlari  . 44  (12-qism – 1): 1650–1661. doi :10.1287 / mnsc.44.12.1650 . Tashqi havolalar  
Izohlar  
^ a   b   v   d   Theodossiou, P (1998). "Moliyaviy ma'lumotlar va qiyshiq umumlashtirilgan T tarqatish". Menejment fanlari . 44  (12-qism – 1): 1650–1661. doi :10.1287 / mnsc.44.12.1650 . ^ a   b   Xansen, C .; Makdonald, J .; Newey, W. (2010). "Moslashuvchan taqsimot bilan instrumental o'zgaruvchilarni baholash". Biznes va iqtisodiy statistika jurnali . 28 : 13–25. doi :10.1198 / jbes.2009.06161 . hdl :10419/79273  . ^   Hansen, C., J. McDonald va P. Theodossiou (2007) "Ekonometrik modellarning qisman moslashuvchan baholash uchun ba'zi moslashuvchan parametr modellari" Iqtisodiyot: Ochiq kirish, ochiq baholash elektron jurnali  ^   Makdonald, J .; Mishelfelder, R .; Theodossiou, P. (2009). "Sog'lom regressiyani baholash usullarini baholash va to'sib qo'yilgan noaniqlik: kapital aktivlariga narxlarni aniqlash modelini qo'llash"  (PDF) . Ko'p millatli moliya jurnali . 15  (3/4): 293–321. doi :10.17578/13-3/4-6 . ^ a   b   McDonald J., R. Michelfelder va P. Theodossiou (2010) "Moslashuvchan parametrlarni taqsimlash bilan ishonchli baholash: foydali fond betalarini baholash" Miqdoriy moliya  375-387. ^ a   b   Makdonald, J .; Newey, W. (1998). "Regressiya modellarini qisman adaptiv ravishda umumiy t taqsimot orqali baholash". Ekonometrik nazariya . 4  (3): 428–457. doi :10.1017 / S0266466600013384 . ^   Savva C. va P. Teodossiou (2015) "Skewness va xavf bilan qaytarish o'rtasidagi bog'liqlik" Menejment fanlari , kelgusi. ^   Hansen, B (1994). "Avtoregressiv shartli zichlikni baholash". Xalqaro iqtisodiy sharh . 35  (3): 705–730. doi :10.2307/2527081 . JSTOR  2527081 . Diskret o'zgaruvchan cheklangan qo'llab-quvvatlash bilan Diskret o'zgaruvchan cheksiz qo'llab-quvvatlash bilan Doimiy o'zgaruvchan cheklangan oraliqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan yarim cheksiz oraliqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan butun haqiqiy chiziqda qo'llab-quvvatlanadi Doimiy o'zgaruvchan turi turlicha bo'lgan qo'llab-quvvatlash bilan Aralashtirilgan uzluksiz diskret bir o'zgaruvchidir Ko'p o'zgaruvchan (qo'shma) Yo'naltirilgan Degeneratsiya   va yakka Oilalar